Supplementary Materials

Constructing Spin Crossover-Fluorescence Bifunctional Iron(II) complexes based on Tetraphenyl Ethylene-Decorated AIEgen

Cheng Yi ^a, Shi-Hui Zhang, ^a Liang Zhao ^a, Nian-Tao Yao ^a, Guo-Hui Zhao, Yin-Shan Meng ^a, Tao Liu ^a *

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China

E-mail: liutao@dlut.edu.cn (T. Liu)

CONTENTS

Experimental section.	4
Table S1. Crystallographic data for 1, 2, and 3 at different temperatures.	5
Table S2. Selected Bond lengths (Å) for 1, 2 and 3 at different temperatures.	6
Table S3. Selected Bond Angles (°) for 1 at 120 K.	7
Table S4. Selected Bond Angles (°) for 2 and 3 at different temperatures.	8
Fig. S2. TGA curve for complex 1 in N_2 atmosphere with a heating rate of 10 °C·min ⁻¹	9
Fig. S3. TGA curve for complex 2 in N_2 atmosphere with a heating rate of 10 °C·min ⁻¹	10
Fig. S4. TGA curve for complex 3 in N_2 atmosphere with a heating rate of 10 °C·min ⁻¹	11
Fig. S5. The PXRD pattern of complex 1 and the simulated one based on the single-crystal structure.	12
Fig. S6. The PXRD pattern of complex 2 and the simulated one based on the single-crystal structure.	13
Fig. S7. The PXRD pattern of complex 3 and the simulated one based on the single-crystal structure.	14
Fig. S8. The Crystal structure of 1 at 120 K.	15
Fig. S9. The Crystal structure of 2 at 120 (top) and 275 (bottom) K	16
Fig. S10. The Crystal structure of 3 at 120 (top) and 275 (bottom) K	17
Fig. S11 Fluorescence excitation spectra for the ligand tpe-bpp in pure DMF solution.	18
Fig. S12. PL intensity at maximum PL intensity as a function of water fraction for tpe-bpp at room temperature. Inset showed the photographs o	f tpe-
bpp in DMF/water mixtures with different water fractions under 365 nm UV illumination	19
Fig. S13. PL intensity at maximum PL intensity as a function of water fraction for 1 at room temperature. Inset showed the photographs of	f 1 in
DMF/water mixtures with different water fractions under 365 nm UV illumination	20
Fig. S14. PL intensity at maximum PL intensity as a function of water fraction for 3 at room temperature. Inset showed the photographs of	f 3 in
DMF/water mixtures with different water fractions under 365 nm UV illumination	21
Fig. S15. $d(\chi_M T)/dT$ versus T for complex 1	22
Fig. S16. $d(\chi_M T)/dT$ versus T for complex 2	23
Fig. S17. $d(\chi_M T)/dT$ versus T for complex 3.	24
Fig. S18. (a) Luminescence emission spectrum for the tpe-bpp ligand in the solid state at 100 K. (b) The PL intensity of maximum emission as a fun	nction
of temperature for solid tpe-bpp	25
Fig. S19. Luminescence emission spectrum for the complex 1 in solid state at 100 K. (b) Plots of the HS fraction of Fe ^{II} ion (\Box black squares) are	nd the
PL intensity of maximum emission (pink squares) as a function of temperature for solid 1.	26
Fig. S20. Luminescence emission spectrum for the complex 2 in solid state at 100 K. (b) Plots of the HS fraction of Fe ^{II} ion (\Box black squares) are	nd the
PL intensity of maximum emission (pink squares) as a function of temperature for solid 2.	27

Fig. S21. Luminescence emission spectrum for the complex 3 in solid state at 100 K. (b) Plots of the HS fraction of Fe ^{II} ion (\Box black squares) and the
PL intensity of maximum emission (pink squares) as a function of temperature for solid 3
Fig. S22. The intermolecular short contact interactions between tpe units and other groups for 1 at 120 K (yellow dashed lines)
Fig. S23. The intermolecular short contact interactions (yellow dashed lines) between tpe units and other groups for 2 at 120K (top) and 275 K (bottom).
Fig. S24. The intermolecular short contact interactions (yellow dashed lines) between tpe units and other groups for 3 at 120 (top) and 300 (bottom) K.
Table S5. Short contact interactions between phenyl and other groups for 1 at 120 K. 32
Table S6. Short contact interactions between phenyl and other groups for 2 at 120 and 275 K
Table S7. Short contact interactions between phenyl and other groups for 3 at 120 and 275 K
Fig. S25. Crystal packing diagram of complex 1
Fig. S26. Crystal packing diagram of complex 2
Fig. S27. Crystal packing diagram of complex 3

Experimental section.

