Supporting Information

Tetranuclear [Cu₃Ln] complexes derived from

a tetraketone-type ligand

Takuya Shiga,*a Haruka Miyamoto,a Yukiko Okamoto,a

Hiroki Oshio,^a Nozomi Mihara^a and Masayuki Nihei*^a

 Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.

Corresponding author Dr. Takuya Shiga Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan) TEL: (+81)29-852-4426 FAX: (+81)29-852-4426 E-mail:

Contents

Figure S1	Experimental (red) and simulated (blue) powder X-ray diffraction data of 1'.
Figure S2	Experimental (red) and simulated (blue) powder X-ray diffraction data of 2'.
Figure S3	Molecular structures of complex 2'. Top view (top) and side view (bottom).
Figure S4	Field dependences of magnetization for complexes 1, 2, and 3.
Figure S5	The AC magnetic susceptibilities of complex 3 under an applied dc magnetic field of 1300
Oe.	

Figure S6 Debye plots of complex 3 for frequencies 1000 (red), 750 (blue), 500 (green) Hz. The solid lines correspond to the fit of the data.

Table S1Crystal parameters of 1', 2', and 3'.

Table S2 Maximum values of the entropy changes for the previously reported MCE materials based on
 Cu(II)-Gd(III) systems with up to nonanuclear clusters.

References

Explanation of alerts in CIFCHECK

Figure S1 Experimental (red) and simulated (black) powder X-ray diffraction data of 1'.

Figure S2 Experimental (red) and simulated (black) powder X-ray diffraction data of 2'.

Figure S3 Molecular structures of complex 2'. Top view (top) and side view (bottom)

Figure S4 Field dependences of magnetization for complexes 1 (red), 2 (green), and 3 (blue).

Figure S5 The AC magnetic susceptibilities of complex **3** under an applied dc magnetic field of 1300 Oe.

Figure S6 Debye plots of complex **3** for frequencies 1000 (red), 750 (blue), 500 (green) Hz. The solid lines correspond to the fit of the data.

	Comp. 1'	Comp. 2'	Comp. 3'
Formula	$C_{29}H_{44}Cu_3GdN_3O_{26}$	$C_{29}H_{44}Cu_3N_3O_{26}Tb$	$C_{27}H_{36}Cu_3DyN_3O_{24}$
$M \ / \ g \ mol^{-1}$	1198.54	1200.21	1139.71
Temp. / K	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/c$	$P2_1/c$	PError!
<i>a</i> / Å	8.9376(8)	8.9281(8)	7.9231(6)
<i>b</i> / Å	27.147(2)	27.150(2)	11.5750(10)
<i>c</i> / Å	17.9174(16)	17.9180(17)	22.3077(18)
α/o	_	_	93.0390(10)
β/°	103.2910(10)	103.5200(10)	91.7730(10)
γ/ °	_	_	105.8840(10)
$V/\text{\AA}^3$	4230.8(7)	4222.9(7)	1962.8(3)
Z	4	4	2
d / g cm ⁻³	1.882	1.888	1.928
μ / mm ⁻¹	3.130	3.240	3.578
F(000)	2392	2396	1128
Reflections			
collected / unique	24193 / 9682	20642 / 7777	11429 / 8616
$R_{\rm int}$	0.0312	0.0309	0.1627
GOF	1.254	1.267	1.032
$R1 (I > 2\sigma(I))$	0.0558	0.0848	0.0629
$R_{\rm w}2 \ (I > 2\sigma(I)]$	0.1223	0.1955	0.1716
$\Delta ho_{ m max}$ / e Å ⁻³	1.365	3.081	6.271
$\Delta ho_{ m min}$ / e Å ⁻³	-2.086	-2.742	-4.831
CCDC No.	2223281	2223282	2223283

Table S1. Crystal parameters of 1', 2', and 3'.

Complexes	$-\Delta S_{\rm m}({\rm J~kg^{-1}~K^{-1}})$	$\Delta H(\mathbf{T})$	T_{\max} (K)	Ref.
Cu ₃ Gd	16.4	5	2.4	This work
Cu_5Gd_4	31	9	3.0	1
Cu_2Gd_7	34.6	9	2.7	2
Cu ₃ Gd ₆	26.9	7	3.0	3
Cu ₆ Gd ₂	11.9	7	2.0	4
Cu ₅ Gd ₂	16.3	5	2.0	5
Cu ₅ Gd ₂	15.7	5	2.0	6
Cu ₄ Gd ₂	22.9	7	3.0	7
Cu ₄ Gd	10	7	3.0	8
Cu ₂ Gd ₂	23.5	7	3.0	9
Cu ₂ Gd ₂	22	7	3.0	10
Cu ₂ Gd ₂	17	7	3.0	10
Cu ₂ Gd	17	7	3.5	11
CuGd	23.5	7	2.3	12

Table S2Maximum values of the entropy changes for the previously reported MCE materials based onCu(II)-Gd(III) systems with up to nonanuclear clusters.

