## **Electronic Supplementary Information (ESI)**

The DNA-Schiff Base Functional Nanopore Sensing Platform for Highly Sensitive Detection of Al<sup>3+</sup> and Zn<sup>2+</sup> ions

Shuailong Zhou<sup>a,#</sup>, Jianhan Ye<sup>b,c,#</sup>, Xiaohuan Zhao<sup>a</sup>, Zihao Zhou<sup>a</sup>, Yuanchen Dong<sup>c</sup>,

Qian Shi,<sup>a,\*</sup> Nannan Liu,<sup>a,\*</sup> and Fen Wu,<sup>a,\*</sup>

<sup>a</sup>College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

<sup>b</sup>Department of Chemistry, Renmin University of China, Beijing 100872, China <sup>c</sup>Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

\* Indicates corresponding author

#### **Table of Contents**

- 1. Ionic currents measurement device
- 2. Synthesis and Characterization of F1
- 3. TEM Characterization of DNA Nanocube and DNA Network
- 4. SEM Characterization of the Glass Nanopipette and Electrochemical Measurement
- 5. Fluorescent Measurement

## 1. Ionic currents measurement device

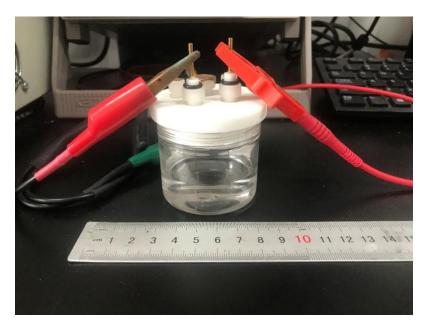
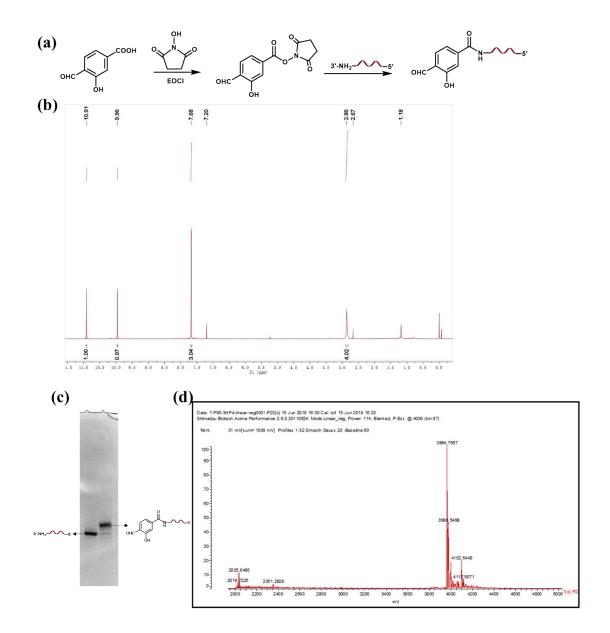




Fig. S1 Ionic currents measurement device.



## 2. Synthesis and Characterization of F1

**Fig. S2** (a) Schematic synthesis of F1. (b) 1H NMR spectra of 2,5-dioxopyrrolidin-1yl 4-formyl-3-hydroxybenzoate. (c) F1 and raw DNA were characterized using 10% polyacrylamide gel electrophoresis in the native conditions. (d) Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) spectra of F1.

**3.TEM Characterization of DNA Nanocube and DNA Network** 

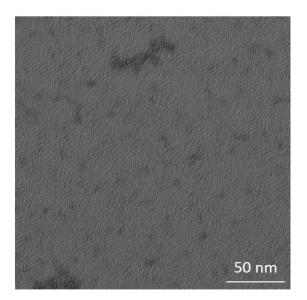



Fig. S3 TEM image of DNA nanocube.

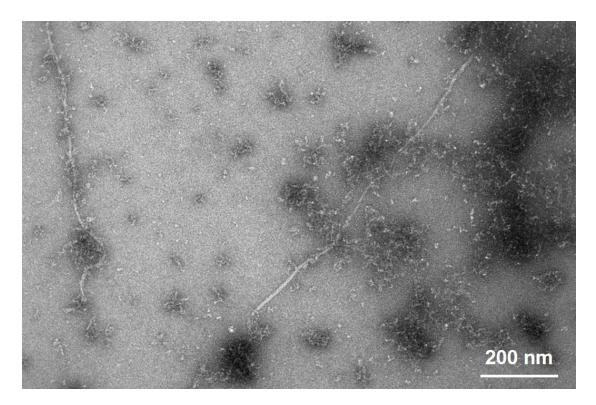
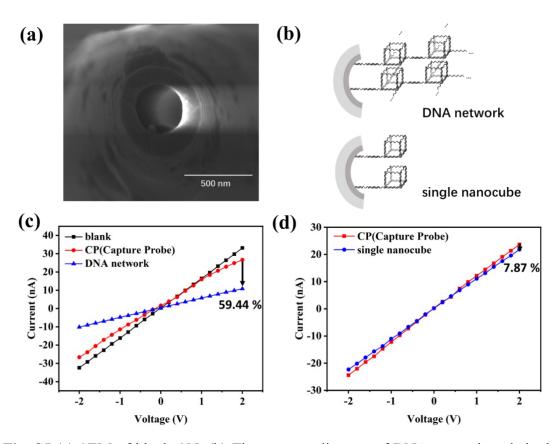




