Electronic Supporting Information

Synthesis and characterization of two self-assembled $[Cu_6Gd_3]$ and $[Cu_5Dy_2]$ complexes exhibiting magnetocaloric effect, slow relaxation of magnetization and anticancer activity

Avik Bhanja^a, Sangeeta Roy Chaudhuri^a, Angelos B. Canaj,^b Shachi Pranjal Vyas,^c Fabrizio Ortu^d, Lucy Smythe,^b Mark Murrie,^b Ritobrata Goswami,^c Debashis Ray^{*a}

^aDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721302, India ^bSchool of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK ^cSchool of Bioscience, Indian Institute of Technology, Kharagpur 721302, India ^dSchool of Chemistry, University of Leicester, LE1 7RH Leicester, UK

*Email: <u>dray@chem.iitkgp.ac.in</u>

Contents

1.	Experimental Section
2.	Table of earlier reported complexes showing MCE
3.	Crystallographic data and refinement details for complexes 1–29-10
4.	Powder XRD pattern of complex 1 and 210
5.	Observed metal ion binding modes of ligand H2L10
6.	FT-IR spectra of the complexes 1 and 211
7.	SHAPE analysis of the metal ion center11-12
8.	Mean plane analysis and H-bonding connectivity of complex 112
9.	Geometry around metal ion centers of complex 113
10.	Geometry around metal ion centers of complex 114
11.	H-bonding connectivity of complex 2 14
12.	TGA curves of complexes 1 and 214
13.	Detail crystallographic table for complexes 115-18
14.	Detail crystallographic table for complexes 219-20
15.	H-bonding interaction of complex 220
16.	Simulated and experimental mass pattern for 1 and 220
17.	Magnetization plots for 1 and 221–22
18.	Cytotoxicity and cancer cell growth inhibition studies of 1 and 2 22–24
19.	DNA and Protein binding studies of 1 and 2
20.	References

Experimental Section

Materials. Solvents and other laboratory grade reagents used in this work were either as obtained or purified according to standard literature procedure.^{S1} o-vanillin (Spectrochem Pvt Ltd, Mumbai), DyCl₃·6H₂O and GdCl₃·6H₂O (Alfa Aesar, India), 2-amino-2-methylpropan-1ol (Alfa Aesar, India) and triethylamine (S D Fine Chemicals, Mumbai, India) were used as received without further purification. $Cu(ClO_4)_2 \cdot 6H_2O$ was obtained by treating an aqueous perchloric acid (1:1) with commercial CuCO₃, followed by concentration and crystallization on a water bath. Human serum albumin (fatty acid free, fraction V) was obtained from Sigma-Aldrich (USA). Calf thymus DNA (ct-DNA), ethidium bromide (EB) and dimethyl sulfoxide (DMSO) were purchased from Sisco Research Laboratories (Mumbai, India). Dulbecco's Modified Eagle medium (DMEM), Dulbecco's Modified Eagle Medium High glucose (DMEM-high glucose) and Dulbecco's Modified Eagle medium: Nutrient mixture F12 (DMEM/F-12), Dulbecco's phosphate buffered saline (PBS), Foetal Bovine Serum (FBS), 0.25% trypsin-EDTA and antibiotic-antimycotic solution were procured from Thermo Fisher Scientific (MA, USA). MTT (3-4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide was obtained from HiMedia (Mumbai, India). Solutions of complexes 1 and 2 were prepared in DMSO and subsequent dilutions were made with buffers (pH 7.4) during biochemical studies.

Caution! Metal complexes of organic ligands with perchlorate counterions are potentially explosive in nature in dry state. Therefore, the material should be prepared in very small amount, and it should be handled with extreme care.

Physical Measurements. The absorption spectra were collected using a Shimadzu (Model UV2450) spectrophotometer. Elemental analysis (C, H, N) of the complex were performed with a Perkin-Elmer model 240C elemental analyser. IR measurements were recorded using KBr disks in a Perkin-Elmer FT-IR spectrometer model RX1. The purity of the bulk complex were measured by powder XRD using a BRUKER AXS X-ray diffractometer (40 kV, 20 mA) using Cu-Ka radiation ($\lambda = 1.5418$ Å) within 5–50° (20) range and a fixed-time counting of 4 s at 25°C. The steady-state fluorescence spectra were recorded with a Horiba Jobin Yvon spectrofluorometer (Flurolog-3) equipped with temperature-controlled water-cooled cuvette holder and a 1 cm path length quartz cuvette was used to take the scan of the solutions. All magnetic measurements were carried out on powdered crystalline samples restrained in eicosane using a Quantum Design SQUID magnetometer (MPMS-XL or MPMS 3). Data were

corrected for the diamagnetic contribution of the sample holder and eicosane by measurements, and for the diamagnetism of each compound. Thermogravimetric analysis (TGA) was carried out by using a PerkinElmer Pyris Diamond TG-DTA instrument.

X-ray Crystallography. Appropriate single crystals of 1 and 2 was chosen for data collection on a Bruker SMART APEX-II CCD X-ray diffractometer furnished with a graphitemonochromated Mo K α ($\lambda = 0.71073$ Å) radiation by the ω scan (width of 0.3° frame⁻¹) method at 293 K with a scan rate of 6 s per frame. Data processing and space group determination were done by SAINT and XPREP software's.^{S2} The crystal structures were solved by direct method technique from SHELXS-2014^{S3} and then refined by full-matrix least squares technique using SHELXL (2014/7)^{S4} program packaged within WINGX version 1.80.05.^{S5} Multiscan empirical absorption corrections were applied to the data using the program SADABS.^{S6} The locations of the heaviest atoms i.e. Cu and Dy were determined easily and the O, N, and C atoms were subsequently determined from the difference Fourier maps. The other non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were fixed at calculated positions, and their positions were refined by a riding model. Due to the disorders, the lattice solvent molecules of both the complexes cannot be modelled satisfactorily. So, the Olex-2 software having the mask program^{S7} suite has been performed to discard those disordered solvent molecules and gave electron density of 75 and 207 respectively. This value allowed us to assign four and twenty H₂O molecules for complexes 1 and 2 respectively. From the % weight loss of thermogravimetric analysis, we have got 2.68% loss for complex 1 and 14.17% loss for complex 2 which is equivalent to 4 H₂O and 21 H₂O respectively (Fig. S9). Crystallographic Figures presented in this manuscript were generated using DIAMOND software.^{S8} The crystal data and the cell parameters for compounds 1–2 are summarized in Table S2 in the ESI. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC 2184365 2184368. These data can also be obtained free of cost at and www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre).

