Electronic Supplementary Information

Two pillared-layer metal-organic frameworks based on pinwheel trinuclear carboxylateclusters of Zn(II) and Co(II): synthesis, crystal structures, magnetic study, and Lewis acid catalysis

Moyna Das^{†a}, Vishakha Jaswal^{†a}, Himanshi Bhambri^b, Prasenjit Das^c, Suvendu Maity^d, Prasanta Ghosh^d, Sanjay K. Mandal^b and Madhushree Sarkar^{*a}

^aDepartment of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031 India. E-mail: <u>msarkar@pilani.bits-pilani.ac.in</u> ^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Punjab 140 306, India. E-mail: sanjaymandal@iisermohali.ac.in ^cTechnische Universität Berlin, Department of Chemistry / Functional Materials, Hardenbergstr. 40, 10623 Berlin, prasenjitsepistles@gmail.com ^dDepartment of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India. E-mail: ghosh@pghosh.in

Fig. S1 FTIR spectra of (a) Zn-MOF, (b) Co-MOF and (c) L2.

Fig. S2 ¹H NMR spectrum of L2.

Fig. S3 ORTEP of **Zn-MOF** to show the atom numbering scheme(a) Asymmetric unit and (b) Extended network; thermal ellipsoids shown at 50% probability.

Fig. S4 ORTEP of **Co-MOF** to show the atom numbering scheme: (a) Asymmetric unit (Solvated DMF is removed for clarity) (b) Extended network (Metal centres are labelled); thermal ellipsoids shown at 50% probability.

Fig. S5 Experimental and simulated PXRD patterns of Zn-MOF.

Fig. S6 Experimental and simulated PXRD patterns of Co-MOF.

Fig. S7 Experimental PXRD patterns of **Zn-MOF** (a) after exposing to air for 10 days, (b) after exposing to air for 2 days and (c) without guest molecules compared to that of as-synthesized **Zn-MOF**.

Fig. S8 Experimental PXRD patterns of **Zn-MOF** (a) after immersing in DMF and (b) after immersing in MeOH compared to that of **Zn-MOF**.

Fig. S9 Experimental PXRD patterns of **Co-MOF** (a) after exposing to air for 10 days, (b) after exposing to air for 2 days and (c) without guest molecules compared to that of as-synthesized **Co-MOF**.

Fig. S10 Experimental PXRD patterns of **Co-MOF** (a) after immersing in DMF and (b) after immersing in MeOH compared to that of **Co-MOF**.

Fig. S12. TGA and DTA of Co-MOF.

Fig. S13 Overlay of (a) TGA and (b) DTA plots of **Zn-MOF** and **Zn-MOF** after removing guest molecules.

Fig. S14 Overlay of (a) TGA and (b) DTA plots of Co-MOF and Co-MOF after removing guest molecules.

Fig. S15 N_2 adsorption-desorption isotherms (Type II) at 77 K and 1 bar: (a) **Zn-MOF** and (b) **Co-MOF**; the insets in (a) and (b) are pore size distribution of **Zn-MOF** and **Co-MOF**, respectively.

Fig. S16 $1/\chi_m vs$ T plot at low temperature for Co-MOF (Weiss constant: -5.04K).

Fig. S17 Hot filtration test for the Knoevenagel condensation reaction of Malononitrile with benzaldehyde with **Zn-MOF** as catalyst and without catalyst (Reaction Condition: Substrate (0.5mmol), Malononitrile (0.65 mmol), **Zn-MOF** (catalyst) amount 5 mg (4.094×10^{-4} mmol), MeOH (0.5 mL), Temperature (78 °C)).

Fig. S18 ¹H NMR spectrum of 2-benzylidenemalononitrile.

Fig. S19 ¹H NMR spectrum of 2-(4-nitrobenzylidene)malononitrile.

Fig. S20 ¹H NMR spectrum of 2-(2-nitrobenzylidene)malononitrile.

Fig. S21 ¹H NMR spectrum of 2-(3-nitrobenzylidene)malononitrile.

Fig. S22 ¹H NMR spectrum of 2-(4-chlorobenzylidene)malononitrile

Fig. S23 ¹H NMR spectrum of 2-(3-chlorobenzylidene)malononitrile.

Fig. S24 ¹H NMR spectrum of 2-(4-methoxybenzylidene)malononitrile.

Fig. S25 ¹H NMR spectrum of 2-(3,4-dimethoxybenzylidene)malononitrile.

Fig. S26 ¹H NMR spectrum of 2-(naphthalen-1-ylmethylene)malononitrile.

Fig. S27 PXRD patterns of Zn-MOF before and after catalysis.

Fig. S28 Stacked FTIR spectra to compare the structural integrity of **Zn-MOF** (a) before catalysis, (b) after first cycle catalysis; (c) after second cycle catalysis; (d) after third cycle catalysis (For the reaction involving benzaldehyde with malononitrile).

Fig. S29 Binding energy of benzaldehyde with Zn-MOF and Co-MOF.

Atom1	Atom2	Length
Zn1	01	1.942(7)
Zn1	O3	1.932(8)
Zn1	N1	2.046(9)
Zn1	05	1.940(8)
Zn2	O2	2.09
Zn2	O4	2.06
Zn2	O6	2.08

Table S1. Selected bond distances of **Zn-MOF** involving the Zn centers (see Figure S3 for atom labels)

Table S2. Selected bond distances of **Co-MOF** involving the Co centers (see Figure S4 for atom labels)

Atom1	Atom2	Length		
Co1	01	2.110(5)		
Co1	O5	2.029(5)		
Co1	O9	2.049(5)		
Co1	O3	2.112(4)		
Co1	07	2.037(5)		
Co1	O12	2.076(4)		
Co2	01	2.261(5)		
Co2	O2	2.020(4)		
Co2	O10	1.955(5)		
Co2	N1	2.068(6)		
Co2	011	1.960(4)		
Co3	08	1.977(6)		
Co3	013	2.143(8)		
Co3	N3	2.109(9)		
Co3	O3	2.134(5)		
Co3	O4	2.238(6)		
Co3	O6	2.017(4)		

Table S3. Optimization table for the Knoevenagel condensation reaction betweenMalanonitrile and Benzaldehyde

Entry	Catalyst	Catalyst	Solvent	Time	Temperature	Percentage
		Amount (mg)				Conversion ^a
1	Catalyst free		МеОН	24 h	78 °C	27
2	Zn-MOF	5 mg	CHCl ₃	6 h	65 °C	traces
3	Zn-MOF	5 mg	THF	4 h	50 °C	traces
4	Zn-MOF	5 mg	THF	4 h	65 °C	40
5	Zn-MOF	5 mg	Acetonitrile	6 h	80 °C	traces
6	Zn-MOF	5 mg	МеОН	1 h	50 °C	35
7	Zn-MOF	5 mg	МеОН	30 min	78 °C	98
8	Zn-MOF	10 mg	МеОН	30 min	78 °C	98
9	Zn-MOF	5 mg	Ethylacetate	1 h	70 °C	64
10	Zn-MOF	5 mg	DCM	2 h	35 °C	19
11	Co-MOF	5 mg	MeOH	45 min	78 °C	65

^aConversion (%) was determined from GC