Fig. S4 TEM image of the assemblies from two DNA cubes (cube+ $4L_1$ , cube+ $4L_2$ ).

# 4. SEM Characterization of the Glass Nanopipette and Electrochemical Measurement



**Fig. S5** (a) SEM of blank GN. (b) The contrast diagram of DNA network and single nanocube modified in GN. (c) Corresponding I-V curves during GN modification of the DNA network (blank, CP (Capture Probe) and DNA network). (d) Corresponding I-V curves during GN modification of the single nanocube (CP (Capture Probe) and single nanocube).

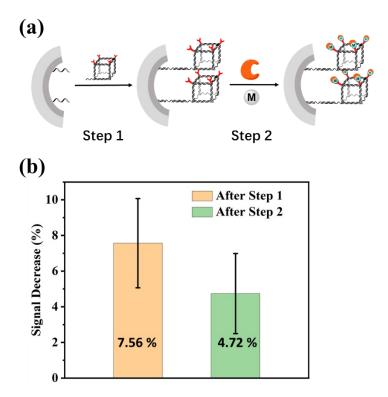
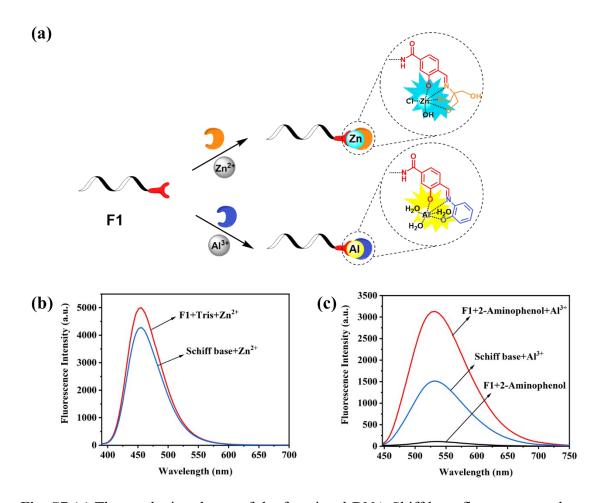




Fig. S6 (a) Schematic diagram of F1-decorated DNA nanocube modification process and  $Zn^{2+}$  response in GN. (b) The corresponding current signal drop rate during the modification of F1-decorated DNA nanocube and  $Zn^{2+}$  response in GN ( $Zn^{2+}$ , 10<sup>8</sup> fM; Tris-HCl, 10 mM, pH =7.4).

#### 5. Fluorescent Measurement



**Fig. S7** (a) The synthetic scheme of the functional DNA Shiff base fluorescent probe with the ability to capture different metal ions. (b) Fluorescence emission spectra of mixture of F1+Tris+Zn<sup>2+</sup> and mixture of Schiff base and Zn<sup>2+</sup>. (F1, 20  $\mu$ M; Tris 10 mM, pH = 7.4; Zn<sup>2+</sup> 200  $\mu$ M) (c) Fluorescence emission spectra of mixture of F1+2aminophenol+Al<sup>3+</sup> and mixture of Schiff base and Al<sup>3+</sup> (F1, 20  $\mu$ M; 2-aminophenol, 10 mM; Al<sup>3+</sup> 200  $\mu$ M).

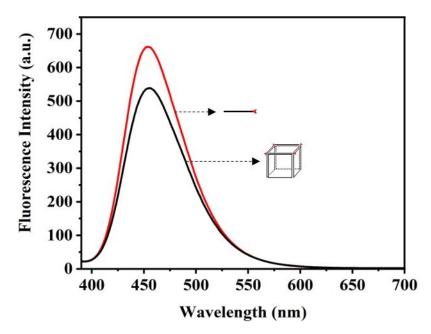



Fig. S8 Fluorescence emission spectra obtained for 4F1 @cube+Tris (F1, 6.4  $\mu$ M; cube, 1.6  $\mu$ M; Tris-HCl, 10 mM, pH = 7.4) in aqueous solution after the addition of Zn<sup>2+</sup>(64  $\mu$ M).