Supporting Information

Triazene Bridged Energetic Materials Based on Nitrotriazole: Synthesis, Characterization and Laser Ignited Combustion Performance

Xiue Jiang¹, Yalin Yang¹, Huiying Du¹, Bo Yang², Pengfei Tang², Bo Wu^{1*}, Congming Ma^{3*}

1. State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.

 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.

3. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211800, China.

Email: wubo@swust.edu.cn

Table of content

1. Computation details

- 2. Crystallographic Data
- 3. ¹H, ¹³C NMR spectrum, DSC curves, MS spectrum

Computation details

1. Heats of formation (HOF)

Computations were carried out by using the Gaussian09 suite of programs.^[1] The elementary geometric optimization and the frequency analysis were performed at the level of Becke three Lee-Yan-Parr (B3LYP) Functionals^[2] with 6-311+G** basis set.^[3]All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. The predictions of heats of formation (HOF) adopt the hybrid DFT-B3LYP methods with 6-311+G** basis set via designed isodesmic reactions. The isodesmic reaction processes, i.e., the number of each kind of formal bond is conserved, are used with application of the bond separation reaction (BSR) rules. The molecule is broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions used to derive the HOF of these compounds are in Scheme S1.

$$O_2 N \xrightarrow{N-NH}_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N} O_2 + 4CH_4 + 3NH_3 = 2 \xrightarrow{HN-N}_{N} + 2CH_3NO_2 + 2CH_3NH_2 + NH_2NH_2 + NHNH$$

$$O_2 N \xrightarrow{N-NH}_{N} \xrightarrow{N-N}_{N} N \xrightarrow{O}_{N} N O_2 + H^+ + 4CH_4 + 3NH_3 = 2 \xrightarrow{HN-N}_{N} + 2CH_3 NO_2 + 2CH_3 NH_2 + NH_2 NH_2 + NHNH$$

$$O_2 N \xrightarrow{N-NH}_{N \xrightarrow{N}} N \xrightarrow{N}_{N} \xrightarrow{N$$

Scheme S1. Isodemic reaction for computing the HOF

The change of enthalpy for the reactions at 298 K can be expressed as:

$$\Delta H_{298} = \sum \Delta_{\rm f} H_{\rm P} - \sum \Delta_{\rm f} H_{\rm R} \tag{1}$$

Where $\Delta_f H_R$ and $\Delta_f H_P$ are the HOF of reactants and products at 298 K, respectively, and ΔH_{298} can be calculated using the following expression:

$$\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_T + \Delta nRT$$
⁽²⁾

Where E_0 is the change in total energy between the products and the reactants at 0 K; ΔZPE is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K; ΔH_T is thermal correction from 0 to 298 K. The $\Delta(PV)$ value in eq (2) is the *PV* work term. It equals ΔnRT for the reactions of ideal gas. For the isodesmic reactions, $\Delta n = 0$, so $\Delta(PV) = 0$. On the left side of Eq. (1), apart from target compound, all the others are called reference compounds. The HOF of reference compounds are available either from the experiments^[4-6] or from the high level computing like CBS-4M.

For ionic energetic compounds, the HOF can be simplified by eq 3:

 $\Delta H_{\rm f}^{0}({\rm salt,298 \ K}) = \Delta H_{\rm f}^{0}({\rm cation, 298 \ K}) + \Delta H_{\rm f}^{0}({\rm anion,298 \ K}) - \Delta H_{\rm L}$ (3)

where $\Delta H_{\rm L}$ is the lattice energy of the salts that can be predicted by the formula suggested by Jenkins et al. as:

$$\Delta H_{\rm L} = U_{\rm POT} + [p(nM/2 - 2) + q(nX/2 - 2)]RT$$
(4)

where nM and nX depend on the nature of the ions Mp+ and Xq-, respectively, and are equal to 3 for monatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions. The

equation for lattice potential energy UPOT (kJ mol⁻¹) is as follows:

$$U_{\rm POT} (\rm kJ \ mol^{-1}) = \gamma \ (\rho_m/M_m)^{1/3} + \delta$$
 (5)

where ρ (g cm⁻³) is the density and M (g mol⁻¹) is the chemical formula mass of the ionic material. For 1:1 (charge ratio) salts, the coefficients γ and δ are 1981.2 kJ mol⁻¹·cm and 103.8 kJ mol⁻¹, respectively.^[7]

