Electronic Supporting Information (ESI)

A semiconductive copper iodobismuthate hybrid: Structure,

optical property and photocurrent response

Jun Li^{*a,b}, Ming-Hui Liu^a, Hong-Yao Shen^a, Meng-Zhen Liu^a, Jin-Ting Wu^a and Bo Zhang^{*a,b}

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

*E-mail: junli@lcu.edu.cn; bzhang@lcu.edu.cn

1. Selected bond lengths and bond angles

Table S1 Selected bond lengths (Å) and bond angles (°) for compound 1

Table 51 Selected bold lengths (A) and bold angles () for compound 1.				
Bi(1)–I(6)	2.9288(16)	I(1)-Cu(1)#1	2.700(4)	
Bi(1)–I(2)	2.9460(16)	I(4)-Cu(1)#1	2.666(4)	
Bi(1)–I(3)	2.9698(15)	I(5)-Cu(1)#1	2.682(4)	
Bi(1)–I(4)	3.1721(16)	Cu(1)-I(4)#1	2.666(4)	
Bi(1)–I(5)	3.2798(16)	Cu(1)-I(5)#1	2.682(4)	
Bi(1)–I(1)	3.3066(16)	Cu(1)-I(1)#1	2.700(4)	
I(1)-Cu(1)	2.560(3)	Cu(1)-Cu(1)#1	2.597(8)	
I(6)-Bi(1)-I(2)	91.83(5)	I(4)-Bi(1)-I(1)	82.69(4)	
I(6)-Bi(1)-I(3)	90.41(4)	I(5)-Bi(1)-I(1)	77.04(4)	
I(2)-Bi(1)-I(3)	92.70(5)	Cu(1)-I(1)-Cu(1)#1	59.10(15)	
I(6)-Bi(1)-I(4)	91.68(5)	Cu(1)–I(1)–Bi(1)	124.07(10)	
I(2)-Bi(1)-I(4)	94.55(5)	Cu(1)#1-I(1)-Bi(1)	65.15(8)	
I(3)-Bi(1)-I(4)	172.39(5)	Cu(1)#1-I(4)-Bi(1)	67.59(8)	
I(6)-Bi(1)-I(5)	99.88(4)	Cu(1)#1-I(5)-Bi(1)	65.73(8)	
I(2)-Bi(1)-I(5)	168.05(5)	I(1)-Cu(1)-I(4)#1	107.08(13)	
I(3)-Bi(1)-I(5)	89.60(4)	I(1)-Cu(1)-I(5)#1	116.58(14)	
I(4)-Bi(1)-I(5)	82.83(4)	I(4)#1-Cu(1)-I(5)#1	105.91(14)	
I(6)-Bi(1)-I(1)	173.85(4)	I(1)-Cu(1)-I(1)#1	120.85(15)	
I(2)-Bi(1)-I(1)	91.08(4)	I(4)#1-Cu(1)-I(1)#1	105.84(13)	
I(3)-Bi(1)-I(1)	94.87(4)	I(5)#1-Cu(1)-I(1)#1	99.30(12)	

Symmetry codes: #1 - x + 1, *y*, -z + 1/2.

Table S2 Hydrogen bonds (Å) and angles (°) for compound 1.

D–H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
C(1)-H(1C)…I(2)#4	0.96	3.31	3.98(2)	128.8
C(1)-H(1C)…I(6)#4	0.96	3.25	3.71(2)	111.5
C(3)-H(3A)····I(6)#3	0.97	3.06	3.984(18)	159.5
C(3)-H(3B)…I(5)#2	0.97	3.16	3.93(2)	137.6

C(5)-H(5B)…I(2)#5	0.97	3.02	3.91(2)	152.6
C(6)-H(6A)…I(1)#5	0.97	3.32	3.948(19)	124.1
C(6)-H(6A)…I(2)#5	0.97	3.09	3.95(2)	147.5

Symmetry transformations used to generate equivalent atoms: #2 x, y, z+1; #3 x, y-1, z+1; #4 -x+1/2, -y+3/2, -z+1; #5 x, -y+2, z+1/2.

2. Crystal structure

Fig. S1 The primary building units of BiI₆ (left) and CuI₄ (right) in compound 1.

Fig. S2 Perspective view of compound 1 viewed along the *c*-axis.

3. Hirshfeld surface

Fig. S3 Fingerprint plots: resolved into I…I (a) and Cu…Cu (b) contacts for compound 1.

4. Physical measurements

4a). EDX

Fig. S4 EDX spectrum of compound 1.

