Visible light sensing of ions by a cyanoquinoxaline 1,4-dioxide-based probe and its applications

Savita*, Adinarayana Nandikolla*, Adarash Kumar Shukla, Kondapalli Venkata Gowri Chandra Sekhar and Anupam Bhattacharya
Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
E-mail: anupam@hyderabad.bits-pilani.ac.in; Tel: +91-40-66303522.

Supporting Information

S.No.	Content	Page
1.	Procedure for the synthesis of ACQ/AMQ	5
1.	Fig. S1(a) ${ }^{1} \mathrm{H}$ NMR spectrum of ACQ	6
2.	Fig. S1(b) ${ }^{13} \mathrm{C}$ NMR spectrum of ACQ	6
3.	Fig. S2(a) ${ }^{1} \mathrm{H}$ NMR spectrum of AMQ	7
4.	Fig. S2(b) ${ }^{13} \mathrm{C}$ NMR spectrum of AMQ	7
5.	Table. S1 Relative Quantum yield calculation in different solvents	8
6.	Fig. S3. Photographs under 234 nm and 365 nm for ACQ in different solvents ($10 \mu \mathrm{M}$)	8
7.	Fig S4. Absorbance versus Concentration plot obtained by varying concentration of ACQ from $10 \mu \mathrm{M}-50 \mu \mathrm{M}$. From the value of slope ε $=7602.79 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$	9
8.	Table S2. Salts used for screening anions against ACQ alongside the solvents and concentration, for preparing stock solutions.	9
9.	Table S3. Salts used for screening cations against ACQ alongside the solvents and concentration, for preparing stock solutions.	10
10.	Fig. S5. Bar graph (at 527 nm) of $\mathbf{A C Q}(50 \mu \mathrm{M})$ in the presence of various cations (1 mM) in $\mathrm{H}_{2} \mathrm{O}$.	11
11.	Fig. S6. Bar graph (at 577 nm) of $\mathbf{A C Q}(50 \mu \mathrm{M})$ in the presence of various anions (1 mM) in $\mathrm{H}_{2} \mathrm{O}$.	11
12.	Fig. S7. UV-vis spectra of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations (1 mM) in the presence of $\mathrm{Cu}^{2+}(50 \mu \mathrm{M})$	12
13.	Fig. S8. Intensity of $\mathrm{ACQ}(50 \mu \mathrm{M})$ in the presence of various competing cations $(1 \mathrm{mM})$ in the presence of $\mathrm{Cu}^{2+}(50 \mu \mathrm{M})$	12
14.	Fig. S9 UV-vis spectra of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations $(1 \mathrm{mM})$ in the presence of $\mathrm{Pd}^{2+}(200 \mu \mathrm{M})$	13
15.	Fig. S10 Intensity of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations $(1 \mathrm{mM})$ in the presence of $\mathrm{Pd}^{2+}(200 \mu \mathrm{M})$	13
16.	Fig. S11 Bar graph (at 656 nm) of $\mathbf{A C Q}(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in DMSO.	14

17.	Fig. S12. Bar graph (at 598 nm) of $\mathbf{A C Q}(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in DMSO. [Side entrance slit: 1.5 nm bandpass; side exit slit: 1.5 nm bandpass]	14
18.	Fig. S13 UV-vis spectra of ACQ $(10 \mu \mathrm{M})$ in the presence of various competing anions $(50 \mu \mathrm{M})$ in the presence of $\mathrm{F}^{-}(50 \mu \mathrm{M})$	15
19.	Fig. S14 Intensity of ACQ $(10 \mu \mathrm{M})$ in the presence of various competing anions $(50 \mu \mathrm{M})$ in the presence of $\mathrm{F}^{-}(50 \mu \mathrm{M})$.	15
20.	Fig. S15 Absorbance variation value at 527 nm versus Cu^{2+} mole fraction, and the maximum value of absorbance was obtained at a mole fraction of 0.3 , indicating a 1:2 (a:1) stoichiometry for the complex between Cu^{2+} and ACQ.	16
21.	Fig. S16 Absorbance variation value at 527 nm versus Pd^{2+} mole fraction and the maximum value of absorbance was obtained at a mole fraction of 0.3 , indicating a 1:2 (a:l) stoichiometry for the complex between Pd^{2+} and ACQ.	17
22.	Fig. S17 Absorbance variation value at 656 nm versus F^{-}mole fraction, and the maximum value of absorbance was obtained at a mole fraction of 0.5 , indicating a 1:1 (a: l) stoichiometry for the complex between F^{-}and ACQ.	17
23.	Fig. S18. Fluorescence emission spectra (at 577 nm$)$ of $\mathbf{A C Q}(50 \mu \mathrm{M})$ with the addition of various concentrations of $\mathrm{Cu}^{2+}(0-15 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$ respectively	18
24.	Fig. S19. Fluorescence emission spectra of ACQ $(10 \mu \mathrm{M})$ with the addition of various concentrations of $\mathrm{Pd}^{2+}(0-160 \mu \mathrm{M})$. [Side entrance slit: 3 nm bandpass; side exit slit: 3 nm bandpass]	18
25.	Fig. S20. Fluorescence emission spectra of ACQ $(10 \mu \mathrm{M})$ with the addition of various concentrations of $\mathrm{F}^{-}(0-15 \mu \mathrm{M})$ and $(0-35 \mu \mathrm{M})$ respectively	19
26.	Fig. S21 Benesi-Hildebrand plot from UV-Visible titration data of ACQ (50 $\mu \mathrm{M})$ with $\mathrm{Cu}^{2+}(0-15 \mu \mathrm{M}) . \mathbf{K}_{\mathrm{a}}=\mathbf{9 . 9} \times 10^{4} \mathbf{M}^{-2}$	20
27.	Fig. S22 Benesi-Hildebrand plot from UV-Visible titration data of ACQ (50 $\mu \mathrm{M})$ with $\mathrm{Pd}^{2+}(0-150 \mu \mathrm{M}) . \mathrm{K}_{\mathrm{a}}=\mathbf{8 . 7} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{M}^{-2}$	20
28.	Fig. S23. Visible color changes of ACQ $(50 \mu \mathrm{M})$ on continuous addition of F^{-} ions ($0-15 \mu \mathrm{M}$)	21
29.	Fig. S24 Benesi-Hildebrand plot from UV-Visible titration data of ACQ (10 $\mu \mathrm{M})$ with $\mathrm{F}^{-}(0-15 \mu \mathrm{M}) . \mathrm{K}_{\mathrm{a}}=\mathbf{5 . 8 \times 1 0} \mathbf{1 0}^{\mathbf{4}} \mathrm{M}^{-1}$	21
30.	Fig. S25 Benesi-Hildebrand plot from fluorescence titration data of ACQ (50 $\mu \mathrm{M})$ with $\mathrm{Cu}^{2+}(0-15 \mu \mathrm{M}) . \mathbf{K}_{\mathrm{a}}=\mathbf{3 . 1 8} \times \mathbf{1 0}^{4} \mathbf{M}^{-\mathbf{2}}$	22
31.	Fig. S26 Benesi-Hildebrand plot from fluorescence titration data of ACQ (50 $\mu \mathrm{M})$ with $\mathrm{Pd}^{2+}(0-160 \mu \mathrm{M}) . \mathbf{K}_{\mathrm{a}}=\mathbf{0 . 5} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{M}^{-2}$	22
32.	Fig. S27 Benesi-Hildebrand plot from fluorescence titration data of ACQ (10 $\mu \mathrm{M})$ with $\mathrm{F}^{-}(0-35 \mu \mathrm{M}) . \mathbf{K}_{\mathrm{a}}=\mathbf{3 . 8} \times \mathbf{1 0}^{4} \mathbf{M}^{-1}$	23
33.	Fig. S28 Plot of Absorbance versus concentration of Cu^{2+} at 527 nm and the calculated limit of Detection of ACQ for Cu^{2+} is $0.75 \mu \mathrm{M}$	23
34.	Fig.S29 Plot of Absorbance versus concentration of Pd^{2+} at 527 nm and the calculated limit of Detection of ACQ for Pd^{2+} is $7.6 \mu \mathrm{M}$	24
35.	Fig. S30 Plot of Absorbance versus concentration of F^{-}at 656 nm and the calculated limit of Detection of ACQ for F^{-}is $0.53 \mu \mathrm{M}$	24
36.	Fig. S31 Plot of Intensity at 577 nm versus concentration of Cu^{2+} and the calculated limit of Detection of ACQ for Cu^{2+} is $0.25 \mu \mathrm{M}$	25