2. Bond dissociation energy (BDE)

Figure S1. Molecular structures of 1 (a) and 6 (b)

_			1		
	1			6	
	N8—H21	0.651924	N8—H18	0.654682	
	N5—H20	0.682571	N13—H20	0.687594	
	N13—H22	0.685666	N5—H17	0.688586	
	C11—N17	0.733126	N12—N13	0.718758	
	C2—N14	0.739369	C2—N14	0.739399	
	N12—N13	0.755071	N1—N5	0.817222	
	N1—N5	0.840481	C11—H19	0.863725	
	N7—N8	0.903082	N7—N8	0.946384	
	N14—016	0.97285	N14—016	0.962055	

N17—O19	0.976253	N8—C9	0.965729
N14—015	0.979089	N14—O15	0.980818
N17—O18	0.980465	C4—N5	0.996932
N8—C9	0.999195	N10-C11	1.023973
C4—N5	1.001787	C4—N6	1.035579
C4—N6	1.021403	C9—N13	1.039462
C9—N13	1.022193	C2—N3	1.120271
N10-C11	1.076439	N3—C4	1.277199
C2—N3	1.12728	C9—N10	1.296883
N3—C4	1.281321	N1-C2	1.333648
C9—N10	1.295943	N6—N7	1.342435
N1—C2	1.337029	C11-N12	1.363705
N6—N7	1.374392		
C11—N12	1.377606		

Crystallographic Data

Table S2 Crystallographic details of 1 and 2

Crystals	1	2
CCDC	2225841	2225842
Formula	$C_4H_7N_{11}O_6$	$C_8H_{14}K_6N_{22}O_{15}$
Formula weight	305.21	893.01
Temperature	146(2) K	150(2) K
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$	P2/c
$ ho/g \cdot cm$ -1	1.765	1.910
a/Å	10.4637(5)	12.0707(5)
b/Å	16.3279(7)	7.3415(3)
c/Å	6.8604(3)	18.2512(7)
α/(°)	90	90
$eta/(^{\circ})$	101.482(2)	106.260(2)
γ/(°)	90	90
Goodness-of-fit on F ²	1.037	1.044
R	0.0376	0.0681
wR	0.0890	0.1312

Table 55 Dolla lenguis of compounds 1 and 2	Table S3	Bond	lengths of	of compo	unds 1	and 2
--	----------	------	------------	----------	--------	--------------

1	1		2
C1—N2	1.3071(15)	N1—C1	1.332(4)
C1—N3	1.3473(14)	N1—C2	1.351(4)
C1—N1	1.4510(14)	N2—N3	1.373(4)

C2—N3	1.3314(14)	N2—C1	1.326(4)
C2—N4	1.3414(14)	N2—C2	1.352(4)
C2—N5	1.3752(14)	N4—C1	1.437(4)
C3—N10	1.3314(16)	N5—N6	1.301(4)
C3—N8	1.3442(14)	N5—C2	1.392(4)
C3—N7	1.3964(14)	N6—N7	1.305(4)
C4—N9	1.3138(15)	N7—C3	1.395(4)
C4—N10	1.3415(14)	N8—C3	1.353(4)
C4—N11	1.4562(15)	N8-C4	1.342(4)
N1—O2	1.2166(14)	N9—N10	1.370(4)
N101	1.2294(14)	N9—C3	1.341(4)
N2—N4	1.3551(13)	N10-C4	1.324(4)
N5—N6	1.3305(13)	N11-C4	1.426(4)
N6—N7	1.2650(13)	01—N4	1.229(4)
N8—N9	1.3469(13)	O2—N4	1.245(4)
N11—O4	1.2107(14)	O3—N11	1.233(4)
N11—O3	1.2294(14)	O4—N11	1.239(4)

