Supporting Information (SI)

Facile synthesis of thermally stable tetrazolo[1,5-b][1,2,4]triazine substituted energetic materials: Synthesis and characterisation

Parasar Kumar,^a Vikas D. Ghule^b and Srinivas Dharavath*a

^aEnergetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.

E-mail: srinivasd@iitk.ac.in, https://www.energeticslab.com/

^bDepartment of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India.

Table of Contents

General Methods	S2
Mechanism for degradation to dione	S2
Experimental Conditions	S3-S7
Crystal Structure and parameters analysis for 2, 3, 9 and 12.	S7-S32
NMR Spectra, IR Spectrum, HRMS & DSC plots for 2 to 12.	S32-S38
Computational Details	S49-S57
References	S57-S58

Caution! All the compounds investigated are potentially explosive, energetic materials. Although we have experienced no difficulties in syntheses and characterization of these compounds, manipulations must be carried out by using appropriate standard safety precautions. Eye protection and leather gloves must be always worn.

General Methods.

Reagents were purchased from Ak Scientifics, Acros Organics or Aldrich as analytical grade and were used as received. ¹H NMR, ¹³C NMR and ¹⁵N NMR spectra were recorded using JEOL DELTA (ECS) 500 (¹H, 500 MHz; ¹³C, 126 MHz) nuclear magnetic resonance spectrometer. DMSO-d₆ was employed as the solvent and locking solvent. Chemical shifts are given relative to (CH₃)₄Si for ¹H and ¹³C spectra and CH₃NO₂ for ¹⁵N NMR. Melting and Decomposition temperatures (onset) were recorded using a dry nitrogen gas purge and at heating rate of 5 °C min⁻¹ on a differential scanning calorimeter (SDT650). IR spectra were recorded using Zn-Se pellets with ECO-ATR spectrometer (Bruker Alpha II). Density was determined at room temperature by employing Anton Par Ultra5000 gas pycnometer. Impact and friction-sensitivity measurements were tested by employing a standard BAM Fall hammer and a BAM friction tester. The single-crystal X-ray data collection was carried out using Bruker APEX-II CCD diffractometer. The crystal was kept at 100 K during data collection. **Proposed Mechanism** (degradation to dione product):

Experimental Section:

Synthesis of 5-amino-3-azido-1,2,4-triazine-6-carbonitrile (1): Compound 1 was synthesized according to the literature procedure.^[1-3]

Synthesis of 7-amino-N'-hydroxytetrazolo[1,5-b][1,2,4]triazine-6-carboximidamide (2) : Compound 1 (1.1 g, 6.79 mmol) was taken in ethanol (20 ml) and placed in oil bath at 60 °C. To this, hydroxyl amine hydrate (519 mg, 10.17 mmol) was added, and the reaction mixture was stirred for 4 hours at same temperature. The reaction mixture was cooled to room temperature and newly formed yellow precipitate was collected by filtration and dried in oven at 60 °C for 5 hours to obtain pure compound **2** in 90 % yield (1.2 g, 6.15 mmol). T_d(onset): 251 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 6.37 (s, 2H), 9.06(2H), 11.12 (1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 133.82, 148.96, 149.2, 154.15. IR (ATR, ZnSe, cm⁻¹): 746, 784, 1006, 1074, 1581, 1641, 3157, 3296, 3346, 3476. Elemental analysis: (%) calculated for C₄H₅N₉O (195.14): C, 24.62; H, 2.58; N, 64.60; found C, 24.32; H, 2.64; N, 64.11.

Synthesis of 3-(7-aminotetrazolo[1,5-b][1,2,4]triazin-6-yl)-1,2,4-oxadiazol-5-amine (3) : Compound 2 (200mg, 1.02 mmol) was taken in dried methanol (10 ml) at room temperature and to this sodium hydride (101 mg, 4.2 mmol) was added slowly with continuous stirring. Later cyanogen bromide (216 mg, 2.04 mmol) was added portion wise and stirred overnight at same temperature. Solvent was removed using rotary evaporator and the newly formed precipitate was washed with distilled water to remove unreacted sodium hydride. The solid was dried in high vacuum and isolated compound **3** in 76 % yield (171 mg, 0.77 mmol). T_d(onset): 265 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.19 (s, 1H), 8.48 (s, 2H), 9.13 (s, 1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 133.27, 149.71, 154.27, 163.76, 172.57. MS (ESI) m/z: calculated for C₅H₄N₁₀ONa 243.046; found 243.045. IR (ATR, ZnSe, cm⁻¹): 691, 746, 1006, 1074, 1457, 1581, 1640, 2858, 3147, 3292, 3346, 3476. Elemental analysis: (%) calculated for C₅H₄N₁₀O (220.15): C, 27.28; H, 1.83; N, 63.62; found C, 27.37; H, 1.72; N, 63.37.

Synthesis of 6-(5-nitro-1,2,4-oxadiazol-3-yl)tetrazolo[1,5-b][1,2,4]triazin-7-amine (4) : Solution of conc. H₂SO₄ (2 ml) was taken in 25 ml round bottom flask and kept in ice bath. To this 30% H₂O₂ (2ml) was added slowly and left to cool for 5 minutes. Later, compound **3** (200mg, 0.9 mmol) was added portion wise and left to stir at same temperature for another 30 minutes and moved to room temperature and stirred for 5 more hours. The reaction mixture was poured in ice water and the formed yellow precipitate was collected by filtration, washed with water, and dried in air to obtain compound **4** in 70 % yield (160 mg, 0.63 mmol). T_d(onset): 234 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.19 (s, 1H), 8.48 (s, 2H), 9.13 (s, 1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 133.18, 149.69, 154.11, 163.73, 172.46. MS (ESI) m/z: calculated for C₅H₃N₁₀O₃Na 274.028; found 274.273. IR (ATR, ZnSe, cm⁻¹): 645, 788, 1312, 1504, 1555, 1663, 2175, 3342. Elemental analysis: (%) calculated for C₅H₂N₁₀O₃·1.2 H₂O (271.75): C, 22.10; H, 1.63; N, 51.54; found C, 22.72; H, 1.52; N, 50.86.

Synthesis of 7-amino-N'-hydroxytetrazolo[1,5-b][1,2,4]triazine-6-carbohydrazonamide (5): Compound **1** (1.1 g, 6.79 mmol) was taken in ethanol and placed in oil bath at 60 °C. To this hydrazine hydrate (520 mg, 10.4 mmol) was added and stirred for 4 hours at same temperature. The formed yellow precipitate of compound **6** was collected, washed with ethanol, and dried

in oven at 60 °C for 5 hours and obtained in 85% yield (1.1 g, 5.66 mmol). Td(onset): 248 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 6.02 (s, 2H), 7.61 (s, 2H), 8.87 (s, 1H), 9.82 (s,1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 133.64, 140.56, 149.06, 154.49. IR (ATR, ZnSe, cm⁻¹): 698, 788 ,1082, 1182, 1454, 1559, 1626, 3106, 3259, 3451. Elemental analysis: (%) calculated for C₄H₆N₁₀(194.16): C, 24.74; H, 3.11; N, 72.14; found C, 25.21; H, 3.42; N, 72.83.

Synthesis of 6-(1H-tetrazol-5-yl)-1,2,4-triazine-3,5(2H,4H)-dione (9): Compound 1 (1.1 g, 6.9 mmol), NaN₃ (0.54 g, 8.3 mmol), and ZnCl₂ (1.5 g, 10.26 mmol) was suspended in distilled water (20 ml) and heated to 80 °C for 5 hours. The reaction mixture was slowly allowed to room temperature and further acidified using 15% HCl to pH=1-2. The formed precipitate was filtered and washed with water and air dried. The dried compound (1 g, 4.87 mmol) was dissolved in 37% HCl (17ml) and added aqueous KMnO₄ (963 mg, 6.03 mmol in 30 ml of water) dropwise using addition funnel maintaining the temperature between 0-5 °C. After 30 minutes the reaction was heated to 50 °C for 12 hours. The colour of the reaction was observed to be changed from black to clear solution. The reaction was then kept unstirred at room temperature for 24 hours to get light yellow precipitate of compound **8** in 82% yield (723 mg, 4 mmol). T_d(onset): 292 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.72 (s, 1H), 9.35 (s,1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 133.89, 149.72, 152.01, 153.92. IR (ATR, ZnSe, cm⁻¹): 646, 747, 840, 1000, 1064, 1244, 1337, 1570, 1704, 2768, 3208. Elemental analysis: (%) calculated for C₄H₃N₇O₂·1.5 H2O (208.13): C, 23.08; H, 2.91; N, 47.11; found C, 23.00; H, 3.25; N, 46.96.