Materials

Tpe-CHO, bpp-COOEt, bpp-CH₂OH, bpp-CH₂Br, and bpp-CH₂P(O)(OEt)₂ were prepared according to literature methods¹. All other chemicals are commercially available and were used without further purification.

Scheme S1

Compounds	1	2	2	3	3
CCDC	2226385	2225794	2225800	2225801	2225804
Т, К	120	120	275K	120	275
Fw	1634.25	1551.10	1551.10	1516.48	1517.11
crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	p1	$p\bar{1}$	рĪ	рĪ	pĪ
<i>a</i> , Å	14.5133(19)	12.9914(6)	13.207(3)	12.8968(7)	13.064(4)
b, Å	23.240(4)	17.0329(8)	17.273(3)	16.9841(9)	17.158(6)
<i>c</i> , Å	24.914(4)	18.9494(8)	19.209(3)	19.0169(11)	19.208(6)
α, °	105.490(6)	63.7760(10)	63.904(5)	63.584(2)	63.673(10)
β, °	101.434(6)	84.270(2)	84.196(6)	83.769(2)	84.103(12)
γ, °	101.383(5)	86.755(2)	86.212(7)	86.568(2)	86.368(12)
<i>V</i> , Å ³	7654(2)	3742.4(3)	3914.0(12	3708.2(4)	3838(2)
Ζ	4	2	2	2	2
$D_{\rm calc} ({\rm mg}/{\rm m}^3)$	1418	1376	1314	1358	1313
F (000)	3363.0	1612.0	1610.0	1571.0	1572.0
Reflections	146531	40737	57443	28903	34320
Unique reflections (R_{int})	34866(0.0373)	13655(0.0566)	14309(0.0661)	13075(0.0582)	13257(0.0595)
Goodness–of–fit on F^2	1.038	1.027	1.031	1.048	1.026
$R_1 [I \ge 2\sigma(I)]^a$	0.0567	0.0524	0.0620	0.0664	0.0652
$wR_2[I>2\sigma(I)]^{b}$	0.1439	0.1288	0.1611	0.1700	0.1729

Table S1. Crystallographic data for 1, 2, and 3 at different temperatures.

 $R_{I} = \Sigma (|F_{o}| - |F_{c}|) / \Sigma |F_{o}|; wR_{2} = [\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma w F_{o}^{2}]^{1/2}$

Table S2. Selected Bond lengths (\AA) for 1, 2 and 3 at different temperatures.

		1			2			3
	120) K			120 K	275 K	120 K	275 K
No	Length(Å)	No	Length(Å)	No	Length(Å)	Length(Å)	Length(Å)	Length(Å)
Fe1–N1	1.896(1)	Fe2-N11	1.896(1)	Fe1–N1	1.906(2)	2.113(3)	1.900(4)	2.106(3)
Fe1–N2	1.984(2)	Fe2-N12	1.976(2)	Fe1–N2	1.980(3)	2.191(4)	1.975(5)	2.178(4)
Fe1–N3	1.976(1)	Fe2-N13	1.976(2)	Fe1–N3	1.972(2)	2.171(3)	1.978(5)	2.168(4)
Fe1–N4	1.897(1)	Fe2N14	1.897(1)	Fe1–N4	1.905(2)	2.132(3)	1.897(5)	2.124(4)
Fe1–N5	1.964(1)	Fe2-N15	1.976(2)	Fe1–N5	1.996(2)	2.202(4)	1.992(5)	2.193(5)
Fe1–N6	1.977(1)	Fe2N16	1.983(2)	Fe1–N6	1.987(2)	2.192(3)	1.984(5)	2.185(4)
Fe1-N _{avg}	1.949	Fe2-N _{avg}	1.951	Fe1–N _{avg}	1.958	2.167	1.959	2.159

 Table S3. Selected Bond Angles (°) for 1 at 120 K.

