SUPPLEMENTARY INFORMATION

Formation of a cyclooctatetraenylsamarium(III) inverse sandwich that ring-opens tetrahydrofuran

R. Peedika Paramban, ^a Zhifang Guo, ^a Glen B. Deacon, ^b and Peter C. Junk ^{a*}

^aCollege of Science & Engineering, James Cook University, Townsville, QLD, 4811, Australia.

^bSchool of Chemistry, Monash University, Clayton, VIC, 3800, Australia.

*Corresponding author: peter.junk@jcu.edu.au.

Contents

- 1. Syntheses
- 2. ¹H, ¹³C NMR and IR Spectra of complexes
- 3. X-ray crystallography
- 4. Selected bond angles (°) and lengths (Å)
- 5. References

1. Syntheses

General

The lanthanoid compounds described here are highly air and moisture sensitive, and were prepared and handled with vacuum-nitrogen line techniques and in a dry box in an atmosphere of purified nitrogen. [Sm(DippForm)₂(thf)₂] was prepared by the literature method.¹ Samarium metal was from Eutectix. Large chunks were filed in the drybox before use. Solvents (toluene, thf, C_6D_6 and hexane) were pre-dried by distillation over sodium or sodium benzophenone ketyl before being stored under an atmosphere of nitrogen. Cyclooctatetraene (C₈H₈) was purchased from Sigma Aldrich, degassed and stored over dried 4Å molecular sieves. IR spectra were recorded as Nujol mulls between NaCl plates using an Agilent Technologies Cary 630 FTIR instrument within the range 4000-700 cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker DPX 300MHz spectrometer or a Bruker 400MHz instrument. Chemical shifts were referenced to the residual ¹H and ¹³C resonances of the deuterated solvents (¹H, ¹³C). Microanalyses were determined by the Chemical Analysis Facility, Macquarie University, and all the samples were sealed in tubes under nitrogen. Melting points were determined in sealed glass capillaries under nitrogen and are uncalibrated. Crystals were immersed in crystallography oil, and were measured on a Rigaku SynergyS diffractometer or the MX1 beamline at the Australian Synchrotron (see details below). Crystal data and refinement details are given in Table S1. CCDC 2219717-2219719 for compounds 1-3, contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

General procedure for 1-3

 C_8H_8 (0.09mmol) was added dropwise to a Schlenk flask charged with [Sm(DippForm)₂(thf)₂] (0.18mmol) in 5mL of toluene (for 1) or thf (for 2 and 3) under a nitrogen atmosphere. After standing undisturbed for one day (for 1) or two days (for 2 and 3) at room temperature, the resulting crystals were isolated. Samples were dried in vacuo before being sent for elemental analysis. Although satisfactory %C analyses were obtained in all cases and reasonable %N values in two cases, %H were consistently high.

[Sm₂(DippForm)₄(COT)] 1

Red crystals were obtained after concentrating the solution and leaving it overnight at room temperature. (0.12 g, 72%), (Found: C, 69.87; H, 8.61; N, 6.01; C₁₀₈H₁₄₈N₈Sm₂ (1859.1, after

the loss of any toluene of solvation) requires C, 69.77; H, 8.02; N, 6.03%). IR (Nujol): 3060m, 2728w, 1665m, 1594m, 1517s, 1363m, 1337m, 1289s, 1255m, 1235m, 1190s, 1116m, 1081w, 1056m, 1030m, 1018m, 932m, 907w, 798m, 764m, 764s, 754s, 741s, 728s, 694m cm ⁻¹. ¹H NMR (C₆D₆, 300 MHz): 10.71 (s, 4H, NC*H*N), 8.34 (s, 8H, C₈*H*₈), 7.2 - 6.9 (m, 24H, aromatic Hs), 2.35 (m,16H, Dipp-C*H*), 2.11 (Toluene-C*H*₃), 1.5 - -2.0 (96H, Dipp-C*H*₃). ¹³C NMR (75.5 MHz, C₆D₆, 296K): 21.42 (Toluene: *C*H₃), 22.73 (Dipp- *C*H₃), 67.90 (*C*₈H₈), 125.70 (Toluene: *C*H(4)), 128.70 (Toluene: *C*H(3,5)), 129.34 (Toluene: *C*H(2,6)), 137.90 (Toluene: *C*H(1)), 124.38, 127.39, 132.90 (aromatic C resonances – not assigned). Crystals used for NMR measurements were taken directly from under toluene supernatant. Alternatively, dissolution of **1** in C₆D₆ and leaving it undisturbed overnight yielded red crystals of complex **1**·4C₆D₆ suitable for X-ray crystallography.