References

- 1 S.K. Langley, N.F. Chilton, B. Moubaraki, T. Hooper, E.K. Brechin, M. Evangelisti, K.S. Murray, *Chem. Sci.*, 2011, **2**, 1166.
- 2 S.K. Langley, B. Moubaraki, C. Tomasi, M. Evangelisti, E.K. Brechin, K.S. Murray, *Inorg. Chem.*, 2014, **53**, 13154.
- 3 E. Moreno Pineda, C. Heesing, F. Tuna, Y.-Z. Zheng, E.J.L. McInnes, J. Schnack, R.E.P. Winpenny, *Inorg. Chem.*, 2015, **54**, 6331.
- 4 S. Xue, Y.-N. Guo, L. Zhao, H. Zhang, J. Tang, *Inorg. Chem.*, 2014, **53**, 8165.
- 5 D. Dermitzaki, V. Psycharis, Y. Sanakis, T.C. Stamatatos, M. Pissas, C.P. Raptopoulou, *Polyhedron*, 2019, **169**, 135.
- 6 D. Dermitzaki, O. Bistola, M. Pissas, V. Psycharis, Y. Sanakis, C.P. Raptopoulou, *Polyhedron*, 2018, **150**, 47.
- 7 D.I. Alexandropoulos, L. Cunha-Silva, J. Tang, T.C. Stamatatos, *Dalton Trans.*, 2018, 47, 11934.
- 8 P. Richardson, D.I. Alexandropoulos, L. Cunha-Silva, G. Lorusso, M. Evangelisti, J. Tang, T.C. Stamatatos, *Inorg. Chem. Front.*, 2015, **2**, 945.

- 9 S. Maity, A. Mondal, S. Konar, A. Ghosh, *Dalton Trans.*, 2019, **48**,15170.
- 10 B. Dey, S. Roy, A.K. Mondal, A. Santra, S. Konar, *Eur. J. Inorg. Chem.*, 2018, 2018, 2429.
- 11 M.K. Singh, T. Rajeshkumar, R. Kumar, S.K. Singh, G. Rajaraman, *Inorg. Chem.*, 2018, 57, 1846.
- 12 A.S. Dinca, A. Ghirri, A.M. Madalan, M. Affronte, M. Andruh, *Inorg. Chem.*, 2012, **51**, 3935.

Explanation of alerts in CIFCHECK

Datablock: Comp1_Cu3Gd-L1 Alert level B

The following B-level alerts arise from the diffraction data being slightly weak. PLAT220_ALERT_2_B NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range 6.4 Ratio PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.23Ang From C9 -2.53 eA-3

Datablock: Comp2_Cu3Tb-L1 Alert level A

The following A level alert arise from the imperfect absorption correction of heavy metal (Tb ion) compound.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.96Ang From Tb1 3.70 eA-3

Alert level B

The following B-level alerts arise from the diffraction data being slightly weak. PLAT214_ALERT_2_B Atom O24 (Anion/Solvent) ADP max/min Ratio 5.3 prolat PLAT220_ALERT_2_B NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range 6.4 Ratio PLAT415_ALERT_2_B Short Inter D-H..H-X H40 ..H42 . 1.99 Ang. 1+x,y,z = 1_655 Check PLAT420_ALERT_2_B D-H Bond Without Acceptor O25 --H40 . Please Check PLAT934_ALERT_3_B Number of (lobs-lcalc)/Sigma(W) > 10 Outliers .. 2 Check

The following B level alert arise from the imperfect absorption correction of heavy metal (Tb ion) compound.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.79Ang From O25 2.58 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.09Ang From C17 -3.31 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.59Ang From C8 -2.86 eA-3

Datablock: Comp3_Cu3Dy-L1

Alert level A

The following A level alert arise from the imperfect absorption correction of heavy metal (Dy ion) compound.

```
PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.89Ang From Dy1 6.31 eA-3
PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.77Ang From Dy1 5.73 eA-3
PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.85Ang From Dy1 -4.98 eA-3
PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.85Ang From Dy1 -4.79 eA-3
PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.74Ang From Dy1 -4.41 eA-3
PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.67Ang From Dy1 -4.23 eA-3
```

Alert level B

The following B-level alerts arise from the diffraction data being slightly weak. PLAT213_ALERT_2_B Atom O6 has ADP max/min Ratio 4.1 prolat PLAT213_ALERT_2_B Atom O7 has ADP max/min Ratio 4.4 prolat PLAT213_ALERT_2_B Atom O10 has ADP max/min Ratio 5.0 prolat PLAT213_ALERT_2_B Atom C14 has ADP max/min Ratio 4.2 prolat

The following B level alert arise from the imperfect absorption correction of heavy metal (Dy ion) compound.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.96Ang From Dy1 2.70 eA-3 PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.01Ang From O19 2.56 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.39Ang From Dy1 -3.01 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.37Ang From Dy1 -3.01 eA-3