Synthesis of 2-[(2-hydroxy-1,1-dimethyl-ethylimino)-methyl]-6-methoxy-phenol (H₂L)

H₂L was obtained from Schiff base condensation reaction between the chosen aldehyde and its amine counterpart. To a stirred solution of 2-amino-2-methylpropan-1-ol (0.18 g, 2 mmol) in MeOH (10 mL) was added 10 mL MeOH solution of 2-hydroxy-3-methoxybenzaldehyde (0.30 g, 2 mmol) in 1:1 molar ratio. After complete addition, the solution was allowed to stir for 30

min followed by a reflux of 2 h duration. Then the whole solution was evaporated under reduced pressure to reduce the solvent volume to obtain an orange oily mass. Repeated washing was made with *n*-hexane to remove the unreacted reactants and finally the substance was dried under vacuum over P_4O_{10} . The oily substance was characterized by FTIR and NMR spectroscopy, and use directly in complex formation reaction without any other purification process such as column chromatography. FT-IR (KBr) cm⁻¹: 3360 (br), 1630 (s), 1505 (m), 1469 (w), 1366 (w), 1219 (s), 1168 (m), 1063 (m), 856 (w). ¹H NMR (400 MHz, CDCl₃, ppm): 8.23 (1H, imine H), 6.82 (2H, ArH), 6.62 (1H, ArH), 3.82 (3H. methoxy H), 3.57 (2H, methyne H), 1.30 (6H, methyl H).

General Procedure for Synthesizing 1–2. A general and reproducible reaction protocol was used for the synthesis of 1 and 2 at room temperature under magnetic stirring conditions. H₂L (0.22 g; 0.1 mmol) was dissolved into 10 mL of MeOH-CHCl₃ (2:1, v/v) solvent mixture and solid Cu(ClO₄)₂·6H₂O (0.1 mmol, 0.31 g) was added into it followed by addition of NEt₃ (0.2 g, 0.2 mmol) as base giving a bright green solution. After stirring for 1 h, solid LnCl₃·5H₂O (0.05 mmol) (Ln = Dy³⁺, Gd³⁺) was added to the previous solution when the whole solution turned into bluish-green. The resulting solution was finally stirred for overnight at room temperature, filtered and kept for slow evaporation in air. After a week, green block-shaped single crystals suitable for X-ray diffraction analysis were obtained. The quantity of reactants involved in each case and characterization data of the products are given below.

 $[Cu_6Gd_3(L)_3(HL)_3(\mu_3-Cl)_3(\mu_3-OH)_6(OH)_2]ClO_4 \cdot 4H_2O$ (1). Yield: 0.022 g, 50.09 % (based on Gd³⁺). FT-IR (KBr) cm⁻¹: 3493 (br), 2967 (w), 2671 (w), 1641(s), 1613 (m), 1456 (s), 1389 (m), 1297 (m), 1245 (s), 1219 (s), 1088 (s), 967 (m), 737 (m), 619 (w) Anal. Calcd. for $C_{72}H_{108}Cl_4Cu_6Gd_3N_6O_{34}$ (2596.48): C, 33.31; H, 4.19; N, 3.24. Found: C, 33.37; H, 4.17; N, 3.26.

[Cu₅Dy₂(L)₂(HL)₂(μ -Cl)₂(μ ₃-OH)₄(ClO₄)₂(H₂O)₆](ClO₄)₂·2NHEt₃Cl·21H₂O (2). Yield: 0.028 g, 39.60 % (based on Dy³⁺). FT-IR (KBr) cm⁻¹: 3497 (br), 2971 (w), 2679 (w), 1643(s), 1609 (m), 1458 (s), 1395 (m), 1295 (m), 1242 (s), 1224 (s), 1090 (s), 965 (m), 743 (m), 621 (w) Anal. Calcd. for C₆₀H₁₅₂Cl₈Cu₅Dy₂N₆O₅₉ (2828.22): C, 25.48; H, 5.42; N, 2.97. Found: C, 25.51; H, 5.41; N, 2.95.

Cell culture

Human lung adenocarcinoma cell line (A549), human breast cancer cell line (MDA-MB-231) were obtained from National Centre for Cell Science (Pune, India) and human embryonic kidney cell line (HEK 293T) was a generous gift from Dr Arindam Mondal, School of

Bioscience, IIT Kharagpur. A549, MDA-MB-231 and HEK 293T were grown in DMEM/F12, DMEM-high glucose and DMEM media, respectively with 10% FBS and 1% antibioticantimycotic in a humidified atmosphere at 37°C temperature and 5% CO₂.

Cytotoxicity assessment

The cytotoxicity of the synthesized copper complexes was determined in cancerous (A549 and MDA-MB-231) and normal (HEK 293T) cell line using MTT assay. It is based on the reduction of the MTT reagent into insoluble formazan crystals by the mitochondrial dehydrogenases of the viable cells. The insoluble formazan product thus formed is measured by a multi-well plate reader (1). Briefly, 1×10^4 cells/well were seeded in a 96-well plate overnight at 37^{0} C. Thereafter, cells were treated with different copper complexes at a range of concentrations (1: 5, 15, 30, 45 and 60 μ M), (**2**, SM1, SM2 and SM3: 10, 25, 50, 75 and 100 μ M) for 24 hrs. Next, the media containing the copper complexes was decanted and the cells were washed with PBS followed by incubation with 100 μ L MTT (5 mg/mL) for 3 hrs. Later, MTT solution was discarded and the insoluble formazan crystals thus formed were solubilised by adding 100 μ L of DMSO in each well. The purple formazan crystals were then measured using spectrophotometer at 590 nm.