37.	Fig. S32 Plot of Intensity versus concentration of Pd^{2+} at 577 nm and the calculated limit of Detection of ACQ for Pd^{2+} is $11.87 \mu \mathrm{M}$	25
38.	Fig. S33 Plot of Intensity versus concentration of F^{-}at 598 nm and the calculated limit of Detection of ACQ for F^{-}is $1.15 \mu \mathrm{M}$	26
39.	Fig. S34 Stern-Volmer plot for ACQ against varying concentrations of Cu^{2+} in the range of $0-15 \mu \mathrm{M}$	26
40.	Fig. S35 Fractional fluorescence $\left(\mathrm{F}_{0} / \mathrm{F}\right)$ versus $\left[\mathrm{Pd}^{2+}\right]$ plot in the range of $0-$ $180 \mu \mathrm{M}$	27
41.	Fig. S36 Stern-Volmer plot for ACQ against varying concentrations of Pd^{2+} in the range of $0-100 \mu \mathrm{M}$	27
42.	Fig. S37 Plot of $\mathrm{K}_{\text {app }}$ versus [Pd] ${ }^{2+}$	28
43.	Fig. S38 Stern-Volmer plot for ACQ against varying concentrations of F^{-}in the range of $0-15 \mu \mathrm{M}$	29
44.	Fig. S39 UV-vis spectra of ACQ $(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$	29
45.	Fig. S40 (a) Absorbance spectra and (b) Emission spectra of ACQ $(50 \mu \mathrm{M})$ at different pH . (c) Scatter plot of Absorbance vs pH and (d) Intensity Vs pH for ACQ $(50 \mu \mathrm{M})$ at 477 and 577 nm respectively.	30
46.	Fig. S41 (a)Normalized Absorbance spectra and (b) Emission spectra of ACQ $(50 \mu \mathrm{M})+\mathrm{Cu}^{2+}(20 \mu \mathrm{M})$ at different pH	30
47.	Fig. S42 (a)Absorbance spectra and (b) Emission spectra of ACQ ($50 \mu \mathrm{M}$) + $\mathrm{Pd}^{2+}(100 \mu \mathrm{M})$ at different pH	31
48.	Fig. S43 (a) Absorbance spectra and (b) Emission spectra of ACQ $(10 \mu \mathrm{M})$ with varying concentrations of $\mathrm{AcOH}(10-50 \mu \mathrm{M})$ in DMSO (c) Absorbance spectra and (b) Emission spectra of ACQ $(10 \mu \mathrm{M})$ with varying concentrations of KOH $(0-10 \mu \mathrm{M})$ in DMSO	31
49.	Fig. S44 Plausible structures of ACQ at different pH and FT-IR Spectrum of (a) ACQ (b) $\mathrm{ACQ}+\mathrm{Cu}^{2+}$ and (c) $\mathrm{ACQ}+\mathrm{Pd}^{2+}$	32
50.	Fig. S45 Particle size histogram of (a) ACQ (b) ACQ $+\mathrm{Cu}^{2+}$ (c) $\mathrm{ACQ}+\mathrm{Pd}^{2+}$ and FE-SEM images of (d) ACQ (e) ACQ $+\mathrm{Cu}^{2+}$ (f) $\mathrm{ACQ}+\mathrm{Pd}^{2+}$	33
51.	Fig. S46 Time decay plot for ACQ and ACQ + $\mathbf{C u}^{2+}$	34
52.	Fig. $\mathbf{S 4 7}$ Time decay plot for ACQ and ACQ+Pd ${ }^{\mathbf{2 +}}$	35
53.	Fig. S48 Time decay plot for ACQ and ACQ+F-	36
54.	Fig. S49 UV-vis spectra depicting reversibility of ACQ with alternative addition of $\mathrm{F}^{-}(656 \mathrm{~nm})$ and $\mathrm{AcOH}(505 \mathrm{~nm})$.	37
55.	Fig. S50 Absorption spectra in different solvents ($10 \mu \mathrm{M}$) for AMQ.	37
56.	Fig. S51 Absorbance spectra of AMQ $(10 \mu \mathrm{M})$ in the presence of various anions ($50 \mu \mathrm{M}$) in DMSO.	38
57.	Fig. S52 Absorbance spectra of AMQ $(50 \mu \mathrm{M})$ in the presence of various cations (1 mM) in $\mathrm{H}_{2} \mathrm{O}$.	38
58.	Fig S53. Plot of Intensity versus wavelength for ACQ $(10 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$ at different Excitation wavelengths.	39
59.	Fig. S54 Bar graph for ACQ at 527 nm obtained by titrating $20 \mu \mathrm{~L}$ samples of	40

	artificial urine with $\mathrm{Cu}^{2+}(2-8 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$.	
60.	Fig.S55 Absorbance versus $\left[\mathrm{Cu}^{2+}\right]$ plot for ACQ at different concentrations (0$10 \mu \mathrm{M})$ of Cu^{2+} in $\mathrm{H}_{2} \mathrm{O}$.	40
61.	Fig.S56 Intensity versus $\left[\mathrm{Cu}^{2+}\right]$ plot for (a) ACQ (b) and $20 \mu \mathrm{~L}$ with different concentrations $(0-3 \mu \mathrm{M})$ of Cu^{2+} at 527 nm in $\mathrm{H}_{2} \mathrm{O}$.	41
62.	Fig S57. Scatter plots for (a)ACQ with $\operatorname{Pd}^{2+}(0-40 \mu \mathrm{M})$ along with (b) Avomine (c) Dolo 650 and (d) Meftal at 527 nm in $\mathrm{H}_{2} \mathrm{O}$.	42
63.	Table S4. Absorbance values at 527 nm for various drug samples.	42-43
64.	Fig S58. Absorbance versus $\left[\mathrm{F}^{-}\right]$plot for ACQ at different concentrations of F^{-} in DMSO.	43
65.	Fig S59. Bar graph for ACQ at 656 nm obtained by titrating toothpaste samples with $\mathrm{F}^{-}(2-8 \mu \mathrm{M})$ in DMSO.	44
66.	Table S5. Calculated parameters from the obtained experimental values for quantifying F^{-}in different toothpaste samples.	44
67.	Table. S6 Examples of previously reported colorimetric and fluorescence-based Cu^{2+} sensors	45
68.	Table S7 Examples of previously reported colorimetric and fluorescence-based Pd^{2+} sensors	45-46
69.	Table S8 Examples of previously reported colorimetric and fluorescence-based F-sensors	46-47
70.	Table S9 Examples of previously reported molecules with N -oxide group used for fluorescence studies.	47-48
71.	References	49-50
72.	Single Crystal X-Ray Data of ACQ	51-54

Procedure for the synthesis of ACQ/AMQ

Preparation of ACQ: Malononitrile (1.5 equiv.) was added to a stirred solution of compound $\mathbf{1}$ ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$) [ESI] and triethylamine (3.0 equiv.) in DMF (1 ml). The resulting mixture was then left to stir; on completion of the reaction, as indicated by the TLC, the red precipitate formed was filtered. The resulting solid was washed successively with water and ethyl acetate and dried over the vacuum. Mp: 252-253.2 ${ }^{\circ} \mathrm{C}$ (Lit. Mp: 238-240 ${ }^{\circ} \mathrm{C}$). ${ }^{[\mathrm{a}]}$ Yield: 90%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6): $\delta 8.31-8.29$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (s, 2H), $7.94-7.91$ (m, 1H), 7.68-7.64 (m, 1H). ${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta 146.3,137.2,134.6,132.1,128.0,120.1,118.4,111.0$, 109.1. HRMS-ESI (+) m/z: Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{-}\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 203.0574; found, 203.0538.

Preparation of AMQ: 1-Phenoxypropan-2-one (1.1 equiv.) was added to a stirred solution of compound $1(182 \mathrm{mg}, 1.21 \mathrm{mmol})$ in methanol (5 ml). Ammonia was then purged in the reaction mixture with continuous stirring for 4 hours. On completion of the reaction, as indicated by TLC, the solvent was removed under reduced pressure. The resulting yellow solid was subsequently washed with diethyl ether and dried. Mp: 192-194 ${ }^{\circ} \mathrm{C}$. Yield: $72.2 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 8.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.235(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}) 7.62(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.55 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $)_{\text {) }}$: 144.9, 134.4, 132.8, 132.1, 131.4, 127.4, 119.6, 117.5, 12.9. HRMS-ESI (+) m / z : Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{-}\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 192.0779; found, 192.0753.
[a] I. T. Ibrahim and M. A. Wally, J Radioanal Nucl Chem, 2010, 285, 169-175.

Fig. S1(a) ${ }^{1} \mathrm{H}$ NMR spectrum of ACQ

Fig. S1(b) ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{A C Q}$

Fig. S2(a) ${ }^{1} \mathrm{H}$ NMR spectrum of AMQ

Fig. S2(b) ${ }^{13} \mathrm{C}$ NMR spectrum of AMQ

Table. S1 Relative Quantum yield calculation in different solvents

SOLVENT	Dielectric constant (ε)	ACQ $\lambda_{\text {abs }}$ (nm)	ACQ $\lambda_{\text {em }}$ (nm)	Stokes shift (nm)	\mathbf{R}_{D}	ϕ_{F}
Dioxane	2.3	497	574	77	1.422	0.176
Toluene	2.4	499	570	71	1.4969	0.5206
THF	7.5	507	573	66	1.407	0.8104
DCM	9.1	492	566	74	1.424	0.345
DMF	37	506	586	80	1.430	0.123
ACN	38	498	563	65	1.3441	0.238
DMSO	46.68	505	598	93	1.4793	0.4869
H2O	80	470	577	107	1.333	0.0082

The following equation was used for calculating quantum yield,

$$
\boldsymbol{\Phi}_{\mathrm{S}}=\frac{\mathrm{Abs}_{\mathrm{R}}}{\mathrm{Abs}_{\mathrm{S}}} \times \frac{\mathrm{Area}_{\mathrm{S}}}{\text { Area }_{\mathrm{R}}} \times \frac{\mathrm{n}_{\mathrm{S}}}{\mathrm{n}_{\mathrm{R}}} \times \boldsymbol{\Phi}_{\mathrm{R}}
$$

where subscripts S and R refer to the samples and reference respectively. Abs, Area and n are the absorbance at the excitation wavelength, area under the fluorescence spectrum and refractive index of the solvent respectively.
Rhodamine 6 G was used as the reference for calculating quantum yield.