		1	
N2–Fe1–N6	92.50(8)	N13-Fe2-N12	160.00(8)
N2-Fe1-N5	92.22(8)	N13-Fe2-N15	91.28(9)
N4–Fe1–N2	99.56(8)	N14-Fe2-N13	100.07(8)
N4–Fe1–N1	178.32(8)	N14-Fe2-N16	79.84(8)
N4–Fe1–N3	100.60(8)	N14-Fe2-N12	99.90(8)
N4–Fe1–N6	79.88(8)	N14-Fe2-N15	80.33(8)
N4–Fe1–N5	80.18(8)	N16-Fe2-N13	92.20(8)
N1–Fe1–N2	79.88(8)	N16-Fe2-N12	92.34(8)
N1–Fe1–N3	80.02(8)	N16-Fe2-N15	160.17(8)
N1–Fe1–N6	98.54(8)	N11-Fe2-N13	80.19(8)
N1–Fe1–N5	101.41(8)	N11-Fe2-N14	179.67(8)
N3–Fe1–N2	159.76(8)	N11-Fe2-N16	99.95(8)
N3–Fe1–N6	92.79(8)	N11-Fe2-N12	79.84(8)
N3–Fe1–N5	89.44(8)	N11-Fe2-N15	99.89(8)
N5–Fe1–N6	160.01(7)	N15-Fe2-N12	91.02(8)
$\Sigma_{\rm Fe1}$	88.22	Σ_{Fe2}	86.45
CShM _{Fe1}	2.117	CShM _{Fe2}	2.064

 Σ_{Fe} : the sum of | 90-a | for the 12 cis-N-Fe-N angles around the iron atom. CShM_{Fe}: the continuous shape measurement relative to ideal octahedron of the Fe center.

Compound	2	2	3	3
Temperature(K)	120	275	120	275
N2-Fe1-N6	93.50(10)	95.20(11)	93.53(13)	95.25(12)
N2-Fe1-N5	90.82(10)	94.39(12)	90.88(13)	94.13(12)
N4-Fe1-N2	100.70(9)	107.14(10)	100.41(13)	107.03(11)
N4-Fe1-N1	179.21(10)	177.37(10)	179.37(14)	178.44(11)
N4–Fe1–N3	100.06(10)	105.42(10)	100.09(13)	105.43(11)
N4–Fe1–N6	79.94(9)	73.59(10)	79.85(13)	73.63(11)
N4–Fe1–N5	79.35(9)	73.08(10)	79.55(14)	73.16(11)
N1-Fe1-N2	79.54(9)	73.47(10)	79.64(13)	73.66(10)
N1-Fe1-N3	79.71(9)	74.06(10)	79.88(13)	73.94(10)
N1-Fe1-N6	100.81(9)	108.97(10)	100.78(13)	107.76(11)
N1-Fe1-N5	99.90(9)	104.36(10)	99.83(13)	105.45(11)
N3-Fe1-N2	159.22(9)	147.41(9)	159.49(13)	147.48(10)
N3-Fe1-N6	89.42(9)	92.69(11)	89.15(13)	92.00(12)
N3-Fe1-N5	93.69(10)	96.17(12)	93.74(14)	96.95(12)
N5-Fe1-N6	159.28(9)	146.67(10)	159.38(13)	146.79(11)
$\Sigma_{\rm Fe1}$	91.52	150.14	91.19	149.61
CShM _{Fe1}	2.249	5.500	2.215	5.464

Table S4. Selected Bond Angles (°) for 2 and 3 at different temperatures.

 $\overline{\Sigma_{Fe}}$: the sum of | 90-a | for the 12 cis-N-Fe-N angles around the iron atom. CShM_{Fe}: the continuous shape measurement relative to the ideal octahedron of the Fe center.

Fig. S2 TGA curve for complex 1 in N_2 atmosphere with a heating rate of 10 °C·min⁻¹.

