Supplementary information

Magnetic boron nitride adorned with Pd nanoparticles: Efficient catalyst for the reduction of nitroarenes in aqueous media

Jinghan Wang, Woo Seok Cheon, Ju-Yong Lee, Wenqian Yan, Sunghoon Jung², Ho Won Jang^{*} Mohammadreza Shokouhimehr^{*}

1. Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.

 Department of Nano-bio Convergence, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea.

*Corresponding authors emails: hwjang@snu.ac.kr and mrsh2@snu.ac.kr

Experimental

Materials and characterization

All chemicals used for the synthesis and reactions are commercially procured from commercial companies and used without further purification. Hexagonal boron nitride (h-BN), potassium ferricyanide (III) (K₃[Fe(CN)₆], and potassium palladium(II) chloride (K₂PdCl₄) were purchased from Sigma-Aldrich. All other chemicals used in this study were purchased from the Daejung and Samchun chemical companies. The crystallinity of as-prepared h-BN/Pd/Fe₂O₃ nanocatalyst was characterized using X-ray diffraction (XRD, D8-Advance) using D8-Advance in 2 θ range of 10-90° with a scan rate of 5°/min. Fourier transform infrared spectroscopy (FT-IR, Nicolet iS50) was obtained in the range of 4000-400 cm⁻¹. The morphology of the catalyst was examined using a transmission electron microscope (TEM), a high-resolution TEM (HRTEM) and selected area electron diffraction (SAED, JEOL JEM-2100F) instrument coupled with an energy dispersive spectrometer (EDS).

The surface area of the h-BN/Pd/Fe₂O₃ catalyst was analyzed using a Brunauer-Emmett-Teller device (BET, Micromeritics 3Flex) with the Barrett-Joyner-Halenda (BJH) method to study the pore size. Inductively coupled plasma-atomic emission spectrometry (ICP-AES, Varian 730ES) was used to determine the concentrations of the various metal species. The chemical state of the nanocatalyst was identified using an X-Ray photoelectron spectroscope (XPS, AXIS-His) with the Al K α X-ray source. The magnetic property was investigated using a vibrating-sample magnetometer (VSM-7410). Finally, the results of the catalytic reactions were analyzed using a gas chromatography mass spectrometer (GC-MS) with Agilent technologies 7693 autosampler and ultraviolet–visible spectroscopy (UV-vis).

Preparation of h-BN/Pd/Fe₂O₃ catalyst

The h-BN/Pd/Fe₂O₃ catalyst was prepared using a facile and green method. First, 1 g of h-BN was dispersed in 50 mL of deionized (DI) water and subsequently added to K_2PdCl_4 (50 mg) and $K_3Fe(CN)_6$ (50 mg); In next step, the obtained solution was treated for sonication for 15 min. Subsequently, the mixture was vigorously stirred for 12 h at room temperature. After stirring, the product was obtained by centrifugation and washed with DI water. Finally, the product was dried in an oven and annealed at 900 °C for 4 h under Ar and H₂ mixture gas flow to produce the h-BN supported Pd and Fe₂O₃ NPs catalyst.

Catalytic reduction

In a typical reaction, 20 mL of deionized water was used to dissolve 0.15 mmol NaBH₄, and 0.1 mmol nitroaromatics was prepared. Next, the h-BN/Pd/Fe₂O₃ catalyst was directly added to the above system and the ensuing mixture was kept for 20 minutes under an air atmosphere. After the reaction, the h-BN/Pd/Fe₂O₃ catalyst was separated using a small magnet. GC-MS was applied to measure the yield of the amino aromatic groups. UV-vis was used to recorded the concentration of 4-NP at a wavelength of 400 nm and 4-AP at 300 nm.

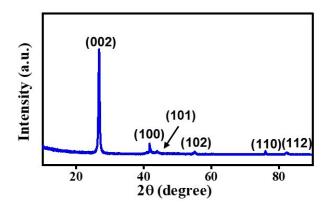


Figure S1. XRD pattern of h-BN/Pd/Fe₂O₃ catalyst.

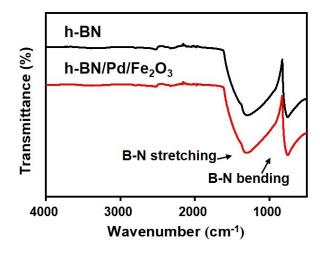


Figure S2. FT-IR spectra of h-BN and h-BN/Pd/Fe₂O₃ catalyst.