Fig. S3. Photographs under 234 nm and 365 nm for ACQ in different solvents ($10 \mu \mathrm{M}$)

Calculation of Molar Absorptivity of ACQ

According to Beer-Lambert's Law A $=\varepsilon \mathrm{Cl}$

- $\mathrm{A}=$ Absorbance
- $\mathrm{C}=$ Molar Concentration (mol L-1 $)$
- $\mathrm{L}=$ Optical path length (cm)

Fig S4. Absorbance versus Concentration plot obtained by varying concentration of ACQ in DMSO from $10 \mu \mathrm{M}-50 \mu \mathrm{M}$. From the value of slope $\varepsilon=7602.79 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$

Table S2. Salts used for screening anions against ACQ alongside the solvents and concentration, for preparing stock solutions.

S.No.	Anion	Salt	Solvent	Concentration
1.	$\mathrm{~F}^{-}$	Tetrabutylammonium fluoride (TBAF)	DMSO	0.01 M
2.	Cl^{-}	Tetrabutylammonium chloride (TBACl)	DMSO	0.01 M
3.	Br^{-}	Tetrabutylammonium bromide (TBAB)	DMSO	0.01 M
4.	I^{-}	Tetrabutylammonium Iodide (TBAI)	DMSO	0.01 M
5.	OAc^{-}	Tetrabutylammonium acetate (TBAOAc)	DMSO	0.01 M
6.	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	Tetrabutylammonium dihydrogen phosphate (TBAH $\left.{ }_{2} \mathrm{PO}_{4}\right)$	DMSO	0.01 M
7.	HSO^{-}	Tetrabutylammonium hydrogensulfate $\left(\mathrm{TBAHSO}^{-}\right)$	DMSO	0.01 M
8.	$\mathrm{HPO}_{4}{ }^{2-}$	Disodium hydrogen phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$	DMSO	0.01 M
9.	SCN^{-}	Ammonium thiocyanate $(\mathrm{NH} 4 \mathrm{SCN})$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
10.	$\mathrm{~N}_{3}{ }^{-}$	Sodium azide $\left(\mathrm{NaN}_{3}\right)$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M

Table S3. Salts used for screening cations against ACQ alongside the solvents and concentration, for preparing stock solutions.

S.No.	Cation	Salt	Solvent	Concentration
1.	Ag^{+}	Silver nitrate (AgNO_{3})	$\mathrm{H}_{2} \mathrm{O}$	1M
2.	Au^{3+}	Gold (III) chloride trihydrate $\left(\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
3.	Al^{3+}	Aluminum sulfate octa decahydrate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
4.	Ba^{2+}	Dichlorobarium dihydrate $\left(\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	1M
5.	Ca^{2+}	Calcium chloride (CaCl_{2})	$\mathrm{H}_{2} \mathrm{O}$	1M
6.	Cd^{2+}	Cadmium chloride (CdCl_{2})	$\mathrm{H}_{2} \mathrm{O}$	1M
7.	Co^{2+}	Cobalt chloride (CoCl_{2})	$\mathrm{H}_{2} \mathrm{O}$	1M
8.	Cu^{+}	Copper bromide (CuBr)	ACN	1M
9.	Cu^{2+}	Copper sulfate pentahydrate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	1 M
10.	Fe^{2+}	Iron (II) chloride tetrahydrate $\left(\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
11.	Fe^{3+}	Ferric chloride (FeCl_{3})	EtOH	0.01 M
12.	Hg^{2+}	Mercury (II) chloride (HgCl_{2})	$\begin{gathered} \mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH} \\ (1: 1) \\ \hline \end{gathered}$	0.01 M
13.	K^{+}	Potassium chloride (KCl)	$\mathrm{H}_{2} \mathrm{O}$	1M
14.	Mg^{2+}	Magnesium dichloride hexahydrate $\left(\mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	1 M
15.	Mn^{2+}	Manganese (II) Chloride Dihydrate $\left(\mathrm{MnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	1M
16.	Na^{+}	Sodium Chloride (NaCl)	$\mathrm{H}_{2} \mathrm{O}$	1M
17.	Ni^{2+}	Nickel (II) chloride hexahydrate $\left(\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	1 M
18.	Pb^{2+}	Lead (II) nitrate ($\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$)	$\mathrm{H}_{2} \mathrm{O}$	1M
19.	Pd^{2+}	Palladium (II) acetate ($\left.\mathrm{Pd}(\mathrm{ac})_{2}\right)$	ACN	0.01 M
20.	Pt^{4+}	Chloroplatinic acid hexahydrate $\left(\mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
21.	Sn^{2+}	Stannous chloride dihydrate $\left(\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
22.	V^{3+}	Vanadium (III) Chloride (VCl_{3})	$\mathrm{H}_{2} \mathrm{O}$	0.01 M
23.	Zn^{2+}	Zinc acetate ($\left.\mathrm{Zn}(\mathrm{ac})_{2}\right)$	$\mathrm{H}_{2} \mathrm{O}$	1M

Fig. S5. Bar graph (at 527 nm$)$ of $\mathbf{A C Q}(50 \mu \mathrm{M})$ in the presence of various cations $(1 \mathrm{mM})$ in $\mathrm{H}_{2} \mathrm{O}$.

Fig. S6. Bar graph (at 577 nm) of $\mathbf{A C Q}(50 \mu \mathrm{M})$ in the presence of various anions $(1 \mathrm{mM})$ in $\mathrm{H}_{2} \mathrm{O}$.

Fig. S7. UV-vis spectra of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations $(1 \mathrm{mM})$ in the presence of $\mathrm{Cu}^{2+}(50 \mu \mathrm{M})$

- Interfering Cation: \mathbf{V}^{3+}

Fig. S8. Intensity of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations (1 mM) in the presence of $\mathrm{Cu}^{2+}(50 \mu \mathrm{M})$

Fig. S9 UV-vis spectra of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations $(1 \mathrm{mM})$ in the presence of $\mathrm{Pd}^{2+}(200 \mu \mathrm{M})$

Fig. S10 Intensity of ACQ $(50 \mu \mathrm{M})$ in the presence of various competing cations $(1 \mathrm{mM})$ in the presence of $\mathrm{Pd}^{2+}(200 \mu \mathrm{M})$

Fig. S11 Bar graph (at 656 nm) of $\mathbf{A C Q}(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in DMSO.

Fig. S12. Bar graph (at 598 nm$)$ of $\mathbf{A C Q}(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in DMSO. [Side entrance slit: 1.5 nm bandpass; side exit slit: 1.5 nm bandpass]

Fig. S13 UV-vis spectra of ACQ $(10 \mu \mathrm{M})$ in the presence of various competing anions $(50 \mu \mathrm{M})$ in the presence of $\mathrm{F}^{-}(50 \mu \mathrm{M})$

Fig. S14 Intensity of ACQ $(10 \mu \mathrm{M})$ in the presence of various competing anions $(50 \mu \mathrm{M})$ in the presence of $\mathrm{F}^{-}(50 \mu \mathrm{M})$.

1. General procedure for determining binding Stoichiometry of ACQ with $\mathbf{C u}^{2+} / \mathbf{P d}^{\mathbf{2 +}} / \mathrm{F}^{-}$from Jobs plot:

- Stock solution of same concentration of $\mathbf{A C Q}$ and analytes $\left(\mathrm{Cu}^{2+}, \mathrm{Pd}^{2+}\right.$ and $\left.\mathrm{F}^{-}\right)$were prepared in the orders $50 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$ (in $\mathrm{H}_{2} \mathrm{O}$ for Cu^{2+} and Pd^{2+} respectively) and 10 $\mu \mathrm{M}$ (in DMSO for F^{-}).
- The absorption spectrum in each case by varying the mole fractions (but keeping the volume constant) was recorded.
- Job plots were obtained by plotting absorbance variation value at $\lambda_{\max }\left(527 \mathrm{~nm}\right.$ for $\mathrm{Cu}^{2+} \&$ Pd^{2+} and 656 nm for F^{-}) versus mole fraction of $\mathrm{Cu}^{2+}, \mathrm{Pd}^{2+}$ and F^{-}.
- The maximum value of absorbance was obtained at a mole fraction of X from which the binding ratio of analyte (a) to $\mathbf{A C Q}$ (1) is determined as

$$
\frac{\mathbf{a}}{\mathbf{l}}=\frac{\mathrm{X}}{1-\mathrm{X}}
$$

Fig. S15 Absorbance variation value at 527 nm versus Cu^{2+} mole fraction, and the maximum value of absorbance was obtained at a mole fraction of 0.3 , indicating a 1:2 (a:l) stoichiometry for the complex between Cu^{2+} and ACQ

Fig. S16 Absorbance variation value at 527 nm versus Pd^{2+} mole fraction and the maximum value of absorbance was obtained at a mole fraction of 0.3, indicating a 1:2 (a:l) stoichiometry for the complex between Pd^{2+} and ACQ

Fig. S17 Absorbance variation value at 656 nm versus F^{-}mole fraction, and the maximum value of absorbance was obtained at a mole fraction of 0.5 , indicating a $1: 1$ (a: 1) stoichiometry for the complex between F^{-}and ACQ.