Fig. S3 TGA curve for complex 2 in N_2 atmosphere with a heating rate of 10 °C·min⁻¹.

Fig. S4 TGA curve for complex 3 in N_2 atmosphere with a heating rate of 10 °C·min⁻¹.

Fig. S5 The PXRD pattern of complex 1 and the simulated one based on the single-crystal structure.

Fig. S6 The PXRD pattern of complex 2 and the simulated one based on the single-crystal structure.

Fig. S7 The PXRD pattern of complex 3 and the simulated one based on the single-crystal structure.

Fig. S8 The Crystal structure of 1 at 120 K.

Fig. S9 The Crystal structure of 2 at 120 (top) and 275 (bottom) K.

Тор

Fig. S10 The Crystal structure of 3 at 120 (top) and 275 (bottom) K.

Fig. S11 Fluorescence excitation spectra for the ligand tpe-bpp in pure DMF solution.

Fig. S12. PL intensity at maximum PL intensity as a function of water fraction for tpe-bpp at room temperature. Inset showed the photographs of tpe-bpp in DMF/water mixtures with different water fractions under 365 nm UV illumination.

Fig. S13. PL intensity at maximum PL intensity as a function of water fraction for 1 at room temperature. Inset showed the photographs of 1 in DMF/water mixtures with different water fractions under 365 nm UV illumination.

Fig. S14. PL intensity at maximum PL intensity as a function of water fraction for **3** at room temperature. Inset showed the photographs of **3** in DMF/water mixtures with different water fractions under 365 nm UV illumination.

Fig. S15. $d(\chi_M T)/dT$ versus *T* for complex 1.

Fig. S16. $d(\chi_M T)/dT$ versus *T* for complex **2**.

Fig. S17. $d(\chi_M T)/dT$ versus *T* for complex **3**.

Fig. S18 (a) Luminescence emission spectrum for the tpe-bpp ligand in the solid state at 100 K. (b) The PL intensity of maximum emission as a function of temperature for solid tpe-bpp.

Fig. S19 Luminescence emission spectrum for the complex 1 in solid state at 100 K. (b) Plots of the HS fraction of Fe^{II} ion (\Box black squares) and the PL intensity of maximum emission (\Box pink squares) as a function of temperature for solid 1.

Fig. S20 Luminescence emission spectrum for the complex **2** in solid state at 100 K. (b) Plots of the HS fraction of Fe^{II} ion (\Box black squares) and the PL intensity of maximum emission (\Box pink squares) as a function of temperature for solid **2**.

Fig. S21 Luminescence emission spectrum for the complex **3** in solid state at 100 K. (b) Plots of the HS fraction of Fe^{II} ion (\Box black squares) and the PL intensity of maximum emission (\Box pink squares) as a function of temperature for solid **3**.

Fig. S22 The intermolecular short contact interactions between the units and other groups for 1 at 120 K (yellow dashed lines).

Fig. S23 The intermolecular short contact interactions (yellow dashed lines) between the units and other groups for 2 at 120K (top) and 275 K (bottom).

Тор

Fig. S24 The intermolecular short contact interactions (yellow dashed lines) between tpe units and other groups for 3 at 120 (top) and 300 (bottom) K.

Table S5 . Short contact interactions between	phenyl and other	r groups for 1 at 120 K.
--	------------------	---------------------------------

		1	
$C15 - H15 \cdots Cl 9$	2.642	C65 – H65…Cl 7	2.856
$C24 - H24 \cdots Cl 23$	2.440	C75…H15B – C158	2.583
$C24 - H24 \cdots C164$	2.497	$C77 - H77 \cdots C148$	2.880
$C24\cdots$ H16L – C164	2.603	C93 – H93…O8	2.625
$C25 - H25 \cdots Cl 23$	2.904	C101····H79 – C79	2.851