General procedure for the synthesis of salts 10-12: Compound 9 (300 mg, 1.65 mmol) was taken in methanol (15 ml) and an excess amount of hydroxyl amine hydrate, hydrazine hydrate, and 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium (TATOT) (288mg, 1.82 mmol) was added and stirred at room temperature for 12 hours. The colourless or light-yellow precipitate obtained in quantitative yields was filtered and washed with methanol and dried in air.

Hydroxylammonium-5-(3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl)tetrazol-1-ide (10): Yield 88% (315 mg, 1.47 mmol). Pale yellow, T_d (onset): 290 °C. 13C NMR (126 MHz, DMSO-d₆): δ (ppm) 138.75, 149.78, 155.19, 156.61. IR (ATR, ZnSe, cm⁻¹): 772, 880, 1139, 1400, 1531, 1575, 1633, 2796, 3026, 3175. Elemental analysis: (%) calculated for C₄H₆N₈O₃ (214.14): C, 22.44; H, 2.82; N, 52.33; found C, 22.82; H, 2.69; N, 52.94.

Hydrazinium-5-(3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl)tetrazol-1-ide (11): Yield 85% (305 mg, 1.43 mmol). Colourless, T_d(onset): 260 °C. 13C NMR (126 MHz, DMSO-d₆): δ (ppm) 138.50, 150.92, 155.51, 157.94. IR (ATR, ZnSe, cm⁻¹): 690, 778, 966, 1032, 1134, 1494, 1564, 1640, 2638, 2957, 3309. Elemental analysis: (%) calculated for C₄H₇N₉O₂ (213.16): C, 22.54; H, 3.31; N, 59.14; found C,22.02; H, 3.05; N, 60.61.

3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium-5-(3,5-dioxo-2,3,4,5*tetrahydro-1,2,4-triazin-6-yl)tetrazol-1-ide (12)*: Yield 90% (500 mg, 1.5 mmol). Colourless, T_d(onset): 300 °C. 1H NMR (500 MHz, DMSO-d₆): δ (ppm) 5.67(s, 2H), 6.84 (b, 4H). 13C NMR (126 MHz, DMSO-d₆): δ(ppm) 137.03, 142.66, 148.68, 149.62, 153.84, 156.42, 159.83. IR (ATR, ZnSe, cm⁻¹): 708, 948, 1278, 1406, 1564, 1655, 3111, 3314. Elemental analysis: (%) calculated for C₇H₉N₁₅O₂ (335.10): C, 25.08; H, 2.71; N, 62.67; found C, 25.13; H, 3.04; N, 63.43.

Figure S1: Molecular structure and interlayer spacing of 2 (Asymmetric unit with 50% probability displacement ellipsoids).

CCDC NO.	2210318
Empirical formula	C4H ₅ N ₉ O
Formula weight	195.17
Temperature/K	100
Crystal system	monoclinic
Space group	P21/n
a/Å	10.633(2)
b/Å	5.9796(13)
c/Å	12.194(3)
α/°	90
β/°	105.972(6)
$\gamma/^{\circ}$	90
Volume/Å3	745.3(3)
Z	4
pcalcg/cm3	1.739
μ/mm-1	0.138
F(000)	400.0
Crystal size/mm3	$0.35\times0.3\times0.25$

5 966 to 59 56
5.900 10 59.50
$-14 \le h \le 14, -8 \le k \le 8, -16 \le l \le 16$
12126
2119 [Rint = 0.0574, Rsigma = 0.0361]
2119/0/133
1.058
R1 = 0.0435, wR2 =0.1039
R1 = 0.0564, wR2 = 0.1118
0.52/-0.29

Table S2: Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for **2**. Ueq is defined as 1/3 of of the trace of the orthogonalized UIJ tensor.

Atom	x	у	Z	U(eq)
O14	9040.0(12)	5483.6(19)	3139.0(10)	20.1(3)
N5	7272.7(12)	3621(2)	6007.8(10)	11.7(2)
N4	6520.5(12)	4122(2)	6698.3(10)	11.0(2)
N8	5609.6(12)	7469(2)	5783.1(10)	11.9(3)
N1	5148.7(12)	5815(2)	7441.9(11)	13.3(3)
N12	8595.3(14)	2534(2)	4505.7(12)	17.3(3)
N10	6325.9(13)	8627(2)	4276.0(11)	14.5(3)
N3	6449.4(13)	2857(2)	7610.2(10)	13.9(3)
N13	8219.6(13)	6209(2)	3788.5(11)	16.4(3)
N2	5625.6(13)	3921(2)	8039.2(11)	14.7(3)
C11	8069.1(14)	4612(2)	4458.7(12)	12.3(3)
C7	6379.9(14)	7147(2)	5092.9(12)	11.3(3)
C6	7232.7(13)	5126(2)	5217.5(12)	10.9(3)
C9	5730.0(14)	5936(2)	6606.4(12)	10.9(3)

Table S3: Anisotropic Displacement Parameters (Å2×103) for **2**. The Anisotropic displacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
O14	25.8(6)	17.8(6)	22.7(6)	0.0(5)	17.1(5)	-0.2(5)
N5	11.3(6)	12.7(6)	11.8(5)	-0.8(4)	4.4(4)	0.1(4)
N4	11.4(5)	11.2(5)	11.2(5)	1.4(4)	4.5(4)	0.7(4)
N8	11.9(6)	11.3(5)	12.6(6)	0.8(4)	3.7(5)	0.6(4)
N1	14.3(6)	13.8(6)	12.5(6)	0.4(4)	4.9(5)	0.3(5)
N12	22.8(7)	14.6(6)	18.7(6)	2.4(5)	12.7(5)	4.6(5)
N10	16.4(6)	13.2(6)	15.8(6)	3.0(5)	7.7(5)	3.0(5)
N3	15.3(6)	15.3(6)	12.1(6)	3.4(5)	5.2(5)	0.5(5)
N13	19.1(6)	17.7(6)	15.5(6)	-0.8(5)	9.8(5)	-0.5(5)
N2	15.7(6)	15.5(6)	13.9(6)	1.1(5)	5.7(5)	0.5(5)
C11	10.9(6)	13.6(7)	12.2(6)	-1.2(5)	3.0(5)	-0.8(5)
C7	11.1(6)	10.5(6)	11.6(6)	-0.8(5)	1.9(5)	-0.8(5)
C6	10.5(6)	10.9(6)	10.7(6)	-1.0(5)	2.0(5)	-0.9(5)
С9	10.2(6)	10.9(6)	11.3(6)	-1.7(5)	2.5(5)	-1.0(5)

Table S4: Bond Lengths for 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
014	N13	1.3988(17)	N1	С9	1.3311(19)
N5	N4	1.3449(17)	N12	C11	1.3574(19)
N5	C6	1.3105(18)	N10	C7	1.3217(18)
N4	N3	1.3640(17)	N3	N2	1.3030(18)
N4	С9	1.3578(18)	N13	C11	1.2953(19)
N8	C7	1.3399(19)	C11	C6	1.481(2)
N8	С9	1.3395(18)	C7	C6	1.494(2)
N1		N2		1.3664(18)	

Table S5: Bond angles for 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C6	N5	N4	113.76(12)	N13	C11	C6	116.15(13)
N5	N4	N3	124.25(12)	N8	C7	C6	120.75(13)
N5	N4	C9	125.97(12)	N10	C7	N8	118.03(13)

C9	N4	N3	109.78(12)	N10	C7	C6	121.18(13)
С9	N8	C7	115.06(12)	N5	C6	C11	114.42(13)
С9	N1	N2	105.70(12)	N5	C6	C7	121.76(13)
N2	N3	N4	104.52(12)	C11	C6	C7	123.80(12)
C11	N13	O14	109.46(12)	N8	С9	N4	122.55(13)
N3	N2	N1	112.50(12)	N1	С9	N4	107.50(12)
N12	C11	C6	118.35(13)	N1	C9	N8	129.94(13)
N13		C11		N12		125.49(14))

Table S6: Torsion Angles for 2.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
O14	N13	C11	N12	-1.6(2)	N3	N4	C9	N8	179.99(13)
O14	N13	C11	C6	179.34(12)	N3	N4	C9	N1	-0.75(16)
N5	N4	N3	N2	179.88(13)	N13	C11	C6	N5	-
									169.39(13)
N5	N4	C9	N8	0.3(2)	N13	C11	C6	C7	12.1(2)
N5	N4	C9	N1	179.54(13)	N2	N1	С9	N4	0.99(15)
N4	N5	C6	C11	179.28(12)	N2	N1	C9	N8	-
									179.82(14)
N4	N5	C6	C7	-2.18(19)	C7	N8	C9	N4	-3.4(2)
N4	N3	N2	N1	0.47(16)	C7	N8	C9	N1	177.47(14)
N8	C7	C6	N5	-0.9(2)	C6	N5	N4	N3	-
									177.07(13)
N8	C7	C6	C11	177.48(13)	C6	N5	N4	С9	2.6(2)
N12	C11	C6	N5	11.48(19)	C9	N4	N3	N2	0.17(15)
N12	C11	C6	C7	-	C9	N8	C7	N10	-
				167.03(13)					178.72(13)
N10	C7	C6	N5	-	C9	N8	C7	C6	3.67(19)
				178.45(13)					
N10	C7	C6	C11	0.0(2)	C9	N1	N2	N3	-0.94(16)

Table S7: Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters
(Å2×103) for 2.