In vitro DNA binding studies

The experiments involving the interactions of the synthesized complexes **1** and **2** with *ct*-DNA were performed in Tris–HCl buffer (5mM Tris-HCl, 50 mM NaCl, pH 7.2) at room temperature. Purity of the used *ct*-DNA in the working buffer was evaluated from the ratio of absorbance at 260 to 280 nm, which was found to be >1.8, indicating the DNA is sufficiently free from protein. The concentration of the *ct*-DNA per nucleotide was calculated from the absorbance band at 260 nm using the molar extinction coefficient ($\varepsilon = 6600 \text{ M}^{-1} \text{ cm}^{-1}$).^{S9}

Absorption spectroscopic studies

Absorption titration experiments of each complex were carried out in Shimadzu 1800 spectrometer with the addition of an increasing amount of *ct*-DNA (0–50 μ M) in Tris-HCl buffer (pH 7.2) to a fixed concentration of the metal complex (23 μ M). Equal quantities of *ct*-DNA were added to the reference solution during each titration to eliminate the effect of *ct* - DNA absorption. From the absorption data, the intrinsic binding constant K_a was obtained following the Benesi–Hildebrand approach using eqn (S1).^{S10}

$$\frac{1}{\Delta A} = \frac{1}{(\varepsilon_b - \varepsilon_f)L_T} + \frac{1}{(\varepsilon_b - \varepsilon_f)L_T K_a} \cdot \frac{1}{M}$$
(S1)

Here, ε_b and ε_f are the extinction coefficients (charge transfer band) of the synthesized complex in fully bound form and of the free complex, respectively, for a particular DNA concentration, M. L_T is the total complex concentration and ΔA is the change in the absorbance at a given wavelength. By plotting the reciprocal of ΔA versus the reciprocal of concentration of *ct*-DNA, the association constant (K_a) can be obtained from the ratio of the intercept to the slope.

Fluorescence Quenching

To assess the magnitude of interaction quantitatively, the quenching efficiency was evaluated using the Stern–Volmer equation

$$\frac{I_0}{I} = 1 + K_{SV}r \qquad (S2)$$

Where I_0 and I are the emission intensities in absence and presence of the complexes respectively, K_{sv} is the Stern–Volmer quenching constant and r is the concentration of the quencher (complex). From the linear plot of $I_0/I vs$. [complex]/[DNA], the quenching constant K_{sv} can be calculated from the ratio of the slope to the intercept.

Fluorescence binding study

Emission intensity measurements were carried out using a Horiba Jobin Yvon spectrofluorometer (Flurolog-3) fluorescence spectrophotometer at room temperature. Luminescence titration quenching experiments were conducted by adding aliquots of of *ct*-DNA (0 to 32 μ M DNA) to fixed concentration of complexes **1** and **2** (25 μ M) in Tris-HCl buffer.

The relative binding of the ternary complexes to *ct* DNA was studied by fluorescence spectral method using ethidium bromide (EB) bound *ct* DNA solution in Tris–HCl/NaCl buffer (pH, 7.2) following a previously reported literature method. Subsequent addition of complexes 1 and 2 with increasing concentration (0–33 μ M) quenched the fluorescence of the EB-DNA adduct. Based on fluorescence quenching, apparent binding constant (K_{app}) was calculated from the equation (S3)

$$[EB] \times K_{EB} = [complex]_{50\%} \times K_{app}, \qquad (S3)$$

Where, [EB] denotes the concentration of ethidium bromide and [complex]_{50%} is the concentration that is required to quench the fluorescence of the EB-DNA adduct by 50% (K_{EB} = 1.0×10^7 M⁻¹, [EB] = 3.5μ M).

HSA Binding Studies

In this study quenching of tryptophan fluorescence has been monitored using human serum albumin (HSA, 2 μ M) in 10 mM phosphate buffer (pH 7.4) in Horiba Jobin Yvon spectrofluorometer (Flurolog-3). The fluorescence emission spectra of the Trp residue of HSA were recorded at room temperature by setting the excitation wavelength at 295 nm and the scan range of 305–445 nm. Fluorometric titration experiments were carried out by using 3 mL solutions of 2 μ M HSA with successive addition of **1** and **2** from the concentration range of 0 to 8.8 μ M. Each spectrum was corrected with respect to the corresponding blank.

Determination of the fluorescence quenching process has been obtained from Stern-Volmer using eqn S4

$$\frac{F_0}{F} = 1 + K_{SV}[Q]$$
(S4)

Here F_0 and F are the unquenched-to-quenched fluorescence intensities in the absence and presence of the *3d-4f* quencher complexes, respectively, [Q] is the concentration of the quencher and K_{SV} is the Stern–Volmer constant. K_{SV} is related to both the fluorescence lifetime of the fluorophore and the rate constant for the quenching process (eqn S5).

$$K_{\rm SV} = k_{\rm q} \, \tau_0 \tag{S5}$$

Here τ_0 is the lifetime of the unquenched fluorophore (5 ns) and k_q is the bimolecular quenching constant.^{S11} The quenching constant, also known as the binding constant K_a , and the number of binding sites (n) between the albumin protein and metal ion complexes were calculated using the Scatchard equation S6.^{S12}

$$log \frac{F_0 - F}{F} = \log K_a + nlog[Q] \quad (S6)$$

The binding constant (K_a) for the formation of adducts between the *3d-4f* complexes or {*3d-4f*} fragments and HSA was determined using the double logarithmic plots (Fig. S16 c and f). The values of K_{SV} and n for complexes **1** and **2** are summarized in Table 4 in manuscript.