Fig. S18. Fluorescence emission spectra (at 577 nm) of ACQ $(50 \mu \mathrm{M})$ with the addition of various concentrations of $\mathrm{Cu}^{2+}(0-15 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$ respectively

Fig. S19. Fluorescence emission spectra of ACQ $(10 \mu \mathrm{M})$ with the addition of various concentrations of $\mathrm{Pd}^{2+}(0-160 \mu \mathrm{M})$. [Side entrance slit: 3 nm bandpass; side exit slit: 3 nm bandpass]

Fig. S20. Fluorescence emission spectra of ACQ $(10 \mu \mathrm{M})$ with the addition of various concentrations of $\mathrm{F}^{-}(0-15 \mu \mathrm{M})$ and $(0-35 \mu \mathrm{M})$ respectively

2. Association constant determination:

2a. Using UV Absorbance data:

- Considering a a: \mathbf{I} ratio stoichiometry for interaction between $\mathbf{A C Q}$ and $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$as \mathbf{m}, where $\mathbf{m}=(\mathbf{a} / \mathbf{l})$ binding constant was calculated using

$$
\frac{1}{A-A_{0}}=\frac{1}{\left(K_{a}\right)^{m}\left(A_{\max }-A_{0}\right)\left[M^{n \pm}\right]^{m}}+\frac{1}{\left(A_{\max }-A_{0}\right)}
$$

- $\left[\mathrm{M}^{\mathrm{n} \pm}\right]$ is the concentration of the $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$ions added during titration studies.
- $\mathrm{A}_{0}=$ absorbance of $\mathbf{A C Q}$ without $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$
- $\mathrm{A}=$ absorbance in presence of $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$
- $\mathrm{A}_{\max }=$ absorbance intensity at the maximum concentration of $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$
- The value $\left(\mathrm{K}_{\mathrm{a}}\right)^{\mathrm{m}}$ obtained from the ratio of intercept and slope of Benesi-Hildebrand plot was used to calculate K_{a}.

Fig. S21 Benesi-Hildebrand plot from UV-Visible titration data of ACQ $(50 \mu \mathrm{M})$ with $\mathrm{Cu}^{2+}(0-15$ $\mu \mathrm{M}) . \mathrm{K}_{\mathrm{a}}=9.9 \times 10^{4} \mathrm{M}^{-2}$

Fig. S22 Benesi-Hildebrand plot from UV-Visible titration data of ACQ $(50 \mu \mathrm{M})$ with $\mathrm{Pd}^{2+}(0-150$ $\mu \mathrm{M}) . \mathrm{K}_{\mathrm{a}}=8.7 \times \mathbf{1 0}^{\mathbf{3}} \mathrm{M}^{-2}$

Fig. S23. Visible color changes of ACQ $(50 \mu \mathrm{M})$ on continuous addition of F^{-}ions ($\left.0-15 \mu \mathrm{M}\right)$

Fig. S24 Benesi-Hildebrand plot from UV-Visible titration data of ACQ (10 $\mu \mathrm{M})$ with $\mathrm{F}^{-}(0-15$ $\mu \mathrm{M}) . \mathrm{K}_{\mathrm{a}}=5.8 \times 10^{4} \mathrm{M}^{-1}$

2b. Using emission intensity data:

- Considering a a:I ratio stoichiometry for interaction between $\mathbf{A C Q}$ and $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$as \mathbf{m}, where $\mathbf{m}=(\mathbf{a} / \mathbf{l})$ binding constant was calculated using

$$
\frac{1}{F-F_{0}}=\frac{1}{\left(K_{a}\right)^{m}\left(F_{\max }-F_{0}\right)\left[M^{\mathrm{n} \pm}\right]^{\mathrm{m}}}+\frac{1}{\left(F_{\max }-F_{0}\right)}
$$

- $\left[\mathrm{M}^{\mathrm{n} \pm}\right]$ is the concentration of the $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$ions added during titration studies.
- $\mathrm{F}_{0}=$ fluorescence intensity of $\mathbf{A C Q}$ without $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$
- $\mathrm{F}=$ fluorescence intensity in presence of $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$
- $\mathrm{F}_{\max }=$ fluorescence intensity at the maximum concentration of $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$
- The value $\left(\mathrm{K}_{\mathrm{a}}\right)^{\mathrm{m}}$ obtained from the ratio of intercept to slope of the linear plot between $1 /\left(\mathrm{F}-\mathrm{F}_{0}\right)$ vs $1 /\left[\mathrm{M}^{\mathrm{n} \pm}\right]^{\mathrm{m}}$ was used to calculate K_{a}.

Fig. S25 Benesi-Hildebrand plot from fluorescence titration data of ACQ $(50 \mu \mathrm{M})$ with $\mathrm{Cu}^{2+}(0-$ $15 \mu \mathrm{M})$. $\mathrm{K}_{\mathrm{a}}=\mathbf{3 . 1 8 \times 1 0 ^ { 4 }} \mathbf{M}^{-2}$

Fig. S26 Benesi-Hildebrand plot from fluorescence titration data of ACQ $(50 \mu \mathrm{M})$ with $\mathrm{Pd}^{2+}(0-$ $160 \mu \mathrm{M}) . \mathbf{K}_{\mathrm{a}}=\mathbf{0 . 5 \times 1 0} \mathbf{M}^{\mathbf{3}}$

Fig. S27 Benesi-Hildebrand plot from fluorescence titration data of ACQ $(10 \mu \mathrm{M})$ with $\mathrm{F}^{-}(0-35$ $\mu \mathrm{M}) . \mathrm{K}_{\mathrm{a}}=3.8 \times 10^{4} \mathrm{M}^{-1}$

3. Determination of detection limit

LOD was calculated using this formula $\mathbf{3 \sigma} / \mathbf{K}$ where;

- K is Slope value taken from Absorbance/Intensity vs Concentration of $\mathrm{Cu}^{2+} / \mathrm{Pd}^{2+} / \mathrm{F}^{-}$plot
- σ is the standard deviation of the blank solution

3a. Using UV Absorbance data:

Fig. S28 Plot of Absorbance versus concentration of Cu^{2+} at 527 nm and the calculated limit of Detection of ACQ for Cu^{2+} is $0.75 \mu \mathrm{M}$

Fig.S29 Plot of Absorbance versus concentration of Pd^{2+} at 527 nm and the calculated limit of Detection of ACQ for Pd^{2+} is $7.6 \mu \mathrm{M}$

Fig. S30 Plot of Absorbance versus concentration of F^{-}at 656 nm and the calculated limit of Detection of ACQ for F^{-}is $0.53 \mu \mathrm{M}$

3b. Using emission intensity data:

Fig. S31 Plot of Intensity at 577 nm versus concentration of Cu^{2+} and the calculated limit of Detection of ACQ for Cu^{2+} is $0.25 \mu \mathrm{M}$

Fig. S32 Plot of Intensity versus concentration of Pd^{2+} at 577 nm and the calculated limit of Detection of ACQ for Pd^{2+} is $11.87 \mu \mathrm{M}$

Fig. S33 Plot of Intensity versus concentration of F^{-}at 598 nm and the calculated limit of Detection of ACQ for F^{-}is $1.15 \mu \mathrm{M}$

4. Quenching Constant

- The Stern-Volmer graph represents the quenching constant (K_{Sv}) which was determined from the slope of the following equation:

Fig. S34 Stern-Volmer plot for ACQ against varying concentrations of Cu^{2+} in the range of 0-15 $\mu \mathrm{M}$

Fig. S35 Fractional fluorescence $\left(\mathrm{F}_{0} / \mathrm{F}\right)$ versus $\left[\mathrm{Pd}^{2+}\right]$ plot in the range of $0-180 \mu \mathrm{M}$

Fig. S36 Stern-Volmer plot for ACQ against varying concentrations of Pd^{2+} in the range of $0-100$ $\mu \mathrm{M}$

Fig. $\mathbf{S 3 7}$ Plot of $\mathrm{K}_{\text {app }}$ versus $[\mathrm{Pd}]^{2+}$
In case of Pd^{2+}, at higher concentrations quenching occurred due to both complex formation as well as collisional quenching with Pd^{2+}, which is evident from the fractional fluorescence ($\mathrm{F}_{0} / \mathrm{F}$) versus $\left[\mathrm{Pd}^{2+}\right]$ plot as well as the lifetime measurements where the characteristic upward curvature and the lowering of average lifetime upon increasing the concentration of Pd^{2+} indicated both static and dynamic quenching.
The Static quenching constant $\left(\mathrm{K}_{\text {sv }}\right), 2.6 \times 10^{4} \mathrm{M}^{-1}$ was determined from the Stern-Volmer plot from the low concentration region of Pd^{2+} using the equation

$$
\frac{\mathrm{F}_{\mathrm{o}}}{\mathrm{~F}}=1+\mathrm{K}_{\mathrm{sv}}\left[\mathbf{P d}^{2+}\right]
$$

While the dynamic quenching constant was obtained from the plot of $\mathrm{K}_{\text {app }}$ (Apparent Quenching constant) versus $\left[\mathrm{Pd}^{2+}\right]$ where

$$
\mathrm{K}_{\text {app }}=\left[\frac{\mathrm{F}_{\mathrm{o}}}{\mathrm{~F}}-1\right] \frac{1}{\left[\mathbf{P d}^{2+}\right]}=\left(\mathrm{K}_{\mathrm{D}}+\mathrm{K}_{\mathrm{S}}\right)+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{S}}\left[\mathbf{P d}^{2+}\right]
$$

The individual values of K_{D} and K_{S} were obtained from straight line with an intercept(I) of $\mathrm{K}_{\mathrm{D}}{ }^{+}$ K_{s} and a slope (S) of $\mathrm{K}_{\mathrm{D}} \mathrm{K}_{\mathrm{s}}$. Since the value of $\mathrm{K}_{\mathrm{sv}}\left(\right.$ or $\left.\mathrm{K}_{\mathrm{s}}\right)$ from the Stern Volmer plot is known, upon solving the quadratic equation $\mathrm{K}_{\mathrm{s}}{ }^{2}-\mathrm{K}_{\mathrm{S}} \mathrm{I}+\mathrm{S}=0$,
$2.1 \times 10^{4} \mathrm{M}^{-1}$ was assigned as Static Quenching constant $\left(\mathrm{K}_{\mathrm{sv}}\right)$ and from the formula of Slope(S) the value of Dynamic Quenching constant $\left(\mathrm{K}_{\mathrm{D}}\right)$ was calculated as $1.3 \times 10^{4} \mathrm{M}^{-1}$

Reference used for the calculations

DC Santra, MK Bera, PK Sukul and S Malik, Chem. Eur. J. 2016, 22, 2012 - 2019.