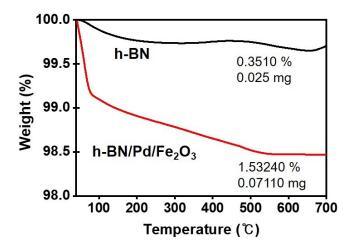
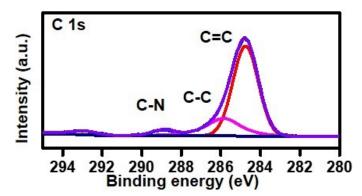
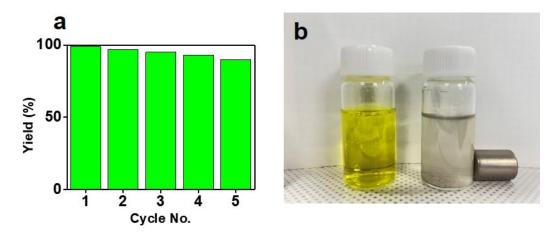
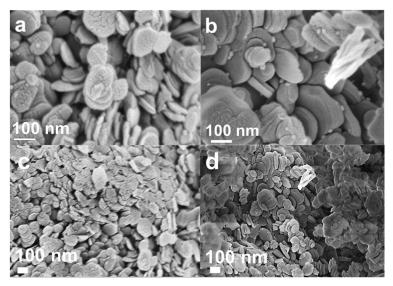
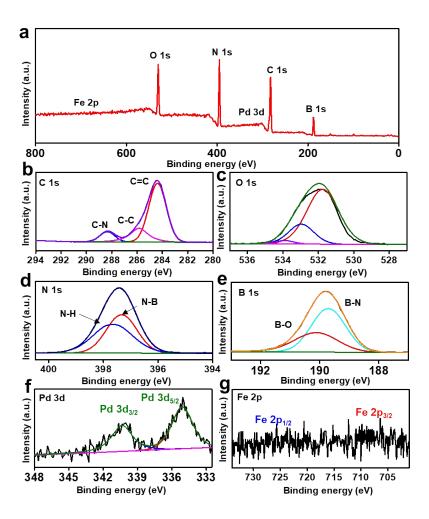


Figure S3. TGA curves of h-BN and h-BN/Pd/Fe₂O₃ catalyst.


Figure S4. XPS spectrum of C 1s.

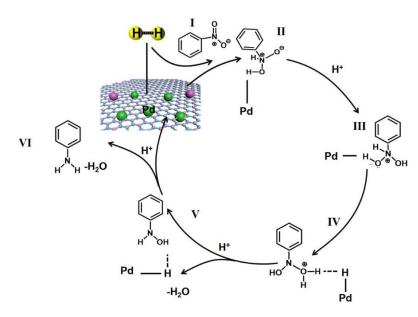

Figure S5. (a) Recycling test for the reduction of nitrobenzene to aniline by h-BN/Pd/Fe₂O₃ catalyst. (b) Digital camera image of before and after magnetic separation for h-BN/Pd/Fe₂O₃ catalyst in aqueous media.

Figure S6. (a and c) FESEM images of the as-prepared h-BN/Pd/Fe₂O₃ catalyst. (b and d) FESEM images of the reused h-BN/Pd/Fe₂O₃ catalyst after 5^{th} cycles.

Figure S7. XPS pattern (a) survey scan, (b) C 1s, (c) O 1s, (d) N 1s, (e) B 1S, (f) Pd 3d, (g) Fe 2p for the reused h-BN/Pd/Fe₂O₃ catalyst after 5th cycles.

Scheme S1. Proposed catalytic hydrogenation mechanism and possible reaction pathways for nitrobenzene reduction with NaBH₄ in the presence of h-BN/Pd/Fe₂O₃ catalyst.

Sample	BET Surface Area/m ² g ⁻¹	Pore Volume/cm ² g ⁻¹
h-BN	32.99	0.3225
h-BN/Pd/Fe ₂ O ₃	56.073	0.6837
h-BN/Pd	29.411	0.3754
h-BN/Fe ₂ O ₃	16.969	0.1877

 $\label{eq:solution} \textbf{Table S1.} Surface area and pore volume of h-BN, BN/Pd/Fe_2O_3, h-BN/Pd, and h-BN/Fe_2O_3.$