Compounds ^[a]	Experimental	Theoretical	Ref.
	$\Delta S_m(J\cdot kg^{\cdot-1}\cdot K^{\cdot-1})$	$\Delta S_m(J^{\cdot}kg^{\cdot\text{-}1\cdot}K^{\cdot\text{-}1})$	
$\label{eq:Gd2} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	6.0	28.7	S13
$[Gd_2Cu_6(Gly)_6(FA)_3(\mu_3 \text{ -}OH)_3(\mu_3 \text{ -}OH_2)_3(H_2O)_8]$	5.8	30.1	S13
$[Gd_4Cu_8(OH)_8(Me_3CCOO)_8(hmp)_8](NO_3)_2(OH)_2$	13.5	32.6	S14
$[\{Cu_{5}Gd_{2}(L^{1})_{2}(\mu_{3}\text{-}OH)_{4}(NO_{3})_{4}(\mu\text{-}OH_{2})_{2}\}(NO_{3})_{2}]_{n}$	15.7	34.37	S15
[Gd ₂ Cu ₆ (ipo) ₆ (H ₂ O) ₁₂]	13.97	34.8	S16
$[{Gd(hfac)_3}_3{Cu(hfac)} {NIT-Ph(OMe)_2}_4]_n$	13.5	20.24	S17
$[Cu_6Gd_2(L^2)_6(L^2H)_6(MeOH)_6]_n$	11.8	22.62	S18
$[Cu_{5}Gd_{4}O_{2}(OMe)_{4}(teaH)_{4}(O_{2}CC(CH_{3})_{3})_{2}(NO_{3})_{4}]$	31	34.93	S19
$[Cu_4Gd_{12}(OH)_{20}(teaH)_2(teaH_2)_4(O_2CPh-2-$	33.0	42.1	S20
$Ph)_8(H_2O)_6Cl_2](Cl)_6$			
$Na[Cu_{24}Gd_6(L-Ala)_{12}(Ac)_6(\mu-$	21.2	39.1	S21
₃ OH) ₃₀ (NO ₃) ₄ (H ₂ O) ₂₀](NO ₃) ₈ (OH) ₇			
[Gd ₄ Cu ₈ (OH) ₈ (hmp) ₈ (O ₂ CCHMe ₂) ₈](ClO ₄) ₄	14.6	23.02	S22
$[Cu_4Gd_2(OH)_2(NO_3)_8\{(py)_2CO_2\}_2(MeCN)_4]$	22.9	34.9	S23
$[\{(Cu(salen))_2Gd(NO_3)_3]$	17	24.4	S24

Table S1. Representative Examples of Cu^{II}/Gd^{III} Complexes having Magnetocaloric properties

^[a]FA: Formic acid; Gly: Glycine; L¹H₃: N,N' -bis-(3-methoxysalicylidene)-1,3-diamino-2-propanol; ipoH3: 2-hydroxyisophthalic acid; NIT–Ph(OMe)₂: 2-(2,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-imidazolyl-1-oxyl-3-oxide; hfac: hexafluoroacetyl acetone; L²H2: acenaphthenequinone dioxime; teaH₃: triethanolamine; Hhmp: 2-pyridinylmethanol.

Table S2 Crystal data and refinement parameter of 1	and 2	2
---	-------	---

parameters	1	2			
Formula	$C_{72}H_{108}Cl_4Cu_6Gd_3N_6O_{34}$	$C_{60}H_{152}Cl_8Cu_5Dy_2N_6O_{59}$			
F.W.(g mol ⁻¹)	2596.48	2828.17			
crystal system	monoclinic	triclinic			
space group	P 21/c	P -1			
Crystal color	Green	Green			
Crystal size/mm ³	0.2×0.1×0.01	0.28×0.13×0.11			
limiting indices	$-26 \le h \le 26$	$-18 \le h \le 17$			
	$-48 \le k \le 48$	$-18 \le k \le 18$			
	$-26 \le 1 \le 32$	$-19 \le 1 \le 16$			
a/ Å	21.5095(5)	14.468(15)			
b/ Å	39.1997(8)	15.061(13)			
c/ Å	26.0609(4)	15.723(14)			
α/ deg	90	87.63(9)			
β/ deg	96.3670(16)	68.21(7)			
γ/ deg	90	69.24(7)			
V/ Å ³	21838.1(7)	2959(5)			
$D_c/\mathrm{g}~\mathrm{cm}^{-3}$	1.536	1.587			

$\mu (\text{mm}^{-1})$	3.102	2.398
F(000)	9984	1239
θ for data collection (deg)	1.562 - 26.372	2.858 - 26.420
T/K	150	299(2)
Total reflns	199345	34495
R(int)	0.1116	0.0649
Unique reflns	44429	11918
Observed reflns	24988	8261
Parameters	2267	526
$R_{I}; wR_{2} (I > 2\sigma(I))$	0.0793, 0.2254	0.0467, 0.1178
GOF (<i>F</i> ²)	1.052	1.086
Largest diff peak and hole (e Å ⁻³)	1.899, -1.265	0.863, -0.935
CCDC No.	2184365	2184368

Fig. S1 Powder XRD pattern of Cu_6Gd_3 (1) and Cu_5Dy_2 (2) complexes

Chart S1. Ligand with available pockets and observed coordination mode of $\rm H_2L^{S25}$

Fig. S2 FTIR spectra of H₂L, complex 1 and complex 2

Table S3 Results of continuous shape measures calculations^{S26–S27} using program SHAPE 2.1 for Cu^{II} atoms of **1** and **2**.^{*a*}

[ML5]	PP-5	vOC-5	TBPY-5	SPY-5	JTBPY-5
Cul of 1	30.075	3.577	5.725	1.933	9.957
Cu1 of 2	28.796	2.788	6.761	2.331	10.345
Cu2 of 2	30.698	3.529	4.688	1.657	8.855

^aPP-5 = Pentagon, vOC-5 = Vacant octahedron, TBPY-5 = Trigonal bipyramid, SPY-5 = Spherical square pyramid, JTBPY-5 = Johnson trigonal bipyramid J12

Table S4 Results of continuous shape measures calculations^{S26–S27} using program SHAPE 2.1 for Cu3 atoms of 2^{a}

	JPPY-6	TPR-6	OC-6	PPY-6	HP-6
Cu3 of 2	31.098	17.203	2.503	28.836	30.935

^{*a}JPPY-6 = Johnson pentagonal pyramid J2, TPR-6 = Trigonal prism, OC-6 = Octahedron, PPY-6 = Pentagonal pyramid, HP-6 = Hexagon*</sup>

Table S5 Results of continuous shape measures calculations^{S26–S27} using program SHAPE 2.1 for Gd1 atoms of $1.^{a}$

[ML10]	DP-10	EPY-10	OBPY- 10	PPR-10	PAPR- 10	JBCCU- 10	JBCSAPR- 10	JMBIC- 10	JATDI- 10	JSPC- 10	SDD-10	TD-10	HD-10
Gd1 of 1	36.438	24.642	17.071	10.108	14.676	13.468	5.245	10.395	19.638	1.837	6.833	6.156	11.440

Gd3 of 1	36.494	24.806	16.994	10.275	14.607	13.297	4.804	9.940	19.580	1.789	6.630	5.896	11.303