Atom	x	У	Z.	U(eq)
H14	9337.55	6570.75	2885.12	30
H12A	9169.97	2495.24	4120.13	21
H10A	5807.11	9755	4199.81	17
H10B	6809.59	8461.97	3820.74	17
H12B	8600(20)	1730(40)	5062(19)	27(6)

Figure S2: Molecular structure and hydrogen bonding interaction for **3** (Asymmetric unit with 50% probability displacement ellipsoids).

Table S8 Crystal data and structure refinement for 3.

CCDC No.	2225571
Empirical formula	$C_7H_{10}N_{10}O_2S$
Formula weight	298.31
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	5.4454(3)
b/Å	13.7553(7)
c/Å	16.7080(9)
α /°	100.096(2)
β/°	98.259(2)
$\gamma^{\prime\circ}$	94.944(2)
Volume/Å3	1211.33(11)

Z	4
pcalcg/cm3	1.636
μ/mm-1	0.291
F(000)	616.0
Crystal size/mm3	0.13 imes 0.11 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.284 to 56.702
Index ranges	$-7 \le h \le 7, -18 \le k \le 18, -22 \le l \le 22$
Reflections collected	30811
Independent reflections	6024 [Rint = 0.0404, Rsigma = 0.0314]
Data/restraints/parameters	6024/0/365
Goodness-of-fit on F2	1.101
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0418, wR2 = 0.0879
Final R indexes [all data]	R1 = 0.0530, wR2 = 0.0920

Table S9 Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for **3**. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	У	Z	U(eq)
S001	-2690.1(8)	872.2(3)	4101.5(3)	17.74(10)
S002	11585.4(9)	8967.5(3)	11476.0(3)	18.74(10)
O2	10377(2)	6437.4(9)	9623.3(8)	16.1(3)
O1	-1769(2)	4059.3(9)	5245.0(8)	16.6(3)
O3	12939(3)	8058.9(10)	11525.4(8)	21.9(3)
O4	-1826(2)	1956.5(9)	4097.5(8)	19.1(3)
N12	9913(3)	2785.2(10)	7364.7(9)	14.1(3)
N11	10778(3)	3532.6(10)	8003.3(9)	13.6(3)
N18	12304(3)	5079.0(11)	9329.7(9)	13.6(3)
N9	1163(3)	4662.3(10)	6336.9(9)	13.6(3)

N2	1622(3)	7242.3(11)	7926.1(9)	15.9(3)
N10	1438(3)	3113.3(11)	5490.8(9)	17.1(3)
N16	6125(3)	3398.3(11)	6914.6(9)	14.6(3)
N1	1490(3)	6388.4(11)	7391.2(9)	14.7(3)
N20	13981(3)	6352.4(11)	10491.1(9)	17.6(3)
N15	7447(3)	1830.0(11)	6332.6(9)	18.1(3)
N13	11106(3)	1970.6(11)	7163.8(10)	18.6(3)
N17	5522(3)	4926.0(11)	7605.4(9)	15.9(3)
N7	-4347(3)	6734.9(11)	6191.2(9)	17.6(3)
N8	-2432(3)	4992.4(11)	5619.2(9)	15.9(3)
N14	9599(3)	1419.6(11)	6546.5(10)	20.2(3)
N6	-2128(3)	7776.3(11)	7342.2(10)	18.6(3)
N19	8926(3)	5830.1(11)	8910.7(9)	16.7(3)
N3	3490(3)	7540.6(12)	8579.7(10)	21.3(3)
N4	2893(3)	8373.7(12)	8948.4(10)	24.2(4)
N5	712(3)	8640.4(12)	8566.0(10)	24.3(4)
C9	10163(3)	5060.2(12)	8783.8(10)	12.7(3)
C4	-626(3)	5286.8(12)	6242.2(10)	13.1(3)
C5	405(3)	3925.5(13)	5711.0(10)	14.1(3)
C3	-489(3)	6236.0(12)	6821.7(10)	13.2(3)
C6	7676(3)	2690.5(13)	6858.2(10)	14.6(3)
C10	12346(3)	5940.4(12)	9832.1(10)	13.4(3)
C7	6892(3)	4176.3(12)	7524.9(10)	13.2(3)
C8	9281(3)	4219.8(12)	8089.4(10)	12.4(3)

C1	-83(4)	7909.3(13)	7921.4(11)	18.3(4)
C2	-2378(3)	6941.7(13)	6785.7(11)	15.0(3)
C13	-5826(4)	849.8(14)	4309.0(12)	22.7(4)
C12	13222(4)	9691.5(14)	10899.9(13)	24.0(4)
C14	-3384(4)	283.8(14)	3042.9(12)	24.5(4)
C11	8830(4)	8578.8(16)	10730.2(15)	30.6(5)

Table S10 Anisotropic Displacement Parameters (Å2×103) for **3**. The Anisotropicdisplacement factor exponent takes the form:- $2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
S001	18.0(2)	14.2(2)	18.7(2)	1.53(16)	-3.52(16)	3.15(16)
S002	19.9(2)	17.1(2)	19.9(2)	2.61(17)	6.26(17)	2.21(17)
O2	13.9(6)	14.7(6)	16.4(6)	-0.5(5)	-4.0(5)	1.2(5)
01	15.4(6)	17.1(6)	14.6(6)	-0.4(5)	-3.2(5)	2.9(5)
O3	25.1(7)	18.8(6)	21.9(7)	4.2(5)	2.1(5)	5.3(5)
O4	17.5(6)	14.0(6)	23.3(7)	1.1(5)	-1.6(5)	1.5(5)
N12	13.8(7)	12.5(7)	14.8(7)	2.3(5)	-0.4(5)	0.7(5)
N11	13.2(7)	12.9(7)	13.2(7)	2.3(5)	-0.7(5)	-1.3(5)
N18	11.7(7)	15.3(7)	12.1(7)	1.4(5)	-2.2(5)	-0.1(5)
N9	13.2(7)	13.9(7)	12.9(7)	1.6(5)	0.0(5)	2.4(5)
N2	16.2(7)	14.8(7)	14.8(7)	0.4(5)	0.6(6)	0.7(6)
N10	17.2(7)	15.7(7)	16.3(7)	-0.2(6)	-0.5(6)	2.7(6)
N16	12.6(7)	16.0(7)	14.7(7)	3.5(5)	0.2(5)	0.0(6)
N1	14.6(7)	14.9(7)	13.3(7)	1.2(5)	0.9(5)	-0.4(6)
N20	16.0(7)	15.8(7)	17.4(8)	-1.2(6)	-4.1(6)	2.2(6)

N15	18.9(8)	15.4(7)	18.4(8)	2.3(6)	0.2(6)	-0.1(6)
N13	20.4(8)	13.5(7)	21.1(8)	1.8(6)	1.8(6)	3.8(6)
N17	11.7(7)	17.9(7)	16.2(7)	1.9(6)	-2.7(5)	2.3(6)
N7	15.1(7)	18.3(7)	19.9(8)	4.7(6)	0.5(6)	6.1(6)
N8	16.7(7)	15.3(7)	14.1(7)	0.9(5)	-1.0(5)	3.5(6)
N14	22.0(8)	16.1(7)	20.5(8)	1.5(6)	-0.2(6)	1.2(6)
N6	21.1(8)	16.3(7)	19.7(8)	3.7(6)	4.9(6)	5.3(6)
N19	15.4(7)	15.7(7)	15.3(7)	-0.6(6)	-3.7(6)	-0.1(6)
N3	21.7(8)	22.4(8)	15.7(8)	-0.8(6)	-1.2(6)	-4.6(6)
N4	28.0(9)	19.0(8)	22.4(9)	-0.7(6)	2.9(7)	-3.5(7)
N5	30.4(9)	18.5(8)	21.8(8)	-1.0(6)	4.1(7)	0.8(7)
C9	11.7(7)	14.1(8)	12.5(8)	5.2(6)	0.5(6)	-0.6(6)
C4	12.1(8)	15.4(8)	12.3(8)	4.6(6)	1.2(6)	1.0(6)
C5	12.9(8)	16.1(8)	13.0(8)	4.4(6)	0.4(6)	-0.5(6)
C3	13.5(8)	14.2(8)	12.7(8)	4.7(6)	2.2(6)	0.7(6)
C6	14.6(8)	15.5(8)	12.9(8)	4.2(6)	-0.1(6)	-2.2(6)
C10	12.1(8)	14.3(8)	14.0(8)	5.0(6)	0.9(6)	-0.4(6)
C7	12.3(8)	15.4(8)	11.7(8)	4.1(6)	1.3(6)	-0.7(6)
C8	11.6(7)	13.6(8)	11.7(8)	4.2(6)	0.1(6)	-1.3(6)
C1	23.0(9)	15.0(8)	18.7(9)	3.9(7)	8.7(7)	1.8(7)
C2	14.7(8)	16.7(8)	16.0(8)	7.0(6)	4.8(6)	2.9(7)
C13	21.2(9)	20.2(9)	24.7(10)	4.3(7)	-0.8(7)	-0.6(7)
C12	27.2(10)	19.6(9)	26.9(10)	5.0(8)	10.2(8)	1.6(8)
C14	31.0(11)	18.0(9)	20.4(10)	-3.2(7)	-1.6(8)	4.3(8)