Table S4 Bond angles of compounds 1 and 2 $\,$

1		2	
N2-C1-N3	118.20(10)	C1-N1-C2	99.4(3)
N2-C1-N1	120.50(10)	C1-N2-N3	103.7(3)
N3-C1-N1	121.30(10)	C2—N3—N2	105.5(3)
N3-C2-N4	111.64(10)	O1-N4-O2	123.7(3)
N3-C2-N5	124.94(10)	O1—N4—C1	117.9(3)
N4-C2-N5	123.40(10)	O2—N4—C1	118.4(3)
N10-C3-N8	110.69(10)	N6-N5-C2	111.0(3)
N10-C3-N7	129.23(10)	N5-N6-N7	112.1(3)
N8—C3—N7	120.07(10)	N6—N7—C3	111.7(3)
N9-C4-N10	117.91(11)	C4—N8—C3	98.6(3)
N9-C4-N11	119.69(10)	C3—N9—N10	105.7(3)
N10-C4-N11	122.39(10)	C4—N10—N9	103.7(2)
O2-N1-O1	125.34(10)	O3—N11—O4	123.6(3)
O2—N1—C1	118.24(10)	O3—N11—C4	117.3(3)
01—N1—C1	116.42(10)	O4—N11—C4	119.1(3)
C1-N2-N4	101.18(9)	N1-C1-N4	121.5(3)
C2—N3—C1	99.80(9)	N2-C1-N1	117.4(3)
C2-N4-N2	109.17(9)	N2-C1-N4	121.1(3)
N6-N5-C2	114.81(9)	N1-C2-N3	114.1(3)
N7—N6—N5	112.77(10)	N1-C2-N5	126.6(3)
N6—N7—C3	109.81(10)	N3-C2-N5	119.3(3)
C3—N8—N9	109.99(10)	N8-C3-N7	126.9(3)

C4—N9—N8	100.91(9)	N9-C3-N7	118.4(3)
C3-N10-C4	110.51(9)	N9-C3-N8	114.7(3)
C4-N11-O3	125.93(11)	N10-C4-N8	117.4(3)
C4—N11—C4	117.46(10)	N10-C4-N11	121.5(3)
C3—N11—C4	116.61(10)		

Table S5 The torsion angles of compounds 1	and 2
---	--------------

1		2	
C1—N2—N4—C2	-0.21(12)	01—N4—C1—N1	-4.6(5)
C2—N5—N6—N7	177.89(10)	O1—N4—C1—N2	176.6(3)
N5—N6—N7—C3	178.40(9)	O2—N4—C1—N1	175.2(3)
C3—N8—N9—C4	0.05(12)	O2—N4—C1—N2	-3.6(5)
N2-C1-N1-01	-178.94(11)	O3—N11—C4—N8	-1.1(5)
N2-C1-N1-O2	0.58(17)	O3—N11—C4—N10	-177.4(3)
N3—C1—N1—O1	0.96(17)	O4—N11—C4—N8	-179.7(3)
N3—C1—N1—O2	-179.52(11)	O4—N11—C4—N10	1.9(5)
N1—C1—N2—N4	179.98(12)	N2—N3—C2—N1	-0.3(4)
N3—C1—N2—N4	0.08(13)	N2—N3—C2—N5	-178.5(3)
N1—C1—N3—C2	-179.83(11)	N3—N2—C1—N1	0.9(4)
N2—C1—N3—C2	0.07(14)	N3—N2—C1—N4	179.7(3)
N4—C2—N3—C1	-0.21(13)	N5—N6—N7—C3	-177.5(3)
N5-C2-N3-C1	178.35(11)	N6—N5—C2—N1	15.2(5)
N3—C2—N4—N2	0.28(14)	N6—N5—C2—N3	-166.8(3)
N5—C2—N4—N2	-178.30(11)	N6—N7—C3—N8	16.2(5)
N3—C2—N5—N6	-175.76(11)	N6—N7—C3—N9	-164.8(3)
N4—C2—N5—N6	2.64(16)	N9—N10—C4—N8	0.2(4)
N8—C3—N7—N6	175.79(10)	N9—N10—C4—N11	178.8(3)
N10—C3—N7—N6	-5.67(17)	N10—N9—C3—N7	179.5(3)
N7—C3—N8—N9	178.64(100	N10—N9—C3—N8	-1.4(4)
N10—C3—N8—N9	-0.15(14)	C1—N1—C2—N3	0.8(4)
N7—C3—N10—C4	-178.48(12)	C1—N1—C2—N5	178.8(4)
N8—C3—N10—C4	0.16(12)	C1—N2—N3—C2	-0.3(4)
N10-C4-N9-N8	0.05(14)	C2—N1—C1—N2	-1.1(4)
N11—C4—N9—N8	179.07(10)	C2—N1—C1—N4	-179.9(3)
N9—C4—N10—C3	-0.14(14)	C2—N5—N6—N7	-175.1(3)
N11—C4—N10—C3	-179.13(11)	C3—N8—C4—N10	-1.0(4)
N9—C4—N11—O3	1.27(17)	C3—N8—C4—N11	-179.5(3)
N9—C4—N11—O4	-178.92(11)	C3—N9—N10—C4	0.6(3)
N10-C4-N11-O3	-179.76(11)	C4—N8—C3—N7	-179.6(3)
N10-C4-N11-O4	0.05(18)	C4—N8—C3—N9	1.4(4)