^aDP-10 = Decagon, EPY-10 = Enneagonal pyramid, OBPY-10 = Octagonal bipyramid, PPR-10 = Pentagonal prism, PAPR-10 = Pentagonal antiprism, JBCCU-10 = Bicapped cube J15, JBCSAPR-10 = Bicapped square antiprism J17, JMBIC-10 = Metabidiminished icosahedron J62, JATDI-10 = Augmented tridiminished icosahedron J64, JSPC-10 = Sphenocorona J87, SDD-10 = Staggered Dodecahedron, TD-10 = Tetradecahedron, HD-10 = Hexadecahedron

Table S6 Results of continuous shape measures calculations^{S26–S27} using program SHAPE 2.1 for Gd2 atoms of $1.^{a}$

[ML9]	EP-9	OPY-9	HBPY-9	JTC-9	JCCU-9	CCU-9	JCSAPR- 9	CSAPR- 9	JTCTPR- 9	TCTPR- 9	JTDIC- 9	HH-9	MFF-9
Gd2 of 1	38.062	21.716	22.295	16.410	10.665	10.873	1.964	2.313	0.935	1.431	11.225	14.793	3.161

^aEP-9 = Enneagon, OPY-9 = Octagonal pyramid, HBPY-9 = Heptagonal bipyramid, JTC-9 = Johnson triangular cupola J3, JCCU-9 = Capped cube J8, CCU-9 = Spherical-relaxed capped cube, JCSAPR-9 = Capped square antiprism J10, CSAPR-9 = Spherical capped square antiprism, JTCTPR-9 = Tricapped trigonal prism J51, TCTPR-9 = Spherical tricapped trigonal prism, JTDIC-9 = Tridiminished icosahedron J63, HH-9 = Hula-hoop, MFF-9 = Muffin

Table S7 Results of continuous shape measures calculations^{S26–S27} using program SHAPE 2.1 for Dy1 atoms of $1.^{a}$

[ML8]	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8
Dy1 of 2	33.578	20.476	14.352	11.331	4.388	2.569	11.725	24.915	2.575	2.406	4.765	11.866

^aOP-8 = Octagon, HPY-8 = Heptagonal pyramid, HBPY-8 = Hexagonal bipyramid, CU-8 = Cube, SAPR-8 = square antiprism, TDD-8 = Triangular dodecahedron, JGBF-8 = Johnson gyrobifastigium J26, JETBPY-8 = Johnson elongated triangular bipyramid J14, JBTPR-8 = Biaugmented trigonal prism J50, BTPR-8 = Biaugmented trigonal prism, JSD-8 = Snub diphenoid J84, TT-8 = Triakis tetrahedron

Fig. S3 Two Cu₃ unit containing parallel planes present in complex 1

Fig. S4 (a) Distorted sphenocorona geometry around Gd1; (b) distorted tricapped trigonal prismatic geometry around Gd2.

Fig. S5 1D-chain like H-bonding present in complex 1 through perchlorate anion.

Fig. S6 Asymmetric unit of 2 with partial atom numbering. Counter anion and solvent molecules are omitted for clarity.

Fig. S7 Coordination environments around metal ion centers (a) Cu1: distorted square pyramidal; (b) Cu2: distorted square pyramidal (c) Cu3: distorted octahedral and (d) Dy1: distorted biaugmented trigonal prism geometry.

Fig. S8 Weak intra-molecular hydrogen bonding present in complex 2. Solvent molecules are omitted for clarity.

Fig. S9 TGA curves of complexes **1** and **2**. The % of weight loss in the temperature range 70–110 °C is: **1**; 2.68 and **2**; 14.17.

Atom 1	Atom 2	Distance [Å]	Atom 1	Atom 2	Distance [Å]
Gd1	01	2.764(7)	Gd3	O25	2.447(7)
Gd1	O2	2.431(7)	Gd3	O26	2.450(8)
Gd1	O4	2.705(7)	Cu1	O2	1.959(7)
Gd1	05	2.424(7)	Cu1	03	1.926(7)
Gd1	07	2.689(7)	Cu1	019	1.918(7)
Gd1	08	2.400(7)	Cu1	N1	1.941(9)
Gd1	O19	2.422(7)	Cu2	05	1.961(7)
Gd1	O20	2.426(7)	Cu2	06	1.923(7)
Gd1	O21	2.435(6)	Cu2	O21	1.925(7)
Gd1	O22	2.457(7)	Cu2	N2	1.955(8)
Gd2	Cl1	3.023(3)	Cu3	08	1.926(7)
Gd2	C12	2.997(2)	Cu3	09	1.950(7)
Gd2	C13	3.000(2)	Cu3	O20	1.923(7)
Gd2	O19	2.384(7)	Cu3	N3	1.933(9)
Gd2	O20	2.393(7)	Cu4	011	1.942(7)
Gd2	O21	2.379(6)	Cu4	012	1.936(7)
Gd2	O23	2.385(7)	Cu4	O23	1.936(6)
Gd2	O24	2.364(7)	Cu4	N4	1.923(9)
Gd2	O25	2.405(6)	Cu5	014	1.940(7)
Gd3	O10	2.778(8)	Cu5	015	1.922(7)
Gd3	011	2.406(7)	Cu5	O24	1.923(6)
Gd3	O13	2.705(7)	Cu5	N5	1.913(9)
Gd3	O14	2.429(7)	Cu6	017	1.938(7)
Gd3	O16	2.713(7)	Cu6	O18	1.935(7)
Gd3	O17	2.415(7)	Cu6	025	1.912(6)
Gd3	O23	2.417(7)	Cu6	N6	1.926(8)
Gd3	O24	2.448(6)			