C11 18.1(10) 28.9(11) 42.8(13) 6.6(9) -1.4(9) 2.6(C11	18.1(10)	28.9(11)	42.8(13)	6.6(9)	-1.4(9)	2.6(8)
--	-----	----------	----------	----------	--------	---------	--------

Table S11 Bond Lengths for 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S001	O4	1.5263(13)	N10	C5	1.313(2)
S001	C13	1.789(2)	N16	C6	1.343(2)
S001	C14	1.7831(19)	N16	C7	1.333(2)
S002	03	1.5132(13)	N1	C3	1.307(2)
S002	C12	1.773(2)	N20	C10	1.319(2)
S002	C11	1.784(2)	N15	N14	1.373(2)
02	N19	1.4167(18)	N15	C6	1.329(2)
02	C10	1.357(2)	N13	N14	1.299(2)
01	N8	1.4253(19)	N17	C7	1.323(2)
01	C5	1.366(2)	N7	C2	1.326(2)
N12	N11	1.343(2)	N8	C4	1.305(2)
N12	N13	1.359(2)	N6	C1	1.343(2)
N12	C6	1.362(2)	N6	C2	1.328(2)
N11	C8	1.303(2)	N19	С9	1.306(2)
N18	С9	1.368(2)	N3	N4	1.293(2)
N18	C10	1.323(2)	N4	N5	1.376(2)
N9	C4	1.364(2)	N5	C1	1.331(2)
N9	C5	1.313(2)	С9	C8	1.479(2)
N2	N1	1.335(2)	C4	C3	1.472(2)
N2	N3	1.359(2)	C3	C2	1.476(2)
N2	C1	1.361(2)	C7	C8	1.483(2)

Table S12 Bond Angles for 3.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O4	S001	C13	105.86(8)	N19	С9	N18	116.14(15)
O4	S001	C14	105.15(9)	N19	С9	C8	121.49(15)
C14	S001	C13	97.90(10)	N9	C4	C3	120.77(15)
O3	S002	C12	106.64(9)	N8	C4	N9	116.39(15)
O3	S002	C11	106.89(9)	N8	C4	C3	122.84(15)
C12	S002	C11	97.65(10)	N9	C5	01	112.65(15)
C10	02	N19	105.99(12)	N10	C5	01	118.25(15)
C5	01	N8	105.94(12)	N10	C5	N9	129.09(16)
N11	N12	N13	124.09(14)	N1	C3	C4	112.62(15)
N11	N12	C6	126.04(15)	N1	C3	C2	122.76(16)
N13	N12	C6	109.75(14)	C4	C3	C2	124.62(15)
C8	N11	N12	113.14(14)	N16	C6	N12	122.24(15)
C10	N18	C9	101.69(14)	N15	C6	N12	108.00(15)
C5	N9	C4	102.39(14)	N15	C6	N16	129.74(16)
N1	N2	N3	123.23(15)	N18	C10	O2	113.06(14)
N1	N2	C1	126.07(15)	N20	C10	O2	117.80(15)
N3	N2	C1	110.66(15)	N20	C10	N18	129.13(16)
C7	N16	C6	114.93(15)	N16	C7	C8	120.79(15)
C3	N1	N2	113.19(15)	N17	C7	N16	118.89(15)
C6	N15	N14	104.70(14)	N17	C7	C8	120.29(15)
N14	N13	N12	104.27(14)	N11	C8	С9	115.01(14)
C4	N8	O1	102.62(13)	N11	C8	C7	122.71(15)

N13	N14		N15	113.29(14)	С9	C8		C7	122.27(15)
C2	N6		C1	115.12(15)	N6	C1		N2	122.14(16)
С9	N19		02	103.12(13)	N5	C1		N2	107.04(17)
N4	N3		N2	103.84(15)	N5	C1		N6	130.81(18)
N3	N4		N5	113.33(15)	N7	C2		N6	119.90(16)
C1	N5		N4	105.12(16)	N7	C2		C3	119.39(16)
N18	С9		C8	122.37(15)	N6	C2		C3	120.71(16)
Table 13	Torsion A	Angles f	or 3.						
A	В	С	D	Angle/°	A	В	С	D	Angle/°
O2	N19	С9	N18	-0.3(2)	N19	02	C10	N18	-0.15(19)
O2	N19	С9	C8	179.56(14)	N19	02	C10	N20	-179.24(15)
01	N8	C4	N9	-0.48(19)	N19	C9	C8	N11	175.67(16)
01	N8	C4	C3	179.73(15)	N19	С9	C8	C7	-3.2(3)
N12	N11	C8	С9	-179.78(14)	N3	N2	N1	C3	178.42(16)
N12	N11	C8	C7	-1.0(2)	N3	N2	C1	N6	-179.13(16)
N12	N13	N14	N15	-0.5(2)	N3	N2	C1	N5	0.8(2)
N11	N12	N13	N14	176.79(15)	N3	N4	N5	C1	0.6(2)
N11	N12	C6	N16	4.9(3)	N4	N5	C1	N2	-0.8(2)
N11	N12	C6	N15	-176.67(15)	N4	N5	C1	N6	179.11(19)
N18	C9	C8	N11	-4.5(2)	С9	N18	C10	02	-0.01(19)
N18	C9	C8	C7	176.68(15)	C9	N18	C10	N20	178.95(18)
N9	C4	C3	N1	1.1(2)	C4	N9	C5	01	-0.84(19)
N9	C4	C3	C2	-177.78(16)	C4	N9	C5	N10	179.25(18)
N2	N1	C3	C4	-179.32(14)	C4	C3	C2	N7	-0.9(3)

N2	N1	C3	C2	-0.4(2)	C4	C3	C2	N6	178.93(16)
N2	N3	N4	N5	-0.1(2)	C5	01	N8	C4	-0.07(17)
N16	C7	C8	N11	2.6(3)	C5	N9	C4	N8	0.8(2)
N16	C7	C8	C9	-178.63(15)	C5	N9	C4	C3	-179.37(15)
N1	N2	N3	N4	-178.15(16)	C6	N12	N11	C8	-2.6(2)
N1	N2	C1	N6	-1.5(3)	C6	N12	N13	N14	0.66(19)
N1	N2	C1	N5	178.44(16)	C6	N16	C7	N17	177.44(15)
N1	C3	C2	N7	-179.69(16)	C6	N16	C7	C8	-0.6(2)
N1	C3	C2	N6	0.1(3)	C6	N15	N14	N13	0.1(2)
N13	N12	N11	C8	-178.14(15)	C10	O2	N19	С9	0.25(17)
N13	N12	C6	N16	-179.08(16)	C10	N18	C9	N19	0.2(2)
N13	N12	C6	N15	-0.6(2)	C10	N18	С9	C8	-179.65(15)
N17	C7	C8	N11	-175.37(16)	C7	N16	C6	N12	-2.8(2)
N17	C7	C8	C9	3.4(2)	C7	N16	C6	N15	179.12(18)
N8	01	C5	N9	0.61(19)	C1	N2	N1	C3	1.0(2)
N8	01	C5	N10	-179.47(15)	C1	N2	N3	N4	-0.4(2)
N8	C4	C3	N1	-179.09(16)	C1	N6	C2	N7	179.39(16)
N8	C4	C3	C2	2.0(3)	C1	N6	C2	C3	-0.4(2)
N14	N15	C6	N12	0.33(19)	C2	N6	C1	N2	1.0(3)
N14	N15	C6	N16	178.62(18)	C2	N6	C1	N5	-178.85(19)

Table S14 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters(Å2×103) for **3.**

Atom	x	У	Z	U(eq)
------	---	---	---	-------

H10A	2838.6	3009.21	5781.26	20
H10B	730.57	2673.09	5052.63	20
H20A	15263.91	6043.87	10647.77	21
H20B	13788.78	6935.9	10774.19	21
H17A	4129.69	4905.53	7259.31	19
H17B	6002.34	5444.94	8005.03	19
H7A	-5484.21	7150.55	6165.96	21
H7B	-4514.96	6182.15	5821.99	21
H13A	-5816.84	1187.87	4876.95	34
H13B	-6569.14	159.03	4235.64	34
H13C	-6807.97	1190.21	3928.06	34
H12A	14906.23	9927.82	11202.73	36
H12B	12327.94	10262.32	10812.75	36
H12C	13336.64	9284.6	10365.84	36
H14A	-4563.48	647.64	2745.55	37
H14B	-4128.93	-402.15	2997.17	37
H14C	-1842.42	282.57	2804.15	37
H11A	9256.56	8180.03	10233.91	46
H11B	8092.31	9164.24	10588.95	46
H11C	7625.62	8178.66	10957.88	46

Figure S3: Molecular structure and hydrogen bonding interaction for **9** (Asymmetric unit with 50% probability displacement ellipsoids).