5. DFT calculations

Fig. S7 The total density of states and partial density of states of compound 1. The valence-band maximum (VBM) is set at 0 eV.

Compound	Space	Band gap (eV)	Referenc
	group		e
$[Et_4N]_2Ag_2Bi_2I_{10}$	$P^{\overline{1}}$	2.05	[1]
$[Et_4N]_2Ag_2Bi_4I_{16}$	$P2_{1}/c$	1.93	[1]
$[SMe_3]_2Ag_2Bi_2I_{10}$	$P2_{1}/n$	1.82	[2]
$[Bu_4N]_2[(PPh_3)_2Bi_2Cu_2I_{10}]$	$P2_{1}/c$	NA	[3]
[Fe(bipy) ₃]AgBiI ₆	$P2_{1}/c$	1.92	[4]
[Fe(bipy) ₃]AgBiBr ₆	C2/c	1.82	[4]
$[(C_8H_{17}N_2)]_2Cu_2Bi_2I_{10}$	$P2_1/n$	1.82	[5]
$[(C_6H_{13}N_2)_2BiCu_2I_7] \cdot C_2H_5OH$	$P2_{1}/c$	1.91	[5]
$[Et_4N]_2Cu_2Bi_2I_{10}$	$P^{\overline{1}}$	1.89	[6]
$[Cu(CH_3CN)_4]_2Cu_2Bi_2I_{10}$	$P\overline{1}$	1.80	[6]
$[PPh_4]_4Cu_2Bi_2I_{12}$	Pbca	1.80	[7]
$[PPh_4]_4Ag_2Bi_2I_{12}$	Pbca	2.10	[7]
$[Et_4N]_4Hg_2Bi_4I_{20}$	<i>P</i> 1	2.08	[8]
[4FPEA] ₄ AgBiI ₈	$P^{\overline{1}}$	2.16	[9]
[4FPEA] ₄ AgBiBr ₈	$P^{\overline{1}}$	2.80	[9]
[4FPEA] ₄ AgBiCl ₈	$P^{\overline{1}}$	3.30	[9]
[C ₃ H ₉ NCl] ₄ AgBiBr ₈	Pc	2.69	[10]
[C ₃ H ₉ NI] ₄ AgBiI ₈	$P^{\overline{1}}$	1.87	[11]
[CH ₃ NH ₃] ₂ AgBiBr ₆	$Fm\overline{3}m$	2.02	[12]
$[C_6H_{16}N_2]_2CuBiI_8 \cdot 0.5H_2O$	$P2_{1}/c$	1.68	[13]
$[C_8H_{20}N_2]_2AgBiBr_8$	$P^{\overline{1}}$	2.70	[14]
$[H_2EPZ]_2AgBiBr_8$	$P2_{1}/c$	2.77	[15]
[H ₂ MPA] ₂ AgBiBr ₈	$P2_{1}/n$	2.84	[15]

[AMP] ₄ [AgBiI ₈] ₂ ·H ₂ O	C2/c	2.07	[16]
[APP] ₄ [AgBiI ₈]·H ₂ O	C2/c	2.12	[16]
$[C_6H_{16}N_2]_2AgBiI_8{\cdot}H_2O$	$P2_1/n$	1.93	[17]
$[C_6H_{16}N_2]_2CuBiI_8{\cdot}0.5H_2O$	$P2_1/n$	1.68	[17]
[La(DMSO) ₈]Bi ₂ I ₉	$P^{\overline{1}}$	2.21	[18]
[Bi(DMSO)8]Bi2I9	$P^{\overline{1}}$	2.17	[18]
[AmV]BiI ₅	NA	1.54	[19]
$[PiC_2]_2Bi_2I_{10}$	$P2_1/n$	2.08	[20]
PiC ₅ BiI ₅	<i>I</i> 222	1.73	[20]
$[PiC_5]_2Bi_4I_{16}$	$P2_1/n$	2.10	[20]
[HpipeH ₂] ₂ Bi ₂ I ₁₀ ·2H ₂ O	$P^{\overline{1}}$	1.80	[21]
$LiBiI_4$ ·5H ₂ O	C2/c	1.70	[22]
KBiI ₄ ·H ₂ O	$P2_{1}/n$	1.76	[22]
[(Me) ₂ -(DABCO)]CuBiI ₆	C2/c	1.80	This work