Fig. S38 Stern-Volmer plot for ACQ against varying concentrations of F^{-}in the range of 0-15 $\mu \mathrm{M}$

Fig. S39 UV-vis spectra of ACQ $(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$

Fig. S40 (a) Absorbance spectra and (b) Emission spectra of ACQ $(50 \mu \mathrm{M})$ at different pH .
(c) Scatter plot of Absorbance Vs pH and (d) Intensity vs pH for ACQ $(50 \mu \mathrm{M})$ at 477 and 577 nm respectively

Fig. S41 (a)Normalized Absorbance spectra and (b) Emission spectra of ACQ $(50 \mu \mathrm{M})+\mathrm{Cu}^{2+}$ $(20 \mu \mathrm{M})$ at different pH

Fig. S42 (a)Absorbance spectra and (b) Emission spectra of ACQ $(50 \mu \mathrm{M})+\operatorname{Pd}^{2+}(100 \mu \mathrm{M})$ at different pH

Fig. $\mathbf{S 4 3}$ (a) Absorbance spectra and (b) Emission spectra of ACQ $(10 \mu \mathrm{M})$ with varying concentrations of $\mathrm{AcOH}(10-50 \mu \mathrm{M})$ in DMSO (c) Absorbance spectra and (b) Emission spectra of ACQ $(10 \mu \mathrm{M})$ with varying concentrations of $\mathrm{KOH}(0-10 \mu \mathrm{M})$ in DMSO

Fig. S44 Plausible structures of ACQ at different pH and FT-IR Spectrum of (a) ACQ (b) $\mathrm{ACQ}+\mathrm{Cu}^{2+}$ and (c) $\mathrm{ACQ}+\mathrm{Pd}^{2+}$

Fig. S45 Particle size histogram of (a) ACQ (b) ACQ $+\mathrm{Cu}^{2+}$ (c) ACQ $+\mathrm{Pd}^{2+}$ and FE-SEM images of (d) ACQ (e) ACQ+Cu ${ }^{2+}$ (f) ACQ+Pd ${ }^{2+}$

Fig. S46 Time decay plot for ACQ and ACQ+Cu ${ }^{2+}$

Sample	Average lifetime ($\tau)$	$\chi^{\mathbf{2}}$
$\mathrm{ACQ}(10 \mu \mathrm{M})$	1.10 ns	1.03
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Cu}^{2+}(5 \mu \mathrm{M})$	1.09 ns	1.10
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Cu}^{2+}(10 \mu \mathrm{M})$	1.17 ns	1.07
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Cu}^{2+}(15 \mu \mathrm{M})$	1.13 ns	1.17
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Cu}^{2+}(20 \mu \mathrm{M})$	0.82 ns	1.18

Fig. $\mathbf{S 4 7}$ Time decay plot for $\mathbf{A C Q}$ and $\mathbf{A C Q}+\mathbf{P d}^{\mathbf{2 +}}$

Sample	Average lifetime ($\tau)$	$\chi^{\mathbf{2}}$
$\mathrm{ACQ}(10 \mu \mathrm{M})$	1.27 ns	0.99
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Pd}^{2+}(20 \mu \mathrm{M})$	1.18 ns	1.04
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Pd}^{2+}(40 \mu \mathrm{M})$	0.86 ns	1.03
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Pd}^{2+}(60 \mu \mathrm{M})$	0.21 ns	1.19
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{Pd}^{2+}(80 \mu \mathrm{M})$	0.10 ns	1.03
ACQ $(10 \mu \mathrm{M})+\mathrm{Pd}^{2+}(100 \mu \mathrm{M})$	0.035 ns	0.98

Fig. $\mathbf{S 4 8}$ Time decay plot for $\mathbf{A C Q}$ and $\mathbf{A C Q}+\mathbf{F}^{-}$

Sample	Average lifetime ($\boldsymbol{\tau})$	$\boldsymbol{\chi}^{\mathbf{2}}$
$\mathrm{ACQ}(10 \mu \mathrm{M})$	3.10 ns	1.16
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{F}^{-}(5 \mu \mathrm{M})$	3.21 ns	1.16
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{F}^{-}(10 \mu \mathrm{M})$	3.27 ns	1.14
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{F}^{-}(15 \mu \mathrm{M})$	3.35 ns	1.17
$\mathrm{ACQ}(10 \mu \mathrm{M})+\mathrm{F}^{-}(20 \mu \mathrm{M})$	3.39 ns	1.18

Fig. S49 UV-vis spectra depicting reversibility of ACQ with alternative addition of $\mathrm{F}^{-}(656 \mathrm{~nm})$ and AcOH (505 nm).

Fig. S50 Absorption spectra in different solvents $(10 \mu \mathrm{M})$ for AMQ.

Fig. S51 Absorbance spectra of AMQ $(10 \mu \mathrm{M})$ in the presence of various anions $(50 \mu \mathrm{M})$ in DMSO.

Fig. S52 Absorbance spectra of AMQ $(50 \mu M)$ in the presence of various cations $(1 \mathrm{mM})$ in $\mathrm{H}_{2} \mathrm{O}$.

Fig S53. A plot of Intensity versus wavelength for $\mathrm{ACQ}(10 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$ at different Excitation wavelengths.

Cu^{2+} Application

Preparation of artificial urine sample:

250 mg urea, $29 \mathrm{mg} \mathrm{NaCl}, 16 \mathrm{mg} \mathrm{KCl}, 22.5 \mathrm{mg} \mathrm{Na}_{2} \mathrm{SO}_{4}, 14 \mathrm{mg} \mathrm{KH}_{2} \mathrm{PO}_{4}, 11 \mathrm{mg}$ creatinine, 10 mg $\mathrm{NH}_{4} \mathrm{Cl}$ and $11 \mathrm{mg} \mathrm{CaCl} 2 \cdot \mathrm{H}_{2} \mathrm{O}$ were dissolved in 10 ml millipore water. ${ }^{[30]}$

Experimental Protocol:

$20 \mu \mathrm{~L}$ of the artificial urine solution in 2 ml water was titrated by adding different concentrations of $\mathrm{Cu}^{2+}(2-8 \mu \mathrm{M}$ for recording absorbance data and $0-4 \mu \mathrm{M}$ for obtaining Intensity versus concentration of Cu^{2+} plot)

The values of slope $(\mathrm{m}=0.00585)$ and intercept $(\mathrm{c}=0.02084)$ were taken from absorbance versus $\left[\mathrm{Cu}^{2+}\right]$ calibration plot (Fig. S49).

Fig. S54 Bar graph for ACQ at 527 nm obtained by titrating $20 \mu \mathrm{~L}$ samples of artificial urine with $\mathrm{Cu}^{2+}(2-8 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$.

Fig. 555 Absorbance versus $\left[\mathrm{Cu}^{2+}\right]$ plot for $\mathrm{ACQ}+20 \mu \mathrm{~L}$ artificial urine at different concentrations $(2-8 \mu \mathrm{M})$ of Cu^{2+} in $\mathrm{H}_{2} \mathrm{O}$.

Fig.S56 Intensity versus $\left[\mathrm{Cu}^{2+}\right]$ plot for (a) ACQ (b) and $20 \mu \mathrm{~L}$ with different concentrations (0-3 $\mu \mathrm{M})$ of Cu^{2+} at 527 nm in $\mathrm{H}_{2} \mathrm{O}$.

Remarks: This experiment is performed to demonstrate the utility of probe ACQ in the quantitative detection of Cu^{2+} present in the urine of Wilson's disease patients and to show its potential for clinical applications. Even in the presence of all the components present in the urine sample the probe can efficiently be utilized for quantifying Cu^{2+} in Wilson's disease patients by using the above method.

$\mathbf{P d}^{2+}$ Application

Experimental Protocol:

50 mg of all four drug samples Avomine, Dolo 650 and Meftal were dissolved in 3 ml water and the solution was filtered. $2 \mu \mathrm{~L}$ was taken from each of the solutions and titrated with $\mathrm{Pd}^{2+}(20-100$ $\mu \mathrm{M})$ and the obtained absorbances at the respective concentrations were tabulated and the corresponding bar graph was plotted.