 Table S15: Crystallographic data for 9.

CCDC No.	2210316
Empirical formula	$C_8H_6N_{14}O_4$
Formula weight	362.27
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	8.5317(3)
b/Å	8.6151(3)
c/Å	9.1400(3)
$\alpha^{\prime \circ}$	92.6160(10)
$\beta^{\prime \circ}$	93.1460(10)
$\gamma^{/\circ}$	99.8180(10)
Volume/Å3	659.93(4)
Z	2
pcalcg/cm3	1.823
μ/mm-1	0.152
F(000)	368.0
Crystal size/mm3	$0.35\times0.32\times0.3$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.47 to 56.636
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -12 \le 1 \le 12$
Reflections collected	10100

Independent reflections	3230 [Rint = 0.0268, Rsigma = 0.0292]
Data/restraints/parameters	3230/0/243
Goodness-of-fit on F2	1.057
Final R indexes [I>= 2σ (I)]	R1 = 0.0377, wR2 = 0.0869
Final R indexes [all data]	R1 = 0.0444, wR2 = 0.0913
Largest diff. peak/hole / e Å-3	0.43/-0.42

Table S16: Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for **9**. Ueq is defined as1/3 of the trace of the orthogonalised UIJ tensor.

Atom	x	У	Z.	U(eq)
O21	3653.7(12)	8360.6(11)	-1460.0(11)	14.2(2)
05	5769.3(12)	6130.9(12)	6581.2(11)	15.4(2)
01	3709.0(12)	9223.7(12)	3333.6(11)	16.8(2)
O24	751.6(13)	10556.5(12)	1847.8(12)	18.8(2)
N26	1355.8(14)	6652.8(13)	1376.3(13)	11.7(2)
N3	7677.6(14)	8752.4(14)	4076.2(13)	12.0(2)
N14	2321.4(14)	3907.2(13)	342.7(13)	11.3(2)
N15	3017.8(14)	2871.9(14)	-453.7(13)	12.7(2)
N17	3677.4(14)	5100.0(13)	-1333.2(13)	10.8(2)
N2	6373.2(14)	9260.5(14)	3541.5(12)	11.9(2)
N25	821.7(14)	7934.5(13)	1857.3(13)	12.0(2)
N4	4682.8(14)	7577.1(13)	4902.3(13)	12.1(2)
N7	11308.8(14)	6669.3(14)	5710.7(13)	13.6(2)
N8	10694.3(14)	6200.1(14)	6923.1(13)	13.1(2)
N9	9196.2(14)	6477.4(13)	6843.9(13)	10.8(2)
N6	10237.3(14)	7258.4(14)	4845.4(13)	12.8(2)
N22	2234.7(14)	9493.1(13)	200.0(13)	12.6(2)
N16	3839.2(14)	3572.9(13)	-1466.0(13)	12.7(2)
C18	2747.4(15)	5290.9(15)	-233.7(14)	9.7(2)
C19	2256.5(16)	6757.2(15)	272.0(14)	9.9(2)
C10	8935.4(16)	7147.5(15)	5584.6(14)	10.0(2)

C12	5933.6(16)	7057.7(15)	5605.1(14)	10.9(3)
C20	2789.3(16)	8241.9(15)	-429.1(14)	10.5(2)
C13	4832.3(16)	8708.9(16)	3871.5(15)	11.8(3)
C11	7490.9(15)	7703.8(15)	5056.8(14)	10.2(2)
C23	1236.7(17)	9421.8(16)	1344.3(15)	13.0(3)

Table S17: Anisotropic Displacement Parameters (Å2×103) for **9**. The Anisotropicdisplacement factor exponent takes the form:- $2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
O21	18.2(5)	12.7(5)	12.8(5)	4.8(4)	5.7(4)	3.0(4)
O5	13.9(5)	17.6(5)	16.3(5)	7.7(4)	6.0(4)	4.1(4)
01	15.3(5)	17.9(5)	17.8(5)	4.2(4)	-1.4(4)	4.5(4)
O24	25.5(6)	13.9(5)	19.0(5)	0.1(4)	5.9(4)	7.8(4)
N26	12.5(5)	11.4(5)	11.4(5)	0.9(4)	1.4(4)	2.7(4)
N3	13.0(5)	13.0(5)	10.3(5)	0.9(4)	2.2(4)	2.9(4)
N14	13.4(5)	9.7(5)	11.4(5)	1.8(4)	1.7(4)	2.8(4)
N15	14.6(6)	11.2(5)	12.9(5)	1.5(4)	2.6(4)	3.1(4)
N17	12.7(5)	9.6(5)	10.8(5)	2.0(4)	3.1(4)	2.9(4)
N2	13.3(6)	12.4(5)	10.8(5)	4.3(4)	1.9(4)	3.1(4)
N25	13.4(5)	12.2(5)	11.5(5)	1.5(4)	5.1(4)	3.6(4)
N4	9.8(5)	13.2(5)	13.5(5)	3.5(4)	2.6(4)	1.5(4)
N7	11.6(5)	16.1(6)	13.7(6)	3.1(4)	2.4(4)	3.3(4)
N8	10.0(5)	15.1(6)	14.9(6)	2.1(4)	2.3(4)	3.0(4)
N9	10.5(5)	11.9(5)	10.7(5)	2.0(4)	2.6(4)	2.5(4)
N6	10.1(5)	16.1(6)	12.7(5)	1.8(4)	2.5(4)	3.2(4)
N22	18.4(6)	8.5(5)	11.7(5)	3.7(4)	3.6(5)	2.7(4)
N16	14.2(5)	10.5(5)	14.0(6)	1.7(4)	2.3(4)	3.2(4)
C18	9.6(6)	11.3(6)	8.2(6)	1.8(4)	-0.2(5)	1.7(5)
C19	11.7(6)	9.2(6)	9.1(6)	2.4(4)	0.3(5)	2.1(5)
C10	11.3(6)	8.9(6)	9.6(6)	0.1(4)	1.9(5)	1.3(4)
C12	11.4(6)	11.4(6)	10.2(6)	0.3(5)	2.4(5)	2.6(5)
C20	12.4(6)	10.4(6)	8.8(6)	2.6(4)	-0.6(5)	2.0(5)

C13	13.3(6)	11.9(6)	10.3(6)	-0.7(5)	-0.5(5)	2.9(5)
C11	10.2(6)	11.6(6)	9.2(6)	0.8(4)	1.8(5)	2.2(5)
C23	14.7(6)	13.8(6)	10.6(6)	0.8(5)	0.7(5)	3.0(5)

 Table S18: Bond Lengths for 9.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O21	C20	1.2254(17)	N25	C23	1.3804(18)
05	C12	1.2222(17)	N4	C12	1.3659(18)
01	C13	1.2124(17)	N4	C13	1.3818(17)
O24	C23	1.2069(17)	N7	N8	1.3032(17)
N26	N25	1.3302(16)	N7	N6	1.3544(16)
N26	C19	1.2990(18)	N8	N9	1.3384(16)
N3	N2	1.3397(16)	N9	C10	1.3357(17)
N3	C11	1.2982(17)	N6	C10	1.3233(17)
N14	N15	1.3592(16)	N22	C20	1.3651(17)
N14	C18	1.3271(17)	N22	C23	1.3815(18)
N15	N16	1.2999(17)	C18	C19	1.4606(18)
N17	N16	1.3468(16)	C19	C20	1.4703(18)
N17	C18	1.3354(17)	C10	C11	1.4624(18)
N2	C13	1.3743(18)	C12	C11	1.4740(18)

Table S19: Bond Angles for 9.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C19	N26	N25	118.60(11)	C18	C19	C20	121.01(12)
C11	N3	N2	117.51(12)	N9	C10	C11	127.90(12)
C18	N14	N15	105.41(11)	N6	C10	N9	108.63(12)
N16	N15	N14	111.15(11)	N6	C10	C11	123.47(12)
C18	N17	N16	108.86(11)	05	C12	N4	123.02(12)
N3	N2	C13	125.99(11)	05	C12	C11	123.47(12)
N26	N25	C23	125.18(12)	N4	C12	C11	113.50(11)
C12	N4	C13	124.55(12)	O21	C20	N22	123.03(12)

N8	N7	N6	110.82(11)	O21	C20	C19	124.04(12)
N7	N8	N9	106.28(11)	N22	C20	C19	112.92(11)
C10	N9	N8	108.70(11)	01	C13	N2	122.13(13)
C10	N6	N7	105.55(11)	01	C13	N4	123.22(13)
C20	N22	C23	125.45(11)	N2	C13	N4	114.59(12)
N15	N16	N17	106.01(11)	N3	C11	C10	115.89(12)
N14	C18	N17	108.57(11)	N3	C11	C12	123.53(12)
N14	C18	C19	124.61(12)	C10	C11	C12	120.56(11)
N17	C18	C19	126.82(12)	O24	C23	N25	122.54(13)
N26	C19	C18	115.62(12)	O24	C23	N22	123.13(13)
N26	C19	C20	123.36(12)	N25	C23	N22	114.33(12)

Table S20: Torsion Angles for 9.