Table S6 Hydrogen bonds of compound 1

D—H•••A	d(D-H)/ Å	d(HA)/ Å	d(DA)/ Å	<(DHA)/ °
N4—H4…O6	0.88	1.80	2.6807(13)	175
N5—H5…O5	0.88	1.83	2.6904(15)	165
O5—H5A…O1	0.85	2.16	2.9456(12)	153
О5—Н5В…О3	0.86	2.33	3.1280(15)	155
O5—H5B…N9	0.86	2.24	2.8923(13)	132
O6—H6A…N10	0.85	2.18	2.9871(13)	159
O6—H6B…N2	0.85	2.13	2.9374(14)	158
N8—H8…O1	0.88	2.51	3.2134(15)	138
N8—H8…N3	0.88	2.14	2.9363(15)	151

Table S7 Hydrogen bonds of compound 2

D—H•••A	d(D-H)/ Å	d(HA)/ Å	d(DA)/ Å	<(DHA)/ °
O5—H5A…N5	0.87	2.20	2.853(4)	132
О5—Н5В…О6	0.87	2.48	2.890(8)	109
O5—H5B…N9	0.87	2.56	2.942(4)	108
О6—Н6А…О5	0.87	2.08	2.890(8)	154
О6—Н6В…О9	0.87	2.01	2.821(7)	155
O7—H7…N7	0.85	2.01	2.865(3)	176
08—H8A…N9	0.87	2.07	2.942(6)	180
O8—H8B…N7	0.87	2.22	3.091(6)	175
O9—H9…N3	0.87	2.08	2.893(3)	156

Figure S3 ¹³C NMR of 1 (d_6 -DMSO)

Figure S5 ¹H NMR of 3 (d_6 -DMSO)

Figure S7 ¹H NMR of 4 (d_6 -DMSO)

Figure S15 ¹H NMR of 8 (d_6 -DMSO)

Figure S20 ¹³C NMR of **10** (*d*₆-DMSO)

Figure S21 DSC curves of compounds 1 and 3-10

(a) BG Mode:None Segment 1 - Event 1

Figure S22 MS spectrum of compound 1 (a) ESI positive, (b) ESI negative

Figure S23 MS spectrum of compound 4

Figure S24 MS spectrum of compound 6 (a) ESI positive, (b) ESI negative

BG Mode:None Segment 1 - Event 2

Figure S25 MS spectrum of compound 7

Figure S26 MS spectrum of compound 8

Reference

[1] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Gaussian, Inc. Wallingford, CT: 2009.

[2] Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Phys Chem, 1993, 98, 5648-5652; b) Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem, 1994, 98, 11623-11627.

[3] Hariharan, P C. and Pople, J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theorefica Chimica Acta, 1973, 28, 213-222.

[4] a) Schmidt M W, Gordon M S, Boatz J A. Triazolium-Based Energetic Ionic Liquids. J Phys Chem A, 2005, 109, 7285-7295; b) Gao H, Ye C, Piekarski C M, et al. Computational characterization of energetic salts. The Journal of Physical Chemistry C, 2007, 111(28): 10718-10731.

[5] Jaidann M, Roy S, Abou-Rachid H, Lussier L S. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J Hazard Mater, 2010, 176, 165-173.

[6] Pople J A. Binkley J S, Seeger R. Theoretical models incorporating electron correlation. Int J Quantum Chem, 1976, 10, 1-19.

[7] Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials. J Phys Chem A, 2006, 110, 5929- 5933;
b) Wang G X, Gong X D, Liu Y, Du H, Xu X, Xiao H M. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes. J Hazard Mater, 2010, 177, 703-710.