Тор

C31 – H31…C110	2.676	C101…H142–C142	2.828
$C53\cdots$ H141 – C141	2.877	$C102\cdots H79 - C79$	2.731
$C54 - H54 \cdots C4$	2.811	$C103\cdots H79 - C79$	2.855
$C55 - H55 \cdots C4$	2.842	C103 – H103…O12	2.699
$C55 - H55 \cdots C5$	2.792	C103…H16H – C161	2.718
$C55 - H55 \cdots C6$	2.822	$C104 - H104 \cdots Cl 22$	2.853
$C61\cdots H49 - C43$	2.838	C110…H31 – C31	2.676
$C62\cdots H49 - C43$	2.869	C132 – H132…Cl 21	2.611
C62…H16L – C164	2.898	C132…H16O – C163	2.817
C63…H16L – C164	2.537	C136 – H136…C41	2.814
$C63 - H63 \cdots O1$	2.563	$C141 - H141 \cdots C53$	2.877
$C64 - H64 \cdots C13$	2.828	C141 – H141…Cl 6	2.944
C64 – H64…Cl 7	2.861	$C148\cdots H77 - C77$	2.880

		2	
120 K		275 K	
$C14{\cdots}H70-C70$	2.886		
$C25 - H25 \cdots O6$	2.436	C25 – H25…O6	2.653
$C25\cdots H30-C30$	2.834	$C25\cdots H30-C30$	2.861
$C30 - H30 \cdots C25$	2.834	$C30 - H30 \cdots C25$	2.861
$C31\cdots H1 - C1$	2.714	$C31\cdots H1-C1$	2.755
$C32\cdots H1 - C1$	2.657	$C32\cdots H1 - C1$	2.813
$C32\cdots H76 - C76$	2.870		
$C33 - H33 \cdots C47$	2.820	C33 – H33…C47	2.879
$C36 - H36 \cdots C64$	2.697	C36 – H36…C64	2.805
$C37\cdots H54 - C54$	2.755	C62 – H62…O1	2.691
$C54 - H54 \cdots C37$	2.755	C63…H6–C6	2.806
C55…H78–C78	2.852	C64…H36–C36	2.805
$C62 - H62 \cdots C72$	2.825		
$C62 - H62 \cdots O1$	2.611		
C63…H6–C6	2.762		
$C64 - H64 \cdots Cl 4$	2.924		
C64…H36–C36	2.697		
$C70 - H70 \cdots C14$	2.886		
C72…H62–C62	2.825		
$C76 - H76 \cdots C32$	2.870		
C78 – H78…C55	2.852		

3				
120 K		275 K		
$C14\cdots H70-C70$	2.847			
$C23\cdots H30 - C30$	2.850	C23····H30 – C30	2.850	
$C23 - H23 \cdots F5$	2.450	$C23 - H23 \cdots F5$	2.594	
$C30 - H30 \cdots C23$	2.850	C30 – H30…C23	2.850	
$C31 \cdots H1 - C1$	2.715	C31…H1 – C1	2.734	
$C32\cdots H1 - C1$	2.662	$C32\cdots H1 - C1$	2.832	
$C32\cdots H76 - C76$	2.867			
$C33 - H33 \cdots C46$	2.826	$C33 - H33 \cdots C46$	2.870	
$C36 - H36 \cdots C64$	2.665	$C36 - H36 \cdots C64$	2.789	
$C37 \cdots H54 - C54$	2.731	$C37\cdots H54 - C54$	2.864	
$C54 - H54 \cdots C37$	2.731	$C54 - H54 \cdots C37$	2.864	
$C55\cdots H78-C78$	2.822			
$C62 - H62 \cdots C72$	2.815	$C62-H62\cdots F2$	2.581	
$C62 - H62 \cdots F2$	2.583	C63…H11 – C11	2.794	
$C63\cdots H11 - C11$	2.730			
C63 – H63…Cl 1	2.936			
$C64 - H64 \cdots Cl 2$	2.936	$C64\cdots H36 - C36$	2.788	
$C64\cdots H36-C36$	2.665			
$C70 - H70 \cdots C14$	2.847			
$C72\cdots H62 - C62$	2.815			
$C76 - H76 \cdots C32$	2.867			
$C78-H78\cdots C55$	2.822			

Table S7. Short contact interactions between phenyl and other groups for 3 at 120 and 275 K.

Fig.	S25	Crystal	packing	diagram	of	complex	1
0		2	1 0	8		1	

Fig. S27. Crystal packing diagram of complex 3.