Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting file

Transformation of a Copper-based Metal-Organic Polyhedra into a Mixed Linker MOF for CO₂ Capture

Muhammad Abbas,¹ *Amanda M. Maceda*,¹ *Zhifeng Xiao*,² *Hong-Cai Zhou*,² *Kenneth J. Balkus Jr*.¹*

¹Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, United States

² Department of Chemistry, Texas A&M University, College Station, TX 77843, United States

*Corresponding author: <u>balkus@utdallas.edu</u>

Figure S1. **CuMOF-Bipy** crystal structure displaying the (a) asymmetric unit with atom numbering and (b) the binuclear copper node and isophthalic acid linkers, highlighted to show their structural differences.

Figure S2. The extended structure of **CuMOF-Bipy** along *a*-axis showing uncoordinated DMF molecules (highlighted green) in the pores.

Table S1. Crystallographic data and structure refinement results for CuMOF-Bipy

Compound	CuMOF-Bipy		
CCDC number	2212850		
Empirical formula	$C_{42}H_{38}Cu_2N_6O_{10}$		
Formula weight	913.86		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
<i>a</i> (Å)	9.8053(2)		
b (Å)	15.5940(3)		

<i>c</i> (Á)	13.0691(3)			
β (°)	95.514(1)			
Volume (Å ³)	1989.1(7)			
Z	2			
ρ (calc.)(g/cm ³)	1.526			
λ	0.71073 Å			
Temp. (K)	110			
F(000)	1632.0			
μ (mm ⁻¹)	1.137			
T _{min} , T _{max}	0.7489, 0.6907			
2θ _{range} (°)	4.924 to 90.99			
Reflections collected	441443			
Independent reflections	16776			
	$[R_{\text{int}} = 0.0590, R_{\text{sigma}} = 0.0175]$			
Completeness	99.7%			
Data/restraints/ parameters	16776/18/321			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0288, wR_2 = 0.0722$			
Final R indexes [all data]	$R_1 = 0.0412, wR_2 = 0.0781$			
Goodness-of-fit on F ²	1.027			
Largest diff. peak and hole (e Å ⁻³)	0.69/-0.86			

Figure S3 TGA curves for CuMOF-Bipy in comparison to organic linkers used in synthesis

Figure S4. PXRD pattern of remaining **CuMOF-Bipy** after TGA under air at 600°C compared to CuO (simulated from ICSD 26715).¹

Figure S5. The survey XPS spectrum of **CuMOF-Bipy**, Au (4f, 4d, 4p, and 4s) peaks come from the reference used for charge correction

Table S2. Atomic concentrations calculated from XPS spectra

CuMOF-Bipy	C (%)	N (%)	O (%)	Cu (%)
Theoretical	70	10	16.6	3.33
calculated				
Actual	71.21	8.10	17.33	3.37

Figure S6. Calculated pore-openings in CuMOF-Bipy crystal structure viewed along *a*-axis

Figure S7. Nitrogen adsorption isotherm for CuMOF-Bipy at 77 K

Figure S8. Pore size distribution in CuMOF-Bipy

References

1. Tunell, G, Posnjak, E, Ksanda, C J, Z.Kristallogr.Mineral.Petrogr.Abt .A (1935), 90, 120