6. Reference

- [1] W. X. Chai, L. M. Wu, J. Q. Li, L. Chen, Inorg. Chem. 2007, 46, 1042–1044.
- [2] J. Möbs, S. Pan, R. Tonner-Zech, J. Heine, Dalton Trans. 2022, 51, 13771–13778.
- [3] A. W. Kelly, A. M. Wheaton, A. D. Nicholas, F. H. Barnes, H. H. Patterson, R. D. Pike, *Eur. J. Inorg. Chem.* 2017, 43, 4990–5000.
- [4] B. Zhang, J. Li, M. Pang, Y. S. Wang, M. Z. Liu, H. M. Zhao, *Inorg. Chem.* 2022, 61,406–413.
- [5] Y. H. Cai, A. M. Chippindale, R. J. Curry, P. Vaqueiro, *Inorg. Chem.* 2021, 60, 5333–5342.
- [6] W. X. Chai, L. M. Wu, J. Q. Li, L. Chen, Inorg. Chem. 2007, 46, 8698-8704.
- [7] N. Dehnhardt, H. Borkowski, J. Schepp, R. Tonner, J. Heine, Inorg. Chem. 2018, 57, 633-640.
- [8] M. W. Yuan, L. R. Li, L. Chen, Z. Anorg. Allg. Chem. 2009, 635, 1645–1649.
- [9] R. Hooijer, A. Weis, A. Biewald, M. T. Sirtl, J. Malburg, R. Holfeuer, S. Thamm, A. A. Y. Amin, M. Righetto, A. Hartschuh, L. M. Herz, T. Bein, *Adv. Optical Mater*. 2022, 10, 2200354.
- [10] W. Q. Guo, X. T. Liu, S. G. Han, Y. Liu, Z. Y. Xu, M. C. Hong, J. H. Luo, Z. H. Sun, Angew. Chem. Int. Ed. 2020, 59, 13879–13884.
- [11] Y. P. Yao, B. Kou, Y. Peng, Z. Y. Wu, L. N. Li, S. S. Wang, X. Y. Zhang, X. T. Liu, J. H. Luo, *Chem. Commun.* 2020, 56, 3206–3209.
- [12] F. X. Wei, Z. Y. Deng, S. J. Sun, F. H. Zhang, D. M. Evans, G. Kieslich, S. Tominaka, M. A. Carpenter, J. Zhang, P. D. Bristowe, A. K. Cheetham, *Chem. Mater.* 2017, 29, 1089–1094.
- [13] Y. Wang, G. Lin, B. Su, X. Wang, S. Wang, Z. Cheng, D. Li, X. W. Lei, C. Y. Yue, *Dalton Trans.* 2022, **51**, 10234–10239.
- [14] H. Ruan, Z. Guo, J. Lin, K. Liu, L. Guo, X. Chen, J. Zhao, Q. Liu, W. Yuan, *Inorg. Chem.* 2021, 60, 14629–14635.
- [15] M. S. Lassoued, T. B. Wang, Q. W. Li, X. Y. Liu, W. P. Chen, B. Jiao, Q. Y. Yang, Z. X. Wu, G. J. Zhou, S. J. Ding, Z. C. Zhang, Y. Z. Zheng, *Mater. Chem. Front.* 2022, 6, 2135–2142.
- [16] M. S. Lassoued, L. Y. Bi, Z. X. Wu, G. J. Zhou, Y. Z. Zheng, J. Mater. Chem. C 2020, 8, 5349–5354.
- [17] L. Y. Bi, Y. Q. Hu, M. Q. Li, T. L. Hu, H. L. Zhang, X. T. Yin, W. X. Que, M. S. Lassoued, Y. Z. Zheng, J. Mater. Chem. A 2019, 7, 19662–19667.
- [18] P. F. Hao, W. P. Wang, J. J. Shen, Y. L. Fu, Dalton Trans. 2020, 49, 1847–1853.
- [19] A. Skorokhod, N. Mercier, M. Allain, M. Manceau, C. Katan, M. Kepenekian, Inorg. Chem. 2021,

60, 17123–17131.

- [20] V. Y. Kotov, A. B. Ilyukhin, A. A. Korlyukov, A. F. Smol'yakov, S. A. Kozyukhin, New J. Chem. 2018, 42, 6354–6363.
- [21] T. A. Shestimerova, A. V. Mironov, M. A. Bykov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, *Molecules* 2020, 25, 2765.
- [22] N. A. Yelovik, A. V. Mironov, M. A. Bykov, A. N. Kuznetsov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, *Inorg. Chem.* 2016, 55, 4132–4140.