 Table S8 Selected bond distances of 1

Atom 1	Atom 2	Atom 3	Bond		Atom	Atom 2	Atom	Bond
			Angles(°)		1		3	Angles(°)
02	Gd1	01	59.6(2)		019	Gd1	O20	70.2(2)
02	Gd1	O4	67.1(2)		019	Gd1	O21	69.0(2)
02	Gd1	07	159.3(2)		019	Gd1	O22	139.0(2)
02	Gd1	O21	128.1(2)		O20	Gd1	01	70.8(2)
02	Gd1	O22	91.2(2)		O20	Gd1	02	72.7(2)
04	Gd1	01	104.9(2)		O20	Gd1	O4	134.3(2)
05	Gd1	01	159.9(2)		O20	Gd1	07	120.8(2)
05	Gd1	O2	118.0(2)		O20	Gd1	O21	70.5(2)
05	Gd1	O4	59.7(2)		O20	Gd1	O22	136.3(2)
05	Gd1	07	67.6(2)		O21	Gd1	01	133.8(2)
05	Gd1	O20	128.9(2)		O21	Gd1	O4	120.1(2)
05	Gd1	O21	64.9(2)		O21	Gd1	O7	72.7(2)
05	Gd1	O22	94.7(2)		O21	Gd1	O22	140.4(2)
07	Gd1	01	107.7(2)		O22	Gd1	01	66.1(2)
07	Gd1	O4	104.1(2)		022	Gd1	04	66.3(2)
08	Gd1	01	67.9(2)		O22	Gd1	O7	68.1(3)
08	Gd1	O2	120.3(2)		Cl2	Gd2	C11	118.24(7)
08	Gd1	O4	158.0(2)		Cl2	Gd2	C13	120.22(7)
08	Gd1	05	121.0(2)		C13	Gd2	C11	121.54(7)
08	Gd1	07	61.3(2)		019	Gd2	Cl1	72.48(18)
08	Gd1	O19	128.3(2)		O19	Gd2	Cl2	67.57(17)
08	Gd1	O20	64.6(2)		019	Gd2	C12	131.55(17)
08	Gd1	O21	73.3(2)		019	Gd2	O20	71.4(2)
08	Gd1	O22	92.2(2)		O19	Gd2	O23	135.4(2)
019	Gd1	01	118.8(2)		O19	Gd2	025	96.8(2)
019	Gd1	O2	64.8(2)		O20	Gd2	C11	67.79(17)
O19	Gd1	O4	73.6(2)		O20	Gd2	C12	132.93(18)
O19	Gd1	05	71.5(2)		O20	Gd2	C13	73.19(18)
O19	Gd1	07	132.6(2)		O20	Gd2	O25	134.9(2)

Table S9 Selected bond angles of 1

O21	Gd2	C11	131.95(16)	011	Gd3	025	129.3(2)
O21	Gd2	Cl2	73.34(17)	011	Gd3	O26	91.0(3)
O21	Gd2	C13	67.71(17)	013	Gd3	O10	107.5(2)
O21	Gd2	O19	70.6(2)	013	Gd3	O16	102.6(2)
O21	Gd2	O20	72.0(2)	014	Gd3	O10	67.9(2)
O21	Gd2	O23	95.6(2)	014	Gd3	013	60.6(2)
O21	Gd2	O25	146.3(2)	014	Gd3	O16	158.2(2)
O23	Gd2	Cl1	132.46(17)	014	Gd3	024	65.2(2)
O23	Gd2	Cl2	67.85(17)	014	Gd3	025	71.4(2)
O23	Gd2	C13	72.76(17)	014	Gd3	O26	90.9(3)
O23	Gd2	O20	145.9(2)	016	Gd3	O10	108.5(2)
O23	Gd2	O25	71.3(2)	017	Gd3	O10	163.7(2)
O24	Gd2	Cl1	72.77(16)	017	Gd3	013	66.6(2)
O24	Gd2	C12	133.19(16)	017	Gd3	014	117.6(2)
O24	Gd2	C13	68.25(16)	017	Gd3	O16	60.3(2)
O24	Gd2	O19	145.2(2)	017	Gd3	023	71.2(2)
O24	Gd2	O20	93.9(2)	017	Gd3	024	126.6(2)
O24	Gd2	O21	135.9(2)	017	Gd3	025	63.6(2)
O24	Gd2	O25	71.0(2)	023	Gd3	O10	118.5(2)
025	Gd2	Cl1	67.14(16)	023	Gd3	013	133.1(2)
025	Gd2	C12	73.00(16)	023	Gd3	014	129.2(2)
025	Gd2	C13	131.68(17)	023	Gd3	O16	72.1(2)
011	Gd3	O10	59.7(2)	023	Gd3	O24	70.9(2)
011	Gd3	O13	157.1(2)	023	Gd3	025	70.0(2)
011	Gd3	O14	122.0(2)	023	Gd3	O26	139.6(3)
011	Gd3	O16	67.8(2)	024	Gd3	O10	69.6(2)
011	Gd3	O17	119.8(2)	024	Gd3	013	121.1(2)
011	Gd3	O23	65.5(2)	024	Gd3	O16	135.2(2)
011	Gd3	O24	74.4(2)	024	Gd3	O26	136.3(3)
O25	Gd3	O10	130.8(2)	N4	Cu4	012	86.1(4)
O25	Gd3	O13	73.6(2)	N4	Cu4	023	175.5(4)
025	Gd3	O16	119.4(2)	015	Cu5	014	169.6(3)

O25	Gd3	O24	69.0(2)	015	Cu5	O24	97.0(3)
025	Gd3	O26	139.6(3)	O24	Cu5	O14	85.7(3)
O26	Gd3	O10	67.6(3)	N5	Cu5	O14	91.6(3)
O26	Gd3	O13	66.1(3)	N5	Cu5	015	85.3(4)
O26	Gd3	O16	68.6(3)	N5	Cu5	O24	176.9(4)
03	Cu1	02	169.5(3)	018	Cu6	017	169.4(3)
03	Cu1	N1	85.6(3)	025	Cu6	017	83.5(3)
O19	Cu1	02	84.2(3)	025	Cu6	O18	97.4(3)
O19	Cu1	03	97.0(3)	025	Cu6	N6	175.5(3)
O19	Cu1	N1	175.3(3)	N6	Cu6	017	92.8(3)
N1	Cu1	02	92.5(3)	N6	Cu6	O18	85.8(3)
O6	Cu2	05	171.2(3)	Cul	O2	Gd1	104.0(3)
O6	Cu2	O21	97.8(3)	Cu3	08	Gd1	105.7(3)
06	Cu2	N2	85.1(3)	Cu4	O11	Gd3	104.3(3)
O21	Cu2	05	84.3(3)	Cu5	O14	Gd3	103.9(3)
O21	Cu2	N2	174.8(3)	Cu6	O17	Gd3	106.0(3)
N2	Cu2	05	92.3(3)	Gd2	O19	Gd1	96.4(2)
08	Cu3	09	169.4(3)	Cu1	O19	Gd1	105.6(3)
08	Cu3	N3	93.4(4)	Cu1	O19	Gd2	122.2(3)
O20	Cu3	08	84.1(3)	Gd2	O20	Gd1	96.1(2)
O20	Cu3	O9	98.1(3)	Cu3	O20	Gd1	104.8(3)
O20	Cu3	N3	175.7(4)	Cu3	O20	Gd2	120.2(3)
N3	Cu3	09	83.6(4)	Gd2	O21	Gd1	96.2(2)
012	Cu4	011	169.2(3)	Cu2	O21	Gd1	105.2(3)
O23	Cu4	011	84.5(3)	Cu2	O21	Gd2	121.9(3)
O23	Cu4	O12	96.3(3)	Gd2	O23	Gd3	96.5(2)
N4	Cu4	O11	92.3(4)	Cu4	O23	Gd2	122.7(3)
Cu4	023	Gd3	104.0(3)	Cu5	O24	Gd3	103.8(3)
Gd2	O24	Gd3	96.2(2)	Gd2	O25	Gd3	95.2(2)
Cu5	O24	Gd2	123.1(3)				

