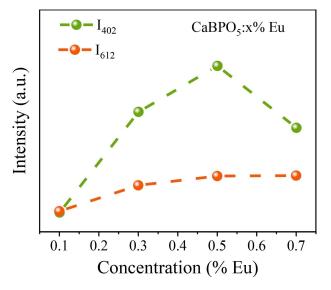
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information


Tetrahedrally coordinated rigid crystal structure enabled partial selfreduction of mixed-valence Europium for optical thermometric application

Zhichao Meng*, Yan Gao**, Ji'an Song, Zelong Jiang, Wei Lv, Qingguang Zeng, Dawei Wen*, Tao Hu*

School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China

*Corresponding author. E-mail: gaoyan_chn@sina.com (Y. Gao), ontaii@163.com (D.W. Wen), hutaowyu@sina.com (T. Hu).

Fig. S1

Fig. S1 The luminescence intensity of Eu^{2+} emission at 402 nm and Eu^{3+} emission at 612 nm for the $CaBPO_5:x\%Eu$ (x = 0.1, 0.3, 0.5, 0.7) samples.

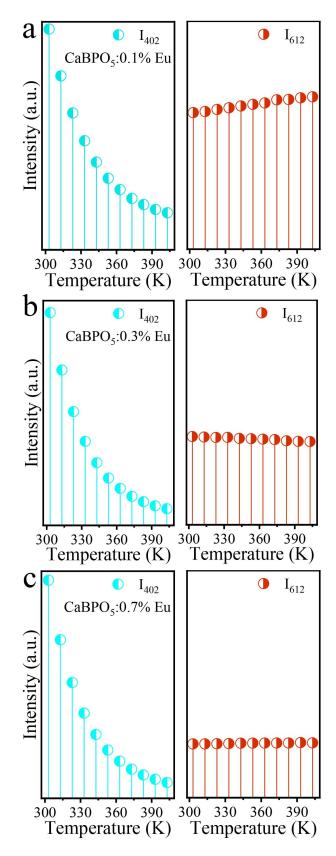


Fig. S2 (a-c) The emission intensity of Eu^{2+} and Eu^{3+} at different temperatures for the CaBPO₅:x%Eu (x = 0.1, 0.3, 0.7) samples.

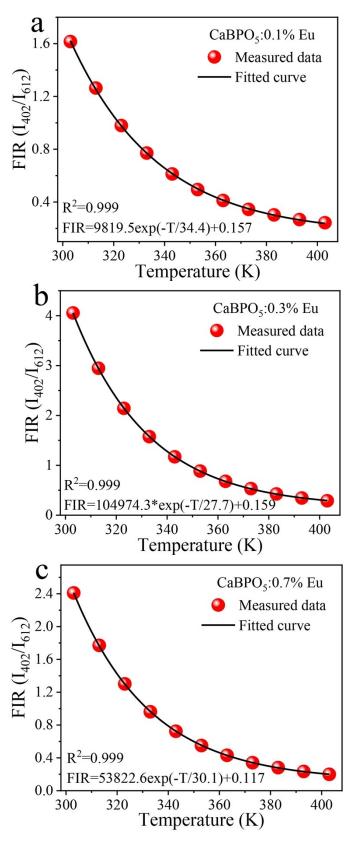


Fig. S3 (a-c) Experimentally measured and Eq. 4 fitted plots of FIR (I_{402}/I_{612}) versus temperature for the CaBPO₅:x%Eu (x = 0.1, 0.3, 0.7) samples.

To convert the HRBE-scheme into a VRBE-scheme, the ground state of Eu²⁺ $E_{4f}(7,2+,A)$ in VRBE was calculated by the following equation:¹

$$E_{4f}(7,2+,A) = -24.92 + \frac{18.05 - U(6,A)}{0.777 - 0.0353U(6,A)}$$
 Equation S1

where U(6,A) is the Coulomb repulsion energy between a 4f-electron in Eu²⁺ and in Eu³⁺. The value of U(6,A) was estimated by the centroid shift $^{\mathcal{E}_c}$ of Ce³⁺ according the following equation:²

$$U(6,A) = 5.44 + 2.834 \times e^{-\varepsilon_c/2.2}$$
 Equation S2

The centroid shift was calculated according to the Equation S3:3

$$\varepsilon_c = 1.79 \times 10^{13} \sum_{i=1}^{N} \frac{\alpha_{SP}^o}{(R_o - 0.6\Delta R)^6}$$
 Equation S3

Where RO is the distance between Ce³+ and the coordinating ions O²- based on DFT structural relaxation, $^\Delta R$ is the radii difference between Ce³+ and the replaced ion (Ca²+ in this case), $^\alpha{}_{sp}^O$ is the polarizability of O²-. $^\alpha{}_{sp}^O$ can be calculated using the average electronegativity $^\chi{}_{av}$ of cations in the host:

$$\alpha_{SP}^o = 0.33 + \frac{4.8}{X_{av}^2}$$
 Equation S4

References

- 1 P. Dorenbos, Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds, *J. Lumin.*, 2013, **136**, 122-129.
- 2 P. Dorenbos, Ce³⁺ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds, *J. Lumin.*, 2013, **135**, 93-104.
- 3 A. A. Setlur, D. G. Porob, U. Happek and M. G. Brik, Inhomogenous Broadening, Charge Compensation, and Luminescence Quenching in Ce³⁺-Doped Sr₃AlO₄F Phosphors, *ECS J. Solid State Sci. Technol.*, 2016, **5**, R3089.