Electronic Supplementary Information (ESI) for

Acceleration of NO₂ gas sensitivity in two-dimensional SnSe₂ by Br

doping

Myung Sik Choi, 1† Geukchan Bang, 2† Jeongmin Lee, 2 Inseo Kim, 2 Joonho Bang, 3 Seung

Yong Lee,^{4,5} Kimoon Lee,*2 and Kyu Hyoung Lee*4

¹School of Nano & Materials Science and Engineering, Kyungpook National University,

Sangju 37224, Republic of Korea.

²Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.

³School of Materials Science & Engineering, Gyeongsang National University, Jinju

52828, Republic of Korea.

⁴Department of Materials Science and Engineering, Yonsei University, Seoul 03722,

Republic of Korea.

⁵KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea.

[†]These authors contributed equally to this work.

*e-mail: kimoon.lee@kunsan.ac.kr and khlee2018@yonsei.ac.kr

S1. Operational stability test under a humid condition

Figure S1 shows the NO₂ gas sensing characteristics results for 20 ppm under a humid condition (60 RH%). The responsivity to 20 ppm NO₂ gas under 60 RH% is 1.0229, supporting the stability of gas sensing properties.

Figure S1. Dynamic responsivity curves of Br-doped $SnSe_2$ (x = 0.004) at 20 ppm NO_2 gas under humidity condition (60 RH%)

S2. Operational stability test under a repeated gas on and off condition

To evaluate the stability of Br-doped SnSe₂ gas sensor, we performed the cyclic measurement under a repeated gas on and off condition. As shown in Figure S2, the initial resistance and its gas responsivity values are relatively well retained over five sequential cycles to 1 ppm NO₂ gas at room temperature.

Figure S2. Repeatability of Br-doped SnSe₂ (x = 0.004) over five sequential cycles to 1 ppm NO₂ gas at room temperature.

S3. Gas selectivity test

We examine the selectivity of the Br-doped $SnSe_2$ gas sensor by exposing it to 20 ppm H_2S gas. (Figure S3) The corresponding responsivity values is 1.0094 which is much inferior to 1.0338 with the same concentration of NO_2 one, strongly suggesting an excellent selectivity to NO_2 gas.

Figure S3. Dynamic responsivity curves of Br-doped SnSe₂ (x = 0.004) gas sensor to 20 ppm H₂S gas

S4. Comparison of gas sensing properties

Table S1. Comparison of NO₂ gas sensing properties in various 2D materials including our Br-doped SnSe₂

our Bi-doped ShBe ₂				
Material	NO ₂ responsivity (Concentration)	Operational condition	Ref.	
1L Gr	28 % (10 ppm)	100 − 165 °C	Small, 10 , 3685 (2014)	
RGO	74.3 % (5 ppm)	RT	J. Mater. Chem. C, 5 , 6862 (2017)	
Gr/MoS ₂	7 % (5 ppm)	150 °C	ACS Appl. Mater. Interf. 7 , 16775 (2015)	
N/Si co-doped Gr nanosheets	26 % (21 ppm)	RT	J. Mater. Chem. A, 1, 6130 (2013)	
RGO/porous PEDOT	33 % (10 ppm)	RT	ACS Appl. Mater. Interf. 6 , 13807 (2014)	
Flexible Ag- S-RGO	45 % (10 ppm)	RT	ACS Appl. Mater. Interf. 6 , 7426 (2014)	
Holey RGO nanosheets	54 % (12.5 ppm)	RT	J. Mater. Chem. A, 2, 17415 (2014)	
Sulfonated RGO	58 % (10 ppm)	RT	Adv. Mater. 25, 766 (2013)	
RGO/In-SnO ₂ nanohybrids	75 % (10 ppm)	RT	J. Mater. Chem. A, 1, 4462 (2013)	
PGNS	75 % (5 ppm)	RT	ACS Nano, 12 , 2521 (2018)	
MoS ₂ atomic layer	15 % (5 ppm)	RT	Sci. Rep. 5 , 8252 (2015)	
MoS ₂ single layer	120 % (1 ppm)	RT	ACS Appl. Mater. Interf. 7, 2952 (2015)	

MoS ₂ 2 layers	2.6 % (1 ppm)	RT	J. Alloys Compd. 725 , 253 (2017)
MoS ₂ 5 layers	30 % (100 ppm)	RT	ACS Nano, 7, 4879 (2013)
WS_2 multilayers	68.4 % (5 ppm)	RT	Sens. Actuators B, 259 , 789 (2018)
SnSe ₂ 10 layers	60 % (1 ppm)	UV light	ACS Sens. 4, 2546 (2019)
SnSe ₂ bulky single crystal	3.38 % (20 ppm)	RT	Our work