A	B	С	D	Angle/°	Α	В	С	D	Angle/°
05	C12	C11	N3	-176.15(13)	N8	N7	N6	C10	0.63(15)
05	C12	C11	C10	5.3(2)	N8	N9	C10	N6	1.71(15)
N26	N25	C23	O24	-177.86(13)	N8	N9	C10	C11	-177.70(12)
N26	N25	C23	N22	2.8(2)	N9	C10	C11	N3	158.01(13)
N26	C19	C20	O21	179.12(13)	N9	C10	C11	C12	-23.4(2)
N26	C19	C20	N22	-0.16(19)	N6	N7	N8	N9	0.40(15)
N3	N2	C13	01	-179.52(13)	N6	C10	C11	N3	-21.32(19)
N3	N2	C13	N4	2.99(19)	N6	C10	C11	C12	157.30(13)
N14	N15	N16	N17	-0.08(15)	N16	N17	C18	N14	0.37(15)
N14	C18	C19	N26	0.84(19)	N16	N17	C18	C19	-179.44(12)
N14	C18	C19	C20	179.83(12)	C18	N14	N15	N16	0.30(15)
N15	N14	C18	N17	-0.40(14)	C18	N17	N16	N15	-0.17(14)
N15	N14	C18	C19	179.41(12)	C18	C19	C20	O21	0.2(2)
N17	C18	C19	N26	-179.38(13)	C18	C19	C20	N22	-179.07(12)
N17	C18	C19	C20	-0.4(2)	C19	N26	N25	C23	-4.9(2)
N2	N3	C11	C10	178.41(11)	C12	N4	C13	01	-175.04(13)
N2	N3	C11	C12	-0.17(19)	C12	N4	C13	N2	2.42(19)
N25	N26	C19	C18	-177.69(11)	C20	N22	C23	O24	-178.54(14)

N25	N26	C19	C20	3.35(19)	C20	N22	C23	N25	0.7(2)
N4	C12	C11	N3	4.73(19)	C13	N4	C12	05	175.06(13)
N4	C12	C11	C10	-173.78(11)	C13	N4	C12	C11	-5.82(18)
N7	N8	N9	C10	-1.28(15)	C11	N3	N2	C13	-4.0(2)
N7	N6	C10	N9	-1.41(14)	C23	N22	C20	O21	178.78(13)
N7	N6	C10	C11	178.03(12)	C23	N22	C20	C19	-1.93(19)

Table S21: Hydrogen Atom Coordinates ($Å \times 104$) and Isotropic Displacement Parameters ($Å 2 \times 103$) for **9**.

Atom	x	У	Z	U(eq)
H2	6516.29	10017.01	2921.95	14
H25	150.58	7825.61	2558.19	14
H4	3714.34	7162.16	5121.19	15
H22	2538.35	10422.62	-152.82	15
H17	4160(20)	5780(20)	-1930(20)	23(5)
Н9	8610(30)	6320(30)	7610(20)	30(5)

Figure S4: Molecular structure and interlayer spacing for **12** (Asymmetric unit with 50% probability displacement ellipsoids).

CCDC No.	2210317
Empirical formula	$C_7H_{11}N_{15}O_3$
Formula weight	353.31
Temperature/K	100
Crystal system	triclinic
Space group	P-1

Table S22:	Crystal	lographic	data	for	12.
	~	0 1			

a/Å	6.6541(13)
b/Å	9.5463(18)
c/Å	10.9893(19)
α/°	105.143(6)
β/°	92.926(7)
γ/°	96.537(7)
Volume/Å3	667.1(2)
Z	2
pcalcg/cm3	1.759
μ/mm-1	0.144
F(000)	364.0
Crystal size/mm3	0.3 imes 0.25 imes 0.2
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.854 to 56.708
Index ranges	$-8 \le h \le 8, -12 \le k \le 10, -14 \le l \le 14$
Reflections collected	11300
Independent reflections	3323 [Rint = 0.0411, Rsigma = 0.0399]
Data/restraints/parameters	3323/0/230
Goodness-of-fit on F2	1.038
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0386, wR2 = 0.0964
Final R indexes [all data]	R1 = 0.0496, wR2 = 0.1034
Largest diff. peak/hole / e Å-3	0.34/-0.30

Table S23: Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for **12**. Useq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	У	Z	U(eq)
013	3449.5(16)	9278.0(11)	7070.1(9)	17.8(2)
O002	5848.2(18)	12056.3(12)	5495.4(10)	20.7(2)
O10	5239.7(17)	14224.1(11)	8368.2(10)	19.1(2)
N21	2241.8(18)	2874.8(13)	3972.3(11)	13.4(2)
N15	1299.6(18)	3387.3(13)	5867.8(11)	13.1(2)

N8	4079.2(18)	13011.8(13)	9777.0(11)	14.7(3)
N11	4243.9(19)	11756.2(13)	7683.7(11)	14.7(2)
N2	2057.3(18)	9313.5(13)	10830.6(11)	13.9(2)
N7	3310.8(18)	11793.0(13)	10081.5(11)	13.8(2)
N14	850.6(18)	1868.9(12)	5449.0(11)	14.0(2)
N3	1231.4(18)	7957.1(13)	10816.3(11)	14.9(3)
N19	2497.9(18)	5444.9(13)	5394.6(11)	14.3(2)
N4	890.7(19)	7147.1(13)	9639.3(11)	16.3(3)
N18	1792.9(18)	5697.6(13)	6614.7(11)	13.9(2)
N5	1490.6(19)	7950.7(13)	8843.7(11)	15.5(3)
N24	1479.3(19)	300.8(13)	3499.8(11)	17.2(3)
N17	291(2)	4304.3(13)	7949.3(11)	17.7(3)
N22	3098(2)	2981.7(14)	2859.1(11)	17.6(3)
C20	2138(2)	4018.4(15)	5006.0(13)	13.1(3)
C6	3020(2)	10559.9(15)	9208.0(12)	12.0(3)
C23	1490(2)	1609.5(15)	4294.3(13)	13.0(3)
C16	1065(2)	4464.2(15)	6902.9(13)	13.4(3)
С9	4570(2)	13077.6(15)	8595.6(13)	14.7(3)
C1	2197(2)	9272.9(15)	9606.2(12)	12.3(3)
C12	3561(2)	10437.0(15)	7897.5(13)	13.5(3)

Table S24: Anisotropic Displacement Parameters (Å2×103) for 12. The Anisotropicdisplacement factor exponent takes the form:- $2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
013	23.3(5)	16.6(5)	12.3(5)	1.1(4)	5.2(4)	2.2(4)
O002	29.7(6)	16.3(5)	16.5(5)	4.5(4)	9.5(4)	1.3(5)
O10	25.5(6)	14.7(5)	18.2(5)	6.2(4)	6.0(4)	0.6(4)
N21	18.4(6)	11.6(6)	10.1(5)	2.2(4)	4.2(4)	1.4(4)
N15	16.6(6)	10.5(5)	11.7(5)	1.9(4)	3.7(4)	0.7(4)
N8	19.7(6)	10.8(6)	12.4(6)	1.6(4)	3.5(5)	-0.5(5)
N11	19.1(6)	15.7(6)	9.5(5)	3.5(4)	3.1(4)	2.4(5)
N2	16.7(6)	12.0(6)	13.3(6)	3.9(4)	2.6(5)	1.7(4)
N7	15.1(6)	12.4(6)	14.0(6)	3.8(4)	2.9(4)	1.4(4)
N14	18.4(6)	8.8(5)	13.2(5)	0.1(4)	4.5(5)	0.7(4)

