Electronic Supplementary Information (ESI) for Acceleration of NO₂ gas sensitivity in two-dimensional SnSe₂ by Br doping Myung Sik Choi, 1† Geukchan Bang, 2† Jeongmin Lee, 2 Inseo Kim, 2 Joonho Bang, 3 Seung Yong Lee,^{4,5} Kimoon Lee,*2 and Kyu Hyoung Lee*4 ¹School of Nano & Materials Science and Engineering, Kyungpook National University, Sangju 37224, Republic of Korea. ²Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea. ³School of Materials Science & Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea. ⁴Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea. ⁵KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea. [†]These authors contributed equally to this work. *e-mail: kimoon.lee@kunsan.ac.kr and khlee2018@yonsei.ac.kr ## S1. Operational stability test under a humid condition Figure S1 shows the NO₂ gas sensing characteristics results for 20 ppm under a humid condition (60 RH%). The responsivity to 20 ppm NO₂ gas under 60 RH% is 1.0229, supporting the stability of gas sensing properties. **Figure S1.** Dynamic responsivity curves of Br-doped $SnSe_2$ (x = 0.004) at 20 ppm NO_2 gas under humidity condition (60 RH%) ## S2. Operational stability test under a repeated gas on and off condition To evaluate the stability of Br-doped SnSe₂ gas sensor, we performed the cyclic measurement under a repeated gas on and off condition. As shown in Figure S2, the initial resistance and its gas responsivity values are relatively well retained over five sequential cycles to 1 ppm NO₂ gas at room temperature. **Figure S2.** Repeatability of Br-doped SnSe₂ (x = 0.004) over five sequential cycles to 1 ppm NO₂ gas at room temperature. ## S3. Gas selectivity test We examine the selectivity of the Br-doped $SnSe_2$ gas sensor by exposing it to 20 ppm H_2S gas. (Figure S3) The corresponding responsivity values is 1.0094 which is much inferior to 1.0338 with the same concentration of NO_2 one, strongly suggesting an excellent selectivity to NO_2 gas. **Figure S3.** Dynamic responsivity curves of Br-doped SnSe₂ (x = 0.004) gas sensor to 20 ppm H₂S gas ## S4. Comparison of gas sensing properties **Table S1.** Comparison of NO₂ gas sensing properties in various 2D materials including our Br-doped SnSe₂ | our Bi-doped ShBe ₂ | | | | | |-------------------------------------|---|-----------------------|--|--| | Material | NO ₂ responsivity
(Concentration) | Operational condition | Ref. | | | 1L Gr | 28 %
(10 ppm) | 100 − 165 °C | Small, 10 , 3685 (2014) | | | RGO | 74.3 %
(5 ppm) | RT | J. Mater. Chem. C, 5 , 6862 (2017) | | | Gr/MoS ₂ | 7 %
(5 ppm) | 150 °C | ACS Appl. Mater. Interf. 7 , 16775 (2015) | | | N/Si co-doped
Gr nanosheets | 26 %
(21 ppm) | RT | J. Mater. Chem. A, 1, 6130 (2013) | | | RGO/porous
PEDOT | 33 %
(10 ppm) | RT | ACS Appl. Mater. Interf. 6 , 13807 (2014) | | | Flexible Ag-
S-RGO | 45 %
(10 ppm) | RT | ACS Appl. Mater. Interf. 6 , 7426 (2014) | | | Holey RGO nanosheets | 54 %
(12.5 ppm) | RT | J. Mater. Chem. A, 2,
17415 (2014) | | | Sulfonated
RGO | 58 %
(10 ppm) | RT | Adv. Mater. 25, 766 (2013) | | | RGO/In-SnO ₂ nanohybrids | 75 %
(10 ppm) | RT | J. Mater. Chem. A, 1,
4462 (2013) | | | PGNS | 75 %
(5 ppm) | RT | ACS Nano, 12 , 2521 (2018) | | | MoS ₂ atomic layer | 15 %
(5 ppm) | RT | Sci. Rep. 5 , 8252 (2015) | | | MoS ₂ single layer | 120 %
(1 ppm) | RT | ACS Appl. Mater. Interf. 7, 2952 (2015) | | | MoS ₂ 2 layers | 2.6 %
(1 ppm) | RT | J. Alloys Compd. 725 ,
253 (2017) | |--|--------------------|----------|---| | MoS ₂ 5 layers | 30 %
(100 ppm) | RT | ACS Nano, 7, 4879 (2013) | | WS_2 multilayers | 68.4 %
(5 ppm) | RT | Sens. Actuators B, 259 , 789 (2018) | | SnSe ₂ 10 layers | 60 %
(1 ppm) | UV light | ACS Sens. 4, 2546 (2019) | | SnSe ₂ bulky single crystal | 3.38 %
(20 ppm) | RT | Our work |