Atom 1	Atom 2	Distance [Å]	Atom 1	Atom 2	Distance [Å]
Dy1	07	2.381(3)	Cu3	C11	2.684(3)
Dy1	08	2.407(5)	Cu3	Cl1	2.684(3)
Dy1	05	2.316(4)	Cu2	08	1.951(4)
Dy1	03	2.219(4)	Cu2	05	1.919(4)
Dy1	O4	2.578(4)	Cu2	O6	1.987(4)
Dy1	09	2.427(4)	Cu2	N2	1.931(5)
Dy1	O10	2.366(4)	Cu2	Cl1	2.695(3)
Dy1	011	2.334(5)	Cu1	07	1.973(4)
Cu3	07	1.969(4)	Cu1	O2	1.919(3)
Cu3	07	1.969(4)	Cu1	O3	1.935(4)
Cu3	08	2.005(3)	Cu1	N1	1.920(4)
Cu3	08	2.005(3)			

 Table S10 Selected bond distances of 2

Table S11 Selected bond angles of 2

Atom 1	Atom 2	Atom 3	Bond	Atom	Atom 2	Atom	Bond
			Angles(°)	1		3	Angles(°)
07	Dy1	08*	67.87(14)	O2	Cu1	N1	95.83(17)
07	Dy1	O4*	144.58(12)	03	Cu1	07	84.52(15)
07	Dy1	09	71.97(13)	N1	Cu1	O7	170.83(14)
08	Dy1*	04	127.82(14)	N1	Cu1	O3	86.37(17)
08*	Dy1	O9	76.19(15)	08	Cu2	O6	94.85(16).
05*	Dy1	07	113.60(13)	08	Cu2	Cl1	84.53(11)
05	Dy1*	08	66.65(13)	05	Cu2	08	84.23(15).
05	Dy1*	04	62.32(14)	05	Cu2	O6	161.26(15)
05*	Dy1	09	134.89(16)	05	Cu2	N2	94.79(18)
05*	Dy1	O10	85.69(15)	05	Cu2	C11	99.21(14)
05*	Dy1	O11	140.20(13)	06	Cu2	C11	99.33(14)
03	Dy1	07	69.57(12)	N2	Cu2	08	174.17(16)
03	Dy1	08*	113.15(14)	N2	Cu2	O6	84.22(18)
03	Dy1	05*	87.21(15)	N2	Cu2	C11	101.30(15)

03	Dy1	O4*	75.03(13)	07	Cu3	07*	180
03	Dy1	09	132.04(15)	07	Cu3	08*	84.53(16)
03	Dy1	O10	145.22(14)	07	Cu3	08	95.47(16)
03	Dy1	011	82.16(17)	07	Cu3	Cl1*	87.35(13)
09	Dy1	O4*	138.09(13)	O7	Cu3	Cl1	92.65(13)
O10	Dy1	07	143.47(13)	08	Cu3	08*	180
O10	Dy1	O8*	95.01(16)	08	Cu3	Cl1*	96.16(11)
O10	Dy1	O4*	71.52(15)	O8	Cu3	Cl1	83.84(11)
O10	Dy1	09	72.67(15)	C11	Cu3	Cl1*	180
011	Dy1	07	98.34(16)	Cu3	07	Cu1	115.72(17)
011	Dy1	O8*	151.83(13)	Cu1	07	Dy1	99.30(13)
011	Dy1	O4*	77.87(17)	Cu3	08	Dy1*	102.68(16)
011	Dy1	09	76.16(18)	Cu2	08	Dy1*	100.81(14)
011	Dy1	O10	81.80(17)	Cu2	08	Cu3	110.79(16)
02	Cu1	07	93.12(14)	Cu2	05	Dy1*	105.10(15)
02	Cu1	03	173.63(15)	Cu1	03	Dy1	106.28(15)

 Table S12 Intra-molecular hydrogen bonding interactions present in complex 2

Interactions	D—H (Å)	D…A (Å)	H…A (Å)	D-H···A (°)
O6–H6…O2	0.865	2.667	1.973	136.46
O6–H6…O7	0.865	2.907	2.729	93.10
O9–H9A…Cl1	0.93	3.131	2.868	97.66
O9–H9B…C15	0.93	3.085	2.717	104.54
O10-H10B…Cl5	0.93	3.112	2.873	96.09
O11-H11A…O12	0.93	2.843	2.005	148.98
O11-H11B…O25	0.93	2.685	1.976	133.57

Fig. S10 Simulated and experimental isotope pattern of the prominent peak for $[C_{72}H_{92}Cl_2Cu_6Gd_3N_6O_{24}]^{2+}$

Fig. S11 Simulated and experimental isotope pattern of the prominent peak for $[C_{48}H_{74}Cl_4Cu_5Dy_2N_4O_{27}]^{2+}$.

Fig. S12 Magnetisation vs. field data for 1 (left) and 2 (right) at 2, 4 and 6 K.

Fig. S13 Reduced magnetisation vs. field data for 1 (left) and 2 (right) at 2, 4 and 6 K.