Entry	Catalyst	Reaction conditions	Yield (%)	Refs.
1	Fe ₃ O ₄ @Fritillaria/Pd (0.1 mol%)	Hydrazine, EtOH:H ₂ O	98	S 1
		(2:1), 80 °C, 30 min		
2	Fe ₃ O ₄ @C/Pd (40 mg)	NaBH ₄ , EtOH, (60 ml),	99	S2
		60 °C, 1 h		
3	HAP-Pd (1 mol%)	NaBH ₄ , H ₂ O,	99	S3
		r.t, 2 h		
4	TiO ₂ @Au (100 mg)	Citric acid, H ₂ O,	93	S4
		60 °C, 720s		
5	SBA-Pr-3AP@Pd (0.03 g)	NaBH ₄ , EtOH:H ₂ O	95	S5
		(1:1) r.t, 4 min		
6	Au@ZP(AEP) (1 mol%)	NaBH ₄ , EtOH,	94	S 6
		30 °C, 4 h		
7	Au@SBA15 (2 mol%)	NaBH ₄ , EtOH	92	S 7
		30 °C, 4 h .		
8	Bento-crt@Pd (0.1 mol%)	NaBH ₄ , H ₂ O/EtOH	99	S 8
		r.t, 30 min		
9	Ru-PPT (0.15 mol%)	NaBH ₄ , H ₂ O/THF	99	S9
		r.t, 1 h		
10	n-CeO ₂ (9 mol%)	Hydrazine, H ₂ O,	99	S10
		80 °C, 8 h		

Table S2. Catalytic performance comparison of selected examples of previously published heterogeneous precious metals catalysts utilized in the reduction of nitrobenzene.

Table S3. ICP analyses for the as-prepared h-BN/Pd/Fe₂O₃ and the reused h-BN/Pd/Fe₂O₃ catalyst after 5th cycle.

Element	As-prepared h-BN/Pd/Fe ₂ O ₃ (mg/L)	5th cycled h-BN/Pd/Fe ₂ O ₃ (mg/L)
Fe	96.639	38.132
Pd	114.169	86.575

References

S1. H. Veisi et al., Bio-inspired synthesis of palladium nanoparticles fabricated magnetic

Fe₃O₄ nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable

catalyst for the reduction of nitroarenes. Sci. Rep. 11, 4515 (2021).

- S2. N. Mei, B. Liu, Pd nanoparticles supported on Fe₃O₄@C: An effective heterogeneous catalyst for the transfer hydrogenation of nitro compounds into amines. Int. J. Hydrogen Energy 41, 17960-17966 (2016).
- S3. M. Shokouhimehr, S. M. G. Yek, M. Nasrollahzadeh, A. Kim, and R.S. Varma, Palladium nanocatalysts on hydroxyapatite: Green oxidation of alcohols and reduction of nitroarenes in water, Applied Sciences, 9, 19 (2019).
- S4. M. Rocha, C. Pereira, and C. Freire, Au/Ag nanoparticles-decorated TiO₂ with enhanced catalytic activity for nitroarenes reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621, 2021 (126614).
- S5. F. Mohajer, G. Mohammadi Ziarani, A. Badiei, R. S. Varma, Functionalized silica nanoporous Pd complex for reduction of nitroarenes and dyes, Inorg. Chem. Commun. 144, 109936 (2022).
- S6. F. Ferlin, M. Cappelletti, R. Vivani, M. Pica, O. Piermatti, and L. Vaccaro, Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes, Green Chemistry, 21 pp. 614-626 (2019).
- S7. F. Ferlin, T. Giannoni, A. Zuliani, O. Piermatti, R. Luque, and L. Vaccaro, Sustainable Protocol for the Reduction of Nitroarenes by Heterogeneous Au@SBA-15 with NaBH₄ under Flow Conditions, ChemSusChem, 12, 3178-3184 (2019).

- S8. M. Gholinejad, Z. Rasouli, C. Najera, and J. M. Sansano, Palladium Nanoparticles on a Creatine-Modified Bentonite Support: An Efficient and Sustainable Catalyst for Nitroarene Reduction, ChemPlusChem, 84, 1122-1129 (2019).
- S9. X. Cai et al., Phosphorus-rich network polymer supported ruthenium nanoparticles for nitroarene reduction, Materials Letters, 240, 80-83 (2019).
- S10. N. Anbu, C. Vijayan, A. Dhakshinamoorthy, A Versatile, Mild and Selective Reduction of Nitroarenes to Aminoarenes Catalyzed by CeO₂ Nanoparticles with Hydrazine Hydrate, ChemistrySelect 4, 1379-1386 (2019).