Electronic Supporting Information

Enhanced stability and complex phase behaviour of organic-inorganic green-emitting ionic manganese halides

Brando Adranno, Veronica Paterlini, Volodymyr Smetana, Guillaume Bousrez, Alexander Ovchinnikov and Anja-Verena Mudring*

Content:

I.	Infrared spectra (IR)	SI-2
١١.	Karl-Fischer titration results	SI-5
III.	Raman spectra	SI-6
IV.	Crystallographic details	SI-9
V.	Thermogravimetric analyses (TGA)	SI-13
VI.	Differential scanning calorimetry (DSC)	SI-16
VII.	Powder X-Ray diffraction (PXRD) data	SI-19
VIII.	Absorption spectra	SI-20
IX.	Luminescence spectroscopy	SI-21
Х.	References	SI-27

I. Infrared spectra (IR)

Figure S1. IR spectrum of 1.

Figure S2. IR spectrum of 2

Figure S3. IR spectrum of 3

II. Karl-Fischer titration results

Table S1. Water content of **1-3** when exposed to ambient atmosphere for several months as determined by Coulometric Karl-Fischer titration.

Compound	Water content (mol%)
1	0.35
2	0.12
3	0.25

III. Raman spectra

Figure S4. Raman spectrum of 1. The totally symmetric A1 Mn-Br stretching mode is marked

with a *red* star.

Figure S5. Raman spectrum of 2. The totally symmetric A_1 Mn-Br stretching mode is marked with a *red* star.

Figure S6. Raman spectrum of **3**. The totally symmetric A_1 Mn-Br stretching mode is marked with a *red* star.

IV. Crystallographic details

 Table S2. Crystallographic data of 1.

Compound	[P ₄₄₄₄] ₂ [MnBr ₄]
CCDC	2115615
Formula	$C_{32}H_{72}Br_4MnP_2$
Formula weight [g·mol ^{−1}]	893.41
<i>Т</i> [К]	100(2)
Crystal system	Monoclinic
SG	P21/c
a [Å]	17.1007(19)
<i>b</i> [Å]	16.2849(18)
<i>c</i> [Å]	17.357(2)
<i>6</i> [°]	118.394(3)
<i>V</i> [Å ³]	4252.2(8)
Ζ	4
Density (g/cm ³)	1.396
μ (mm ⁻¹)	4.163
F(000)	1836
Index ranges	$-21 \le h \le 21$
	$-20 \le k \le 20$
	-21 ≤ / ≤ 21
	0070
Measured reflections	9979
Unique reflections	8654
Observed reflections	4988
Number of parameters	360
	0.1576
K, WK (all, observed)	0.0544, 0.1180
$\Delta \rho_{\rm max} = (e \cdot A^{-3})$	1.891
$\Delta \rho_{\rm min}$ = (e·A ⁻³)	-1.346

Figure S7. Molecular structure of the two different $[P_{4444}]^+$ cations in the crystal packing of **1**. C atoms are in *black*, P atoms in *purple*, and H atoms in *white* (small spheres).

	Torsion angle [°]			
Cation 1, *	С	C'	C''	C'''
PC1*C2*C3*	-175.7(5)	-177.8(5)	-174.7(5)	163.3(5)
C1*C2*C3*C4*	-171.7(6)	178.7(6)	178.7(6)	-77.1(7)
Cation 2, *	С	C'	C"	C'''
PC1*C2*C3*	177.4(5)	179.1(5)	173.8(5)	-167.5(5)
C1*C2*C3*C4*	177.5(6)	-178.1(6)	-176.8(7)	-66.2(9)

Table S3. Torsion angles in the molecules of the cations in 1.

Figure S9. Phosphonium cations of **1** surrounding one [MnBr₄]²⁻ complex in a distorted octahedral arrangement. The sides of the octahedron are in *light blue dashed lines*, the Mn atom is in *orange*, P atoms are in *purple*, Br atoms are in *green*.

Figure S10. The short contact arrangements of four (*a*) and three (*b*) $[MnBr_4]^{2-}$ surrounding the phosphonium cations. The involved $[MnBr_4]^{2-}$ are connected by *light blue dashed lines*, the Mn atoms are in *orange*, P atoms are in *purple*, Br atoms are in *green*.

Figure S11. Projection of the crystal lattice of $[P_{4444}]_2[MnBr_4]$ (**1**) in the crystallographic *ab* plane showing the organic wave-like layers (a), and distribution of the isolated $[MnBr_4]^{2-}$ complexes along the crystallographic *a*-axis (b). The C-H---Br bonds are in *red dashed lines*.

Figure S12. Slow vapor diffusion set up for growth of crystals of 2.

V. Thermogravimetric analyses (TGA)

Figure S13. Thermogravimetric profile for 1.

Figure S14. Thermogravimetric profile for 2.

Figure S15. Thermogravimetric profile for 3.

VI. Differential scanning calorimetry (DSC)

Figure S16. Differential scanning calorimetry curves of 1.

Figure S17. Differential scanning calorimetry curves of 2.

Figure S18. Differential scanning calorimetry curves of 3.

Table S4. Unit cell parameters of LTS and HTS phases of **2** obtained from indexing of the peaks revealed by PXRD.

Phase	LTS	HTS
Crystal system	Monoclinic-C	Cubic-F
a [Å]	17.1007(19)	23.628(3)
<i>b</i> [Å]	16.2849(18)	
<i>c</i> [Å]	17.357(2)	
<i>6</i> [°]	118.394(3)	
FOM ^{a)}	109.0	134.0

^{a)} Figure of merit: F_{11} and F_{30} for the cubic and monoclinic forms, respectively, with F_N defined according to Smith and Snyder.¹

VII. Powder X-ray diffraction (PXRD) data

Figure S19. Recorded PXRD from recrystallized **1** together with the pattern calculated from the model refined from the room-temperature single-crystal X-ray diffraction data.

VIII. Absorption spectra

Figure S20. Absorption spectra of 1-3.

IX. Luminescence spectroscopy

Figure S21. Phosphorescent decay curve for 1 (λ_{ex} = 276 nm).

Figure S22. Phosphorescent decay curve for 1 (λ_{ex} = 361 nm).

Figure S23. Phosphorescent decay curve for 2 (λ_{ex} = 276 nm).

Figure S24. Phosphorescent decay curve for 2 (λ_{ex} = 363 nm).

Figure S25. Phosphorescent decay curves for LTS and HTS of **2** during the first heating and cooling cycle. LTS data collected at RT, HTS data collected at 80 °C.

Figure S26. Phosphorescent decay curves for LTS and HTS of **2** during the second heating and cooling cycle. LTS data collected at RT, HTS data collected at 80 °C.

Figure S27. Phosphorescent decay curves for LTS and HTS of **2** during the third heating and cooling cycle. LTS data collected at RT, HTS data collected at 80 °C.

References

1. G. S. Smith and R. L. Snyder, J. Appl. Crystallogr., 1979, **12**, 60-65.