Inference: After adding the drug samples along with the probe in water no peak at 527 nm was observed in UV. No Pd^{2+} was found in any of the drug samples as indicated by the bar graph. However, after titrating the samples with Pd^{2+} salt $(0-40 \mu \mathrm{M})$ which showed a gradual increase in absorbance at 527 nm which indicated that the concentration of Pd^{2+} in the drug samples was below the detection limit of ACQ and the limit allowable for a Pd^{2+} in drug

(d)

$$
\left|\mathrm{Pd}^{2+\mid}\right|(\mu \mathrm{M})
$$

$\left|\mathrm{Pd}^{2+}\right|(\mu \mathrm{M})$

Fig S57. Scatter plots for (a)ACQ with $\operatorname{Pd}^{2+}(0-40 \mu M)$ along with (b) Avomine (c) Dolo 650 and (d) Meftal at 527 nm in $\mathrm{H}_{2} \mathrm{O}$.

Table S4. Absorbance values at 527 nm for various drug samples.

	Absorbance			
$\left[\mathbf{P d}^{\mathbf{2 +}}\right]$	Avomine+ ACQ+Pd			
$4 \mu \mathrm{M}$	0.00394	0.00654	0.00854	0.0151
$8 \mu \mathrm{M}$	0.00733	0.00893	0.01159	0.02078
$12 \mu \mathrm{M}$	0.00851	0.01169	0.01448	0.02508
$16 \mu \mathrm{M}$	0.02093	0.01471	0.0182	0.03003
$20 \mu \mathrm{M}$	0.01906	0.01844	0.02149	0.03582
$24 \mu \mathrm{M}$	0.02505	0.02428	0.02634	0.03529
$28 \mu \mathrm{M}$	0.03054	0.03376	0.02674	0.03718
$32 \mu \mathrm{M}$	0.03272	0.03904	0.03034	0.04119

$36 \mu \mathrm{M}$	0.03476	0.04324	0.03097	0.04154
$40 \mu \mathrm{M}$	0.03738	0.04448	0.03494	0.04199

\mathbf{F}^{-}Application

Experimental Protocol:

100 mg of toothpaste samples Colgate, Pepsodent and Sensodyne were weighed and dissolved in 5 ml DMSO.
$10 \mu \mathrm{~L}$ of the solution in 2 ml DMSO was titrated by adding different concentrations of $\mathrm{F}^{-}(2-8 \mu \mathrm{M})$ and the obtained values were used to determine the concentration of fluoride by using the equation

$$
x=\frac{y-c}{m}
$$

The values of slope $(\mathrm{m}=0.00397)$ and intercept $(\mathrm{c}=0.01349)$ were taken from absorbance versus [F^{-}] calibration plot (Fig. S52).

Remarks: The outcomes obtained indicate that $\mathbf{A C Q}$ is potentially useful for the quantification of F in toothpaste samples. The amount of fluoride recovered in each of the samples is tabulated below (Table S5).

Fig S58. Absorbance versus [$\left.\mathrm{F}^{-}\right]$plot for ACQ at different concentrations of F^{-}in DMSO.

Fig S59. Bar graph for ACQ at 656 nm obtained by titrating toothpaste samples with $\mathrm{F}^{-}(2-8 \mu \mathrm{M})$ in DMSO.

Table S5. Calculated parameters from the obtained experimental values for quantifying F^{-}in different toothpaste samples.

Absorbance of $\mathbf{A C Q}+\mathbf{F}^{-}$at z	$\left[\mathbf{F}^{-}\right](\mathbf{z})$	Absorbance of Colgate $+\mathbf{A C Q}+\left[\mathbf{F}^{-}\right]$ $\mathbf{(z)}$	$\mathbf{x}_{\text {colgate }}$	Concentration found in Sample $\left(\mathbf{x}_{\text {colgate }}-\mathbf{z}\right)$
0.01871	$2 \mu \mathrm{M}$	0.02956	$4.04 \mu \mathrm{M}$	$2.04 \mu \mathrm{M}$
0.03168	$4 \mu \mathrm{M}$	0.0374	$6.02 \mu \mathrm{M}$	$2.02 \mu \mathrm{M}$
0.03798	$6 \mu \mathrm{M}$	0.0487	$8.87 \mu \mathrm{M}$	$2.86 \mu \mathrm{M}$
0.04348	$8 \mu \mathrm{M}$	0.05521	$10.5 \mu \mathrm{M}$	$2.50 \mu \mathrm{M}$

Absorbance of $\mathbf{A C Q}+\mathbf{F}^{-}$at z	$\left[\mathbf{F}^{-}\right](\mathbf{z})$	Absorbance of Pepsodent $+\mathbf{A C Q}+\left[\mathbf{F}^{-}\right]$ $\mathbf{(z)}$	$\mathbf{x}_{\text {pepsodent }}$	Concentration found in Sample ($\left.\mathbf{x}_{\text {pepsodent }} \mathbf{- z}\right)$
0.01871	$2 \mu \mathrm{M}$	0.0217	2.0689	$0.068 \mu \mathrm{M}$
0.03168	$4 \mu \mathrm{M}$	0.0322	4.7128	$0.71 \mu \mathrm{M}$
0.03798	$6 \mu \mathrm{M}$	0.03907	6.4433	$0.44 \mu \mathrm{M}$
0.04348	$8 \mu \mathrm{M}$	0.04293	7.415	$-0.59 \mu \mathrm{M}$

Absorbance of $\mathbf{A C Q}+\mathbf{F}^{-} \mathbf{a t ~} \mathbf{z}$	$\left[\mathbf{F}^{-}\right](\mathbf{z})$	Absorbance of Sensodyne $+\mathbf{A C Q}+\left[\mathbf{F}^{-}\right](\mathbf{z})$	$\mathbf{x}_{\text {sensohyde }}$	Concentration found in Sample ($\mathbf{x}_{\text {sensodyne- }} \mathbf{- z}$
0.01871	$2 \mu \mathrm{M}$	0.02818	3.7002	$1.70 \mu \mathrm{M}$
0.03168	$4 \mu \mathrm{M}$	0.03551	5.546	$1.54 \mu \mathrm{M}$
0.03798	$6 \mu \mathrm{M}$	0.04183	7.138	$1.13 \mu \mathrm{M}$
0.04348	$8 \mu \mathrm{M}$	0.04846	8.8085	$0.80 \mu \mathrm{M}$

Table. S6 Examples of previously reported colorimetric and fluorescence-based Cu^{2+} sensors

Sensor	Detection Limit	Solvent	Reference
	0.73 nM	$\begin{gathered} \mathrm{MeOH} / \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	[10]
	${ }^{-}$	MeOH	[11]
	$0.503 \mu \mathrm{M}$	MeCN / $\mathrm{H}_{2} \mathrm{O}$	[12]
	$0.102 \mu \mathrm{M}$	EtOH/H EPES buffer	[13]
	-	DNF/ HEPES buffer	[14]
1-	$0.11 \mu \mathrm{M}$	EtOH	[15]
	5.6 ppb	HEPES buffer	[16]

Table S7 Examples of previously reported colorimetric and fluorescence-based Pd^{2+} sensors

Sensor	Detection Limit	Solvent	Reference
	2.2 nM	PBS DMSO	$[17]$

[18]

Table S8 Examples of previously reported colorimetric and fluorescence-based F-sensors.

Sensor	Detection Limit	Solvent	Mechanism	Reference
ICT	DMSO	ICT Hydrogen Bonding	$[1]$	

[5]

Table S9 Examples of previously reported molecules with N-oxide group used for fluorescence studies.
(23]

	[25]
	[26]
	[27]
	[28]
	[29]

References:

1. Tabasi, Z. A., Younes, E. A., Walsh, J. C., Thompson, D. W., Bodwell, G. J., \& Zhao, Y. (2018). Pyrenoimidazolyl-benzaldehyde fluorophores: synthesis, properties, and sensing function for fluoride anions. ACS omega, 3(11), 16387-16397.
2. Zheng, X., Zhu, W., Ai, H., Huang, Y., \& Lu, Z. (2016). A rapid response colorimetric and ratiometric fluorescent sensor for detecting fluoride ion, and its application in real sample analysis. Tetrahedron Letters, 57(52), 5846-5849.
3. Zhou, X., Lai, R., Li, H., \& Stains, C. I. (2015). The 8 -silyloxyquinoline scaffold as a versatile platform for the sensitive detection of aqueous fluoride. Analytical chemistry, 87(8), 4081-4086.
4. Mondal, S., Gupta, P., Rahaman, F., Gautam, P., \& Lekshmi, I. C. (2022). Colorimetric and fluorimetric detection of fluoride ion using thiazole derived receptor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120301.
5. Kumar, P., Sakla, R., Ghosh, A., \& Jose, D. A. (2017). Reversible colorimetric sensor for moisture detection in organic solvents and application in inkless writing. ACS applied materials \& interfaces, 9(30), 25600-25605.
6. Mu, M., Ke, X., Cheng, W., Li, J., Ji, C., \& Yin, M. (2022). Perylenemonoimide-Based Colorimetric Probe with High Contrast for Naked-Eye Detection of Fluoride Ions. Analytical Chemistry, 94(33), 11470-11475.
7. Zheng, X., Zhu, W., Liu, D., Ai, H., Huang, Y., \& Lu, Z. (2014). Highly selective colorimetric/fluorometric dual-channel fluoride ion probe, and its capability of differentiating cancer cells. ACS applied materials \& interfaces, 6(11), 7996-8000.
8. Nakane, Y., Takeda, T., Hoshino, N., Sakai, K. I., \& Akutagawa, T. (2015). Cation-anion dual sensing of a fluorescent quinoxalinone derivative using lactam-lactim tautomerism. The Journal of Physical Chemistry A, 119(24), 6223-6231.
9. Akula, M., Thigulla, Y., Nag, A., \& Bhattacharya, A. (2015). Selective detection of fluoride using fused quinoline systems: effect of pyrrole. RSC advances, 5(70), 57231-57234.
10. Chandra, R., Ghorai, A., \& Patra, G. K. (2018). A simple benzildihydrazone derived colorimetric and fluorescent 'on-off-on'sensor for sequential detection of copper (II) and cyanide ions in aqueous solution. Sensors and Actuators B: Chemical, 255, 701-711.
11. Mergu, N., \& Gupta, V. K. (2015). A novel colorimetric detection probe for copper (II) ions based on a Schiff base. Sensors and actuators B: Chemical, 210, 408-417.
12. Dalbera, S., Kulovi, S., \& Dalai, S. (2018). Pyrene-based Schiff Base as Selective Chemosensor for Copper (II) and Sulfide Ions. ChemistrySelect, 3(23), 6561-6569.
13. Chen, D., Chen, P., Zong, L., Sun, Y., Liu, G., Yu, X., \& Qin, J. (2017). Colorimetric and fluorescent probes for real-time naked eye sensing of copper ion in solution and on paper substrate. Royal Society open science, 4(11), 171161.
14. Wang, Y., Feng, H., Li, H., Yang, X., Jia, H., Kang, W., ... \& Zhang, R. (2020). A Copper (II) Ensemble-Based Fluorescence Chemosensor and Its Application in the 'Naked-Eye'Detection of Biothiols in Human Urine. Sensors, 20(5), 1331.
15. Trevino, K. M., Tautges, B. K., Kapre, R., Franco Jr, F. C., Or, V. W., Balmond, E. I., ... \& Louie, A. Y. (2021). Highly sensitive and selective spiropyran-based sensor for Copper (II) quantification. ACS omega, 6(16), 10776-10789.
16. Sakunkaewkasem, S., Petdum, A., Panchan, W., Sirirak, J., Charoenpanich, A., Sooksimuang, T., \& Wanichacheva, N. (2018). Dual-analyte fluorescent sensor based on [5] helicene derivative with super large stokes shift for the selective determinations of $\mathrm{Cu} 2+$ or $\mathrm{Zn} 2+$ in buffer solutions
and its application in a living cell. ACS sensors, 3(5), 1016-1023.
17. Xia, Q., Feng, S., Liu, D., \& Feng, G. (2018). A highly selective and sensitive colorimetric and near-infrared fluorescent turn-on probe for rapid detection of palladium in drugs and living cells. Sensors and Actuators B: Chemical, 258, 98-104.
18. Choi, M. G., Seo, J. Y., Cho, E. J., \& Chang, S. K. (2022). Colorimetric analysis of palladium using thiocarbamate hydrolysis and its application for detecting residual palladium in drugs. Journal of Photochemistry and Photobiology A: Chemistry, 429, 113920.
19. Chen, X., Wang, H., Ma, X., Wang, M., Zhang, Y., Gao, G., ... \& Hou, S. (2018). Colorimetric and fluorescent probe for real-time detection of palladium (II) ion in aqueous medium and live cell imaging. Dyes and Pigments, 148, 286-291.
20. Wang, L., Zheng, X. Y., Zhang, X., \& Zhu, Z. J. (2021). A quinoline-based fluorescent chemosensor for palladium ion $\left(\mathrm{Pd}^{2+}\right)$-selective detection in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 249, 119283.
21. Lei, W. A. N. G., Wan-Yu, Z. H. U., \& ZHANG, X. (2022). Selective and sensitive fluorescence detection of Pd (II) in 100\% water and imaging application in living cells. Chinese Journal of Analytical Chemistry, 50(12), 100155.
22. Baig, M. Z. K., Pawar, S., Tulichala, R. P., Nag, A., \& Chakravarty, M. (2017). A single fluorescent probe as systematic sensor for multiple metal ions: Focus on detection and bio-imaging of Pd^{2+}. Sensors and Actuators B: Chemical, 243, 226-233.
23. Ma, Z., Li, J., Lin, K., Ramachandran, M., Li, M., \& Li, Y. (2020). Heterocyclic N-Oxides as Small-Molecule Fluorogenic Scaffolds: Rational Design and Applications of Their "On-Off" Fluorescence. Analytical chemistry, 92(18), 12282-12289.
24. Hirayama, T., Okuda, K., \& Nagasawa, H. (2013). A highly selective turn-on fluorescent probe for iron (II) to visualize labile iron in living cells. Chemical science, 4(3), 1250-1256.
25. Niwa, M., Hirayama, T., Okuda, K., \& Nagasawa, H. (2014). A new class of high-contrast Fe (II) selective fluorescent probes based on spirocyclized scaffolds for visualization of intracellular labile iron delivered by transferrin. Organic \& biomolecular chemistry, 12(34), 6590-6597.
26. Reddy, C. R., Aila, M., Sathish, P., Mrinalini, M., Giribabu, L., Prasanthkumar, S., \& Grée, R. (2019). Metal-free propargylation/aza-annulation approach to substituted β-carbolines and evaluation of their photophysical properties. Organic \& Biomolecular Chemistry, 17(42), 92919304.
27. Hirayama, T., Tsuboi, H., Niwa, M., Miki, A., Kadota, S., Ikeshita, Y., ... \& Nagasawa, H. (2017). A universal fluorogenic switch for Fe (ii) ion based on N -oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells. Chemical science, 8(7), 4858-4866.
28. Sedenkova, K. N., Kolodyazhnaya, J. V., Vasilenko, D. A., Gracheva, Y. A., Kharitonoshvili, E. V., Grishin, Y. K., ... \& Averina, E. B. (2019). Novel π-conjugated systems based on pyrimidine N-Oxide. Dyes and Pigments, 164, 72-81.
29. Knox, H. J., Hedhli, J., Kim, T. W., Khalili, K., Dobrucki, L. W., \& Chan, J. (2017). A bioreducible N -oxide-based probe for photoacoustic imaging of hypoxia. Nature communications, 8(1), 1-9.
Preparation of artificial urine sample: Chandran, N., Janardhanan, P., Bayal, M., Pilankatta, R., \& Nair, S. S. (2022). Development of a paper printed colorimetric sensor based on Cu-Curcumin nanoparticles for evolving point-of-care clinical diagnosis of sodium. Scientific reports, 12(1), 115.
exp_1179_2NH-NH2
Table 1 Crystal data and structure refinement for exp_1179_2NH-NH2.[CCDC No. 2194801]
Identification code exp_1179_2NH-NH2
Empirical formula C9H6N4O2
Formula weight 202.18
Temperature/K 293(2)
Crystal system monoclinic
Space group P21/c
$\mathrm{a} / \AA 4.89130(10)$
b/Å 9.7299(2)
c/ \AA 17.6911(4)
$\alpha^{\circ} 90$
$\beta /{ }^{\circ} 95.712(2)$
$\gamma^{\circ}{ }^{\circ} 90$
Volume/Å3 837.77(3)
Z 4
pcalcg/cm3 1.603
$\mu / \mathrm{mm} 11.009$
F(000) 416.0
Crystal size $/ \mathrm{mm} 3 \quad 0.2 \times 0.1 \times 0.1$
Radiation $\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 10.05$ to 159.082
Index ranges $-3 \leq \mathrm{h} \leq 6,-12 \leq \mathrm{k} \leq 12,-22 \leq 1 \leq 20$
Reflections collected 4265
Independent reflections 1751 [Rint $=0.0227$, Rsigma $=0.0339$]
Data/restraints/parameters1751/0/141
Goodness-of-fit on F2 1.100
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R} 1=0.0416, \mathrm{wR} 2=0.1115$
Final R indexes [all data] R1 $=0.0445$, wR2 $=0.1148$
Largest diff. peak/hole / e Å-3 0.21/-0.34

Table 2 Fractional Atomic Coordinates ($\times 104$) and Equivalent Isotropic Displacement Parameters ($\AA 2 \times 103$) for $\exp _1179 _2 N H-N H 2$. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised UIJ tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
O1O	$1630(2)$	$2293.6(10)$	$7220.4(6)$	$30.8(3)$
O2O	$7234(2)$	$5927.5(11)$	$5682.9(6)$	$30.0(3)$
N1N	$5868(2)$	$5049.1(11)$	$6030.3(6)$	$22.1(3)$
N2N	$2956(3)$	$8035.9(12)$	$6639.5(7)$	$31.4(3)$
N3N	$651(2)$	$4857.2(12)$	$7375.7(7)$	$25.0(3)$
N4N	$2982(2)$	$3154.4(11)$	$6827.6(6)$	$22.0(3)$
C1C	$5169(3)$	$1279.9(14)$	$6233.8(8)$	$26.7(3)$
C2C	$7002(3) 841.5(15)$	$5747.2(8)$	$31.8(3)$	

C3C	$8483(3) 1785.5(16)$	$5347.7(8)$	$32.5(3)$
C4C	$8148(3) 3174.0(15)$	$5437.5(8)$	$27.5(3)$
C5C	$3988(3) 5462.8(13)$	$6496.1(7)$	$21.4(3)$
C6C	$3526(3) 6906.7(14)$	$6561.8(7)$	$23.6(3)$
C7C	$2513(3) 4513.3(13)$	$6910.9(7)$	$20.8(3)$
C8C	$4803(2) 2696.8(13)$	$6336.5(7)$	$21.7(3)$
C9C	$6286(3) 3641.6(13)$	$5935.1(7)$	$22.3(3)$