N3	18.3(6)	11.7(6)	14.6(6)	2.9(4)	3.4(5)	1.9(5)
N19	18.9(6)	12.7(6)	10.7(5)	1.7(4)	3.6(4)	2.5(5)
N4	19.9(6)	13.8(6)	15.0(6)	3.0(5)	5.0(5)	1.8(5)
N18	19.3(6)	11.1(5)	10.8(5)	1.4(4)	4.8(4)	2.0(5)
N5	19.6(6)	12.4(6)	14.5(6)	3.5(5)	3.2(5)	1.6(5)
N24	26.1(7)	10.7(6)	13.8(6)	1.3(5)	7.8(5)	0.2(5)
N17	25.8(7)	11.9(6)	14.2(6)	1.1(5)	9.1(5)	0.1(5)
N22	23.2(7)	19.0(6)	10.7(5)	4.0(5)	6.8(5)	1.5(5)
C20	13.7(6)	14.4(6)	11.6(6)	4.3(5)	2.2(5)	1.6(5)
C6	12.4(6)	12.3(6)	11.3(6)	2.7(5)	2.0(5)	2.4(5)
C23	12.9(6)	13.9(7)	12.4(6)	3.9(5)	2.0(5)	1.6(5)
C16	14.9(6)	12.0(6)	12.1(6)	0.8(5)	1.8(5)	2.2(5)
С9	14.5(6)	15.4(7)	14.8(6)	4.2(5)	2.1(5)	3.6(5)
C1	12.7(6)	13.5(6)	10.7(6)	2.3(5)	2.7(5)	3.7(5)
C12	12.9(6)	15.4(7)	11.9(6)	2.9(5)	1.0(5)	2.1(5)

Table S25: Bond Lengths for 12.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
013	C12	1.2269(17)	N2	C1	1.3442(17)
O10	С9	1.2255(18)	N7	C6	1.2975(18)
N21	N22	1.3980(16)	N14	C23	1.3295(18)
N21	C20	1.3654(18)	N3	N4	1.3152(17)
N21	C23	1.3922(18)	N19	N18	1.4131(16)
N15	N14	1.3932(16)	N19	C20	1.3060(19)
N15	C20	1.3589(18)	N4	N5	1.3523(17)
N15	C16	1.3486(17)	N18	C16	1.3424(18)
N8	N7	1.3463(16)	N5	C1	1.3372(18)
N8	С9	1.3703(18)	N24	C23	1.3231(18)
N11	С9	1.3775(18)	N17	C16	1.3209(18)
N11	C12	1.3722(19)	C6	C1	1.4675(19)
N2	N3	1.3437(17)	C6	C12	1.4803(19)

Table S26: Bond Angles for 12.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C20	N21	N22	125.42(12)	N7	C6	C1	116.03(12)
C20	N21	C23	106.56(11)	N7	C6	C12	122.35(13)
C23	N21	N22	127.83(11)	C1	C6	C12	121.57(12)
C20	N15	N14	114.30(11)	N14	C23	N21	113.43(12)
C16	N15	N14	137.70(12)	N24	C23	N21	121.02(12)
C16	N15	C20	107.94(12)	N24	C23	N14	125.54(13)
N7	N8	С9	125.35(12)	N18	C16	N15	104.17(12)
C12	N11	С9	124.94(12)	N17	C16	N15	126.70(13)
N3	N2	C1	104.79(11)	N17	C16	N18	129.13(13)
C6	N7	N8	118.84(12)	O10	С9	N8	122.56(13)
C23	N14	N15	101.15(11)	O10	С9	N11	122.69(13)
N4	N3	N2	109.41(11)	N8	С9	N11	114.75(12)
C20	N19	N18	100.77(11)	N2	C1	C6	122.11(12)
N3	N4	N5	109.75(11)	N5	C1	N2	111.67(12)
C16	N18	N19	113.34(11)	N5	C1	C6	126.21(12)
C1	N5	N4	104.38(11)	O13	C12	N11	122.08(13)
N15	C20	N21	104.54(12)	O13	C12	C6	124.32(13)
N19	C20	N21	141.62(13)	N11	C12	C6	113.59(12)
N19		C20		N15		113.78(12))

Table S27: Torsion Angles for 12.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
N15	N14	C23	N21	-1.79(15)	N22	N21	C20	N19	6.5(3)
N15	N14	C23	N24	177.12(14)	N22	N21	C23	N14	177.27(13)
N8	N7	C6	C1	179.47(11)	N22	N21	C23	N24	-1.7(2)
N8	N7	C6	C12	1.9(2)	C20	N21	C23	N14	2.07(16)
N2	N3	N4	N5	0.16(15)	C20	N21	C23	N24	-
									176.89(13)
N7	N8	C9	O10	178.93(13)	C20	N15	N14	C23	0.93(15)
N7	N8	C9	N11	-0.8(2)	C20	N15	C16	N18	-0.47(15)
N7	C6	C1	N2	-10.4(2)	C20	N15	C16	N17	179.64(14)

N7	C6	C1	N5	169.05(13)	C20	N19	N18	C16	0.00(15)
N7	C6	C12	013	174.42(14)	C23	N21	C20	N15	-1.30(15)
N7	C6	C12	N11	-4.60(19)	C23	N21	C20	N19	-
									178.13(19)
N14	N15	C20	N21	0.26(16)	C16	N15	N14	C23	177.51(16)
N14	N15	C20	N19	178.11(12)	C16	N15	C20	N21	-
									177.32(11)
N14	N15	C16	N18	-	C16	N15	C20	N19	0.53(17)
				177.20(15)					
N14	N15	C16	N17	2.9(3)	C9	N8	N7	C6	1.0(2)
N3	N2	C1	N5	0.03(15)	C9	N11	C12	O13	-
									174.13(14)
N3	N2	C1	C6	179.56(12)	C9	N11	C12	C6	4.9(2)
N3	N4	N5	C1	-0.13(15)	C1	N2	N3	N4	-0.12(14)
N19	N18	C16	N15	0.30(16)	C1	C6	C12	O13	-3.0(2)
N19	N18	C16	N17	-	C1	C6	C12	N11	177.95(12)
				179.82(14)					
N4	N5	C1	N2	0.06(15)	C12	N11	C9	O10	177.77(13)
N4	N5	C1	C6	-	C12	N11	C9	N8	-2.5(2)
				179.44(13)					
N18	N19	C20	N21	176.33(19)	C12	C6	C1	N2	167.21(12)
N18	N19	C20	N15	-0.31(15)	C12	C6	C1	N5	-13.3(2)
N22		N21		C20		N15		-176.65	5(12)

Table S28: Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for **12**.

Atom	x	Y	z	U(eq)
H00A	6049.39	11427.27	4822.7	31
H00B	6310.06	12874.87	5379.71	31
H8	4282.83	13833.42	10386.62	18
H11	4492.06	11758.25	6905.19	18
H18	1827.73	6576.55	7134.12	17

H24A	1020.95	-490.18	3722.09	21
H24B	1930.66	221.3	2749.01	21
H17A	203.12	5078.59	8578.02	21
H17B	-136.48	3423.38	8017.58	21
H22A	4146.33	2512.16	2758.04	21
H22B	2221.74	2602.89	2209.85	21

NMR, IR Spectrum, HRMS & TG-DSC plots for 2-12.

Figure S5: ¹H NMR of compound 2.

Figure S6: ¹³C NMR of compound 2.

Figure S7: IR spectrum of compound 2.

Figure S8: DSC curve for compound 2 at heating rate 5 °C min⁻¹.

Figure S9: ¹H NMR of compound 3.

Figure S10: ¹³C NMR of compound 3.

Figure S11: IR spectrum of compound 3.

Figure S12: HRMS for compound 3.

Figure S13: DSC curve for compound 3 at heating rate 5 °C min⁻¹.

Figure S14: ¹⁵N spectra of compound 3.

Figure S15: ¹H NMR of compound 4.

Figure S16: ¹³C NMR of compound 4.

Figure S17: IR spectrum of compound 4.

Figure S18: HRMS for compound 4.

TA Instruments Trios V5.5.0.323

Figure S19: DSC curve for compound 4 at heating rate 5 °C min⁻¹.

Figure S20: ¹H NMR of compound 5.

Figure S21: ¹³C NMR of compound 5.

Figure S22: IR spectrum of compound 5.

Figure S23: DSC curve for compound 5 at heating rate 5 °C min⁻¹.

Figure S24: ¹H NMR of compound 9.

Figure S25: ¹³C NMR of compound 9.

Figure S26: IR spectrum of compound 9.

TA Instruments Trios V5.5.0.3

Figure S27: DSC curve for compound 9 at heating rate 5 °C min⁻¹.

Figure S28: ¹³C NMR of compound 10.

Figure S29: IR spectrum of compound 10.

Figure S30: DSC curve for compound 10 at heating rate 5 °C min⁻¹.

Figure S31: ¹³C NMR of compound 11.

Figure S32: IR spectrum of compound 11.

TA Instruments Trios V5.5.0.

Figure S33: DSC curve for compound 11 at heating rate 5 °C min⁻¹.