Fig. S14 Percentage of cell growth as a function of **1** (A), **2** (B), Ligand H_2L (C), Cu(ClO₄)₂· 6H₂O (D), DyCl₃·6H₂O (E) and GdCl₃·6H₂O (F) concentration for A549 cells (black bars), MDA-MB231 cells (light grey bars) and HEK293T (dark grey bars). The experimental number of cells counted was normalized so that the average of all control experiments was considered as 100 %. At least three independent experiments were performed on different days.

Fig. S15 Cytotoxic effects of **1** and **2** on A549 (A and B), MD-MB-231 (C and D), HEK293 (E and F) cell lines respectively after 24 h exposure, as assessed by the MTT-dye reduction assay. Each data point represents the mean value.

Fig. S16 Cytotoxic effects of ligand H₂L on A549 (A), MD-MB-231 (B) and HEK293 (C) cell lines respectively after 24 h exposure, as assessed by the MTT-dye reduction assay. Each data point represents the mean value.

Fig. S17 Cytotoxic effects of starting metal ion precursors $Cu(ClO_4)_2 \cdot 6H_2O$, $DyCl_3 \cdot 6H_2O$ and $GdCl_3 \cdot 6H_2O$ on A549 (A, D, G), MD-MB-231 (B, E, H), HEK293 (C, F, I) cell lines respectively after 24 h exposure, as assessed by the MTT-dye reduction assay. Each data point represents the mean value.

Fig. S18 Absorption spectra of (a) 1 and (b) 2 (25 μ M) in the absence and presence of incremental *ct*-DNA (0–50 μ M) in 5mM Tris-HCl buffer (50 mMNaCl, *pH* 7.4; (c) Benesi–Hildebrand double reciprocal plot for these complexes.

Fig. S19 Emission spectra (λ_{ex} =546 nm) of EtBr-DNA in Tris-HCl buffer in absence and presence of (a) 1 and (b) 2. The arrow shows the decrease on an intensity of EtBr-DNA upon increasing the concentration of the complexes from 0 to 33 μM . (c) Stern-Volmer plot for complexes 1 and 2.

Fig. S20 (a and d) Fluorescence emission spectra of HSA (2 μ M) in the absence (top most line) and presence of different concentrations (0 to 8 μ M) of 1 and 2, respectively, in 10 mM phosphate buffer of pH 7.4 at 298 K; (b and e) Stern–Volmer and (c and f) double logarithmic plots of 1 and 2, respectively.

Table S13. Percent decrease in fluores	scence intensity of H	SA $(2.0 \times 10^{-6} \text{ M})$ after	r addition of
14 μ M of quencher complexes			

Complexes	% decrease
1	60.2
2	48.2

References

- S1. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, Vogel's Text book of Practical Organic Chemistry, 5th ed.; ELBS, Longman: London, U.K., 1989.
- S2. *SAINT, SMART and XPREP*, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1995.
- G. M. Sheldrick, SHELXS-2014, Program for Crystal Structure Solution, University of Göttingen, 2014.
- S4. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- S5. L. J. J. Farrugia, WinGX-Version 2014.1, Appl. Crystallogr., 2012, 45, 849–854.
- S6. G. M. Sheldrick, SADABS Software for Empirical AbsorptionCorrection, University of Göttingen, Institute fur AnorganischeChemiederUniversitat, Göttingen, Germany, 1999-2003.
- S7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- S8. DIAMOND, Visual Crystal Structure Information System, version 3.1, Crystal Impact: Bonn, Germany, 2004.
- M. E. Reichmann, S. A. Rice, C. A. Thomas and P. Doty, *J. Am. Chem. Soc.*, 1954, 76, 3047–3053.
- S10. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703–2707.
- S11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Publishers, New York, third edn, 2006
- S12. G. Scatchard, Ann. N. Y. Acad. Sci., 1949, 51, 660–672.
- S13. Z.-Y. Li, Y.-X. Wang, J. Zhu, S.-Q. Liu, G. Xin, J.-J. Zhang, H.-Q. Huang and C.-Y. Duan, *Cryst. Growth Des.* 2013, **13**, 3429–3437.
- S14. J.-L. Liu, W.-Q. Lin, Y.-C. Chen, S. Gómez-Coca, D. Aravena, E. Ruiz, J.-D. Leng and M.-L. Tong, *Chem.-Eur. J.* 2013, **19**, 17567–17577.
- S15. A. Dey, S. Das, M. A. Palacios, E. Colacio and V. Chandrasekhar, *Eur. J. Inorg. Chem.*, 2018, 1645–1654.
- S16. K. Wang, Z.-L. Chen, H.-H. Zou, Z. Zhang, W.-Y. Sun and F.-P. Liang, *Cryst. Growth Des.*, 2015, 15, 2883–2890.
- S17. X. Wang, C. Li, J. Sun and L. Li, *Dalton Trans.*, 2015, 44, 18411–18417.
- S18. P. Richardson, K.J. Gagnon, S.J. Teat, G. Lorusso, M. Evangelisti, J. Tang and T.C. Stamatatos, *Cryst. Growth Des.*, 2017, 17 2486–2497.

- S19. S. K. Langley, N. F. Chilton, B. Moubaraki, T. Hooper, E.K. Brechin, M. Evangelisti and K.S. Murray, *Chem. Sci.*, 2011, 2, 1166–1169.
- S20. S. K. Langley, B. Moubaraki, C. Tomasi, M. Evangelisti, E. K. Brechin and K. S. Murray, *Inorg. Chem.*, 2014, 53, 13154–13161.
- S21. G. Xiong, H. Xu, J.-Z. Cui, Q.-L. Wang and B. Zhao, *Dalton Trans.*, 2014, 43 5639– 5642.
- S22. T. N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti and E. K. Brechin, Angew. Chem. Int. Ed., 2012, 51 4633–4636.
- S23. D. I. Alexandropoulos, L. Cunha-Silva, J. Tang and T. C. Stamatatos, *Dalton Trans.*, 2018, 47, 11934–11941.
- S24. M. K. Singh, T. Rajeshkumar, R. Kumar, S. K. Singh, G. Rajaraman, *Inorg. Chem.*, 2018, 57, 1846–1858.
- S25. R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker, R. E. P. Winpenny, J. Chem. Soc. Dalton Trans., 2000, 2349–2356.
- S26. M. Pinsky and D. Avnir, *Inorg. Chem.*, 1998, **37**, 5575–5582.
- S27. D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem. Eur. J., 2005, 11, 1479–1494.