Table 3 Anisotropic Displacement Parameters ($\AA 2 \times 103$) for exp_1179_2NH-NH2. The Anisotropic displacement factor exponent takes the form: $-2 \pi 2[h 2 a * 2 U 11+2 h k a * b * U 12+\ldots]$. Atom U11 U22U33U23U13U12

O 1 O	$35.1(5)$	$21.3(5)$	$38.6(6)$	$1.5(4)$	$16.3(4)$	$-8.1(4)$
O 2 O	$29.7(5)$	$28.8(5)$	$33.4(5)$	$8.4(4)$	$13.2(4)$	$-2.3(4)$
N 1 N	$21.0(5)$	$23.5(6)$	$22.4(5)$	$2.5(4)$	$5.2(4)$	$-0.8(4)$
N 2 N	$37.6(7)$	$22.6(6)$	$35.6(6)$	$0.5(5)$	$11.6(5)$	$-0.4(5)$
N 3 N	$28.0(6)$	$19.7(5)$	$29.2(6)$	$-1.6(4)$	$12.1(4)$	$-2.2(4)$
N 4 N	$22.3(5)$	$19.6(5)$	$24.8(5)$	$0.0(4)$	$6.0(4)$	$-2.7(4)$
C 1 C	$27.4(6)$	$22.5(6)$	$29.7(7)$	$-2.7(5)$	$1.4(5)$	$1.1(5)$
C 2 C	$34.2(7)$	$27.2(7)$	$33.5(7)$	$-6.9(6)$	$0.5(6)$	$7.7(6)$
C 3 C	$31.0(7)$	$39.0(8)$	$27.9(7)$	$-6.3(6)$	$5.3(5)$	$11.8(6)$
C 4 C	$25.1(6)$	$34.4(7)$	$23.5(6)$	$1.2(5)$	$5.8(5)$	$4.1(5)$
C 5 C	$21.4(6)$	$20.4(6)$	$23.0(6)$	$-0.7(5)$	$4.7(5)$	$-0.2(5)$
C 6 C	$24.2(6)$	$22.8(7)$	$24.8(6)$	$1.1(5)$	$6.8(5)$	$-2.0(5)$
C 7 C	$20.9(6)$	$19.9(6)$	$22.0(6)$	$-1.7(4)$	$3.6(5)$	$-0.7(5)$
C 8 C	$20.5(6)$	$22.6(6)$	$22.0(6)$	$-2.0(5)$	$1.9(5)$	$0.9(5)$
C 9 C	$21.6(6)$	$23.9(6)$	$21.5(6)$	$-0.5(5)$	$2.3(5)$	$2.3(5)$

Table 4 Bond Lengths for exp_1179_2NH-NH2.

Atom	Atom	Length $/ \AA$	Atom	Atom	Length/ \AA
O1O	N4N	$1.3088(14)$	C1C	C2C	$1.371(2)$
O 2 O	N 1 N	$1.2793(14)$	C1C	C8C	$1.4044(18)$
N 1 N	C 5 C	$1.3558(16)$	C2C	C3C	$1.403(2)$
N 1 N	C9C	$1.3973(17)$	C3C	C4C	$1.372(2)$
N 2 N	C6C	$1.1451(18)$	C4C	C9C	$1.4041(18)$
$\mathrm{N} 3 N$	C7C	$1.3294(16)$	C5C	C6C	$1.4295(18)$
$\mathrm{N} 4 N$	C7C	$1.3525(16)$	C5C	C7C	$1.4203(18)$
$\mathrm{N} 4 N$	C8C	$1.3784(17)$	C8C	C9C	$1.4064(18)$

Table 5 Bond Angles for exp_1179_2NH-NH2.

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom				Atom ${ }^{2}$ Angle $/^{\circ}$	
O2O	N1N	C5C	$120.80(11)$	C7C	C5C	C6C	$120.32(12)$			
O2O	N1N	C9C	$120.48(11)$	N2N	C6C	C5C	$174.27(14)$			
C5C	N1N	C9C	$118.71(11)$	N3N	C7C	N4N	$116.58(12)$			
O1O	N4N	C7C	$117.88(11)$	N3N	C7C	C5C	$124.77(12)$			
O1O	N4N	C8C	$121.34(11)$	N4N	C7C	C5C	$118.64(11)$			
C7C	N4N	C8C	$120.77(11)$	N4N	C8C	C1C	$119.83(12)$			

C2C	C1C	C8C	$119.11(13)$	N4N	C8C	C9C	$120.34(12)$
C1C	C2C	C3C	$121.00(13)$	C1C	C8C	C9C	$119.83(12)$
C4C	C3C	C2C	$120.83(13)$	N1N	C9C	C4C	$120.32(12)$
C3C	C4C	C9C	$118.95(13)$	N1N	C9C	C8C	$119.40(11)$
N1N	C5C	C6C	$117.61(12)$	C4C	C9C	C8C	$120.28(13)$
N1N	C5C	C7C	$122.07(12)$				

Table 6 Torsion Angles for exp_1179_2NH-NH2.

A B	C D	Angl		B ${ }^{-} \mathrm{C}$ D	Angle ${ }^{\circ}$				
010	N4N	C7C	N3N	-1.60(17)	C2C	C1C	C8C	C9C	0.73(19)
010	N4N	C7C	C5C	179.23(11)	C2C	C3C	C4C	C9C	-0.2(2)
010	N4N	C8C	C1C	1.95(18)	C3C	C4C	C9C	N1N	9.04(12)
010	N4N	C8C	C9C	-178.33(11)	C3C	C4C	C9C	C8C	0.3(2)
O2O	N1N	C5C	C6C	2.16(17)	C5C	N1N	C9C	C4C	.84(11)
O2O	N1N	C5C	C7C	-177.63(11)	C5C	N1N	C9C	C8C	-1.51(18)
O2O	N1N	C9C	C4C	-2.06(18)	C6C	C5C	C7C	- N 3 N	0.1(2)
O2O	N1N	C9C	C8C	178.59(10)	C6C	C5C	C7C	C 4 N	
179.25(10)									
N1N	C5C	C7C	N3N	179.94(12)	C7C	N4N	C8C	C1C	-
177.23(11)									
N1N	C5C	C7C	N4N	-0.96(19)	C7C	N4N	C8C	C9C	2.48(18)
N4N	C8C	C9C	N1N	-0.92(18)	C8C	N4N	C7C	N3N	
177.62(11)									
N4N	C8C	C9C	C4C	179.73(11)	C8C	N4N	C7C	C5C	-1.56(18)
C1C	C2C	C3C	C4C	0.4(2)	C8C	C1C	C2C	C3C	(2)
C1C	C8C	C9C	N1N	178.80(10)	C9C	N1N	C5C	C6C	-
177.74(11)									
C1C	C8C	C9C	C4C	-0.56(19)	C9C	N1N	C5C	C7C	2.47(18)
C2C	C1C	C8C	N4N	-179.55(12)					

Table 7 Hydrogen Atom Coordinates $(\AA \times 104)$ and Isotropic Displacement Parameters ($\AA 2 \times 103$) for $\exp \quad 1179 _2 N H-N H 2$.
Atom x y z U(eq)
H3NA 551.455696 .897401 .5638
H3NB -30(40) 4143(19) 7592(10) 30(4)
H1C $\quad 4182.55647 .43 \quad 6492.3132$
H2C 7268.17-95.49 5680.8538
H3C $\quad 9707.411465 .875018 .0239$
H4C 9139.13795 .635172 .9433
Experimental
Single crystals of C9H6N4O2 [exp_1179_2NH-NH2] were []. A suitable crystal was selected and [] on a XtaLAB Pro: Kappa dual offset/far diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J.

Appl. Cryst. 42, 339-341.
2. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [exp_1179_2NH-NH2]
Crystal Data for C9H6N4O2 ($\mathrm{M}=202.18 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group $\mathrm{P} 21 / \mathrm{c}$ (no. 14), $\mathrm{a}=$ $4.89130(10) \AA, \mathrm{b}=9.7299(2) \AA, \mathrm{c}=17.6911(4) \AA, \beta=95.712(2)^{\circ}, \mathrm{V}=837.77(3) \AA 3, \mathrm{Z}=4, \mathrm{~T}=$ $293(2) \mathrm{K}, \mu(\mathrm{CuK} \alpha)=1.009 \mathrm{~mm}-1$, Dcalc $=1.603 \mathrm{~g} / \mathrm{cm} 3,4265$ reflections measured $\left(10.05^{\circ} \leq 2 \Theta\right.$ $\leq 159.082^{\circ}$), 1751 unique $($ Rint $=0.0227$, Rsigma $=0.0339$) which were used in all calculations. The final R1 was 0.0416 (I > $2 \sigma(\mathrm{I})$) and wR2 was 0.1148 (all data).
Refinement model description
Number of restraints - 0 , number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C(H) groups
At 1.5 times of:
All N(H) groups
2. a Aromatic/amide H refined with riding coordinates:
$\mathrm{C} 1 \mathrm{C}(\mathrm{H} 1 \mathrm{C}), \mathrm{C} 2 \mathrm{C}(\mathrm{H} 2 \mathrm{C}), \mathrm{C} 3 \mathrm{C}(\mathrm{H} 3 \mathrm{C}), \mathrm{C} 4 \mathrm{C}(\mathrm{H} 4 \mathrm{C})$
2.b Idealised tetrahedral OH refined as rotating group:

N3N(H3NA)

This report has been created with Olex2, compiled on 2018.05 .29 svn.r3508 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