Figure S34: ¹H NMR of compound 12.

Figure S35: ¹³C NMR of compound 12.

Figure S36: IR spectrum of compound 12.

TA Instruments Trios V5.5.0.:

Figure S37: DSC curve for compound 12 at heating rate 5 °C min⁻¹.

Computational Details

Computations were carried out using the Gaussian 09 program suite.⁴ The structure optimizations are performed with B3PW91 functional with 6-31G(d,p) basis set and characterized to be true local energy minima on the potential energy surface and no imaginary frequencies were found. Heat of formation (HOF) is a measure of energy content of an energetic material that can decompose, ignite and explode by heat or impact. It enters into the calculation of explosive and propellant properties such as detonation velocity, detonation pressure, heat of detonation and specific impulse. However, it is impractical to determine the HOF of novel energetic materials because of their unstable intermediates and unknown combustion mechanism. The calculated total energies (E_0) , zero point energies (ZPE), and thermal corrections (H_T) at the B3PW91/6-31G(d,p) level for the reference compounds used in isodesmic reactions are listed in Table S29. Table S30 lists the total energies (E_0) , zero point energies (ZPE), and thermal corrections (H_T) for target compounds. HOF_{Gas} has been predicted by designing appropriate isodesmic reactions (see Figure S38). In an isodesmic reaction, the number of each kind of formal bond is conserved according to bond separation reaction (BSR) rules. The target molecule is broken down into a set of heavy atom molecules containing same component bonds. BSR rules cannot be applied to the molecules with delocalized bonds and cage skeletons because of large calculated errors of HOFs. In view of the above, present study involves the design of isodesmic reactions in which the numbers of all kinds of bonds keep invariable to decrease the calculation errors of HOF. Aromatic rings are kept intact while constructing isodesmic reactions.

Figure S38. Designed isodesmic reactions for the prediction of gas phase heat of formation (HOF_{Gas}) of target compounds.

The usage of the HOF_{Gas} in the calculation of detonation properties slightly overestimates the values of detonation velocity and detonation pressure, and hence, the solid phase HOF (HOF_{Solid}) has been calculated which can efficiently reduce the errors. The HOF_{Solid} is calculated as the difference between HOF_{Gas} and heat of sublimation (HOF_{Sub}) as,

$$HOF_{Solid} = HOF_{Gas} - HOF_{Sub}$$
(1)

The heat of sublimation (HOF_{Sub}), which is required to convert the HOF_{Gas} to the HOF_{Solid}, was calculated from Equation (2),⁵

$$HOF_{Sub} = 0.000267 A^{2} + 1.650087 \left(\nu \sigma_{tot}^{2} \right)^{0.5} - 2.966078$$
⁽²⁾

Where A represents the surface area of the 0.001 electrons/bohr³ isosurface of electronic density, v denotes the degree of balance between the positive and negative surface potentials, and σ_{tot}^2 is the electrostatic potential variance. These molecular surface properties were obtained using the Multiwfn program⁶ and listed in Table S31.

Based on the Born–Haber cycle (shown in Figure S2), the heat of formation of an ionic compound can be simplified by subtracting the lattice energy of the salt (H_L) from the total heat of formation of salt (see Table S32) *i.e.* sum of the heats of formation of the cation and anion as shown in equation (3).

HOF (salt, 298 K) = HOF (cation, 298 K) + HOF (anion, 298 K) - H_L (3)

Figure S39. Born-Haber cycle for the formation of energetic salts.

Lattice potential energy is the energy associated with the process in which a crystalline solid lattice, M_pX_q is converted into its constituent gaseous ions, $_pM^{q+}$ (g) and $_qX^{p-}$ (g). The lattice energy can be predicted with reasonable accuracy by using Jenkins' equation (4).⁷

$$H_{L} = U_{POT} + [p(\frac{n_{M}}{2} - 2) + q(\frac{n_{X}}{2} - 2)]RT$$
(4)

where nM and nX depend on the nature of the ions M_p^+ and X_q^- , respectively, and are equal to 3 for monoatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions. When lattice potential energy (U_{POT}), is incorporated and made part of a Born–Haber cycle, it needs to be converted into a lattice enthalpy term. This lattice enthalpy (H_L) involves correction of the U_{POT} term by an appropriate number of RT terms. The U_{POT} (kJ mol⁻¹) can be predicted from four different equation (5) as suggested by Jenkins et al.⁷ using following equations,

$$U_{POT} = \gamma (\frac{\rho}{M})^{1/3} + \delta \tag{5}$$

In above equation, ρ is the density (g cm⁻³). The coefficients γ and δ are 1981.2 and 103.8 kJ/mol, respectively.

Table S29. Calculated total energies at 298K (E_0), zero point energies (ZPE), and thermal corrections (H_T) and experimental HOF_{gas} of reference compounds used isodesmic reaction at the B3PW91/6-31G(d,p) level.

Compd.	E ₀ (a.u.)	ZPE (au)	H _T (au)	HOF _{gas} (kJ/mol)
CH ₃ -CH ₃	-79.730113	0.075	0.0044	-84
CH ₃ NHNO ₂	-300.16793	0.0679	0.0061	-3.76
	-261.937484	0.0469	0.0044	88.76ª
N N N N N N	-443.67753	0.07	0.0063	635.64ª

CH ₄	-40.459807	0.045	0.0039	-74.8
NH ₂ NO ₂	-260.8979	0.0399	0.0046	-6
CH ₃ NO ₂	-244.866526	0.0502	0.0053	-81
	-430.587854	0.0755	0.007	-172.58ª

^aCalculated using G4 method.

Table S30. Calculated total energies (E_0), zero point energies (ZPE), and thermal corrections (H_T) for target compounds at the B3PW91/6-31G(d,p) level.

Commid	E (a m)	ZPE	H _T	HOF _{gas}	HOF _{Sublimation}
Compa.	E ₀ (a.u.)	(au)	(au)	(kJ/mol)	(kJ/mol)
2	-722.893693	0.1304	0.0123	553.13	122.10
3	-815.121643	0.1310	0.0128	640.75	132.43
4	-964.174245	0.1163	0.0139	725.07	129.31
6	-703.043463	0.1442	0.012	691.96	121.95
10	-687.529493	0.1035	0.0104	151.42	107.90

 Table S31. Calculated molecular surface properties of target compounds.

Compd.	Surface area (Å ²)	Volume (Å ³)	σ_{tot}^2 (kJ/mol)	v
2	193.50	193.12	386.91	0.2493
3	212.25	212.60	439.55	0.2314
4	227.23	227.44	305.82	0.2401
6	198.18	199.07	362.19	0.2493
10	177.44	172.51	323.57	0.2355

Table S32. Energy content of salts 11-13.

Compd.	HOF _c ^a	HOF _a ^b	U _{Pot} c	$\mathbf{H}_{\mathbf{L}}^{\mathbf{d}}$	HOF _{salt} ^e
--------	-------------------------------	-------------------------------	--------------------	--	----------------------------------

11	675.6	-15.58	501.33	506.29	153.72
12	769.5	-15.58	499.68	504.64	249.28
13	1112.0	-15.58	447.47	452.43	643.98

^aHeat of formation of cation (kJ mol⁻¹). ^bHeat of formation of anion (kJ mol⁻¹). ^cLattice potential energy (kJ mol⁻¹). ^dLattice energy (kJ mol⁻¹). ^eHeat of formation of salt (kJ mol⁻¹).

Figure S40. Various noncovalent interactions observed in compound 2 dimer.

Figure S41. Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for compound **2** dimer.

Figure S42. Various noncovalent interactions observed in compound 4 dimer.

Figure S43. Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for compound **4** dimer.

Figure S44. Various noncovalent interactions observed in compound 9 dimer.

Figure S45. Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for compound 9 dimer.

Figure S46. Various noncovalent interactions observed in compound 12.

Figure S47. Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for compound **12**.

References:

- Q. Ma, Z. Cheng, L. Yang, W. Du, Y. Yin, W. Ma, G. Fan and J. Li, *Chem. Commun.*, 2022, 58, 4460–4463.
- 2. Q. Wang, Y. Shao, M. Lu, R. Li, Chem. Commun., 2019, 55, 6062-6065.
- 3. A. H. Cleveland, G. H. Imler, C. J. Snyder, D. E. Chavez and D. A. Parrish, *Propellants, Explos. Pyrotech.*, 2022, e202200138.
- Gaussian 09, Revision E.01, M. J.Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,

G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian*, Inc., Wallingford CT, **2013**.

- 5. Byrd, E. F. C; Rice, B. M.; J. Phys. Chem. A 2006, 110, 1005-1013.
- 6. Lu, T.; Chen, F.; J. Comput. Chem. 2012, 33, 580.
- Jenkins, H. D. B.; Tudela, D.; Glasser, L. Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements. *Inorg. Chem.* 2002, 41, 2364-2367.