[Sm(DippForm)(COT)(thf)₂] 2

Purple crystals were obtained after layering the reaction mixture using hexane antisolvent and concentrating afterwards. (0.0196 g, 29%), (Found: C, 64.57; H, 8.69; N, 5.60; C₄₁H₅₉N₂O₂Sm (762.25) requires C, 64.60; H, 7.80; N, 3.67 %). IR (Nujol): 2722m, 1667w, 1526s, 1324m, 1312m, 1285s, 1251m, 1188m, 1099w, 1054m, 1030m, 1008m, 927w, 889m, 873m, 770m, 758m, 722m, 705s cm⁻¹. ¹H NMR (C₆D₆, 300 MHz): 10.93 (s, 8H, C₈*H*₈), 8.31 (s, 1H, NC*H*N), 7.4 - 7.0 (m, 6H, aromatic Hs), 3.79 (8H, thf: α-C*H*₂), 2.55 (m,4H, Dipp-C*H*), 1.56 (8H, thf: β-C*H*₂), 1.16 – 1.18 (m, 24H, Dipp-C*H*), ¹³C NMR (75.5 MHz, C₆D₆, 296K): 24.63 (Dipp-CH₃), 25.95 (thf: β-*C*H₂), 30.06 (Dipp-*C*H), 71.82 (thf: α-*C*H₂), 82.58 (*C*₈H₈), 123.52, 124.48, 141.14, 143.97 (aromatic C resonances – not assigned).

[Sm(DippForm)₂(O-C₄H₈-DippForm)(thf)]·thf 3

Colourless crystals were obtained after concentrating the supernatant solution separated from the product **2** crystals and keeping it in the refrigerator overnight. (0.0254 g, 20%), M.p. 210°C, (Found: C, 71.91; H, 9.46; N, 5.83; C₈₃H₁₂₁N₆O₂Sm (1385.25, loss of one thf of crystallization) requires C, 72.60; H, 9.31; N, 5.71 %). IR (Nujol): 2723w, 1666m, 1637s, 1587m, 1525s, 1361m, 1319s, 1279s, 1235m, 1190m, 1112s, 1072m, 1056m, 1044m, 1030m, 933m, 873w, 800m, 767w, 755s cm ⁻¹. ¹H NMR (C₆D₆, 300 MHz): 9.67 (s, 2H, Dipp-NCHN), 7.36 (s, 1H, Dipp-NCHN: RO-thf), 7.25 (m, 2H, N-CH₂: RO-thf), 7.24 - 6.8 (m, 18H, aromatic Hs), 5.36 (m, 2H, CH₂: RO-thf), 4.42 (m, 2H, CH₂: RO-thf), 3.69 & 3.61 (2H+2H, Dipp-CH: RO-thf), 3.5 - 3.1 (8H, Dipp-CH), 2.89 (4H, thf: α -CH₂), 2.73 (2H, CH₂: RO-thf), 1.5 - 0.8 (24H, Dipp-CH₃: RO-thf; 48H, Dipp-CH₃; 4H, thf: β -CH₂). ¹³C NMR (75.5 MHz, C₆D₆, 296K): 14.32, 23.04, 23.90, 24.51, 25.36, 28.59, 28.82, 31.96, 34.78, 51.58, 68.31, 72.59, 123.16, 123.25, 123.50, 123.55, 124.02, 124.71, 132.39, 139.97, 142.72, 145.49, 148.47, 151.56.

Procedure for complex 1 giving 2 and 3 in thf

3 mL of thf was added to a Schlenk flask charged with complex 1 (0.05mmol). It was left undisturbed and the colour gradually changed from red to purple within 4 hours. Crystals of 2 were obtained after layering with hexane. The presence of 3 was found in the NMR spectrum of the remaining reaction mixture.

2. ¹H, ¹³C NMR and IR Spectra of complexes

Fig. S1 ¹H NMR spectrum of $[Sm_2(DippForm)_4(COT)] \cdot C_6D_6(1)$

Fig. S2 ¹³C NMR spectrum of $[Sm_2(DippForm)_4(COT)]$ ·C₆D₆ (1)

Fig. S3 IR spectrum of $[Sm_2(DippForm)_4(COT)] \cdot C_6 D_6(1)$

Fig. S4 ¹H NMR spectrum of [Sm(DippForm)(COT)(thf)₂]·2thf (2)

Fig. S5 ¹³C NMR spectrum of [Sm(DippForm)(COT)(thf)₂]·2thf (2)

Fig. S6 IR spectrum of [Sm(DippForm)(COT)(thf)₂]·2thf (2)

Fig. S7 ¹H NMR spectrum of [Sm(DippForm)₂(O-C₄H₈-DippForm)(thf)] (3)

Fig. S8 ¹³C NMR spectrum of [Sm(DippForm)₂(O-C₄H₈-DippForm)(thf)] (3)

Fig. S9 IR spectrum of [Sm(DippForm)₂(O-C₄H₈-DippForm)(thf)] (3)

3. X-ray crystallography

Single crystals coated with viscous hydrocarbon oil were mounted on glass fibres or loops. Complex **2** was measured at the Australian Synchrotron on the MX1 macromolecular beamlines, data integration was completed using Blue-ice ² and XDS ³ software programs. Complexes **1** and **3** were measured on a Rigaku SynergyS diffractometer. The SynergyS operated using microsource Cu-K α radiation ($\lambda = 1.54184$ Å) for **3** and Mo-K α radiation ($\lambda = 0.71073$ Å) for **1** at 123 K. Data processing was conducted using CrysAlisPro.55 software suite.⁵ Structural solutions were obtained by either direct methods ⁴ or charge flipping ⁵ methods and refined using full-matrix least-squares methods against F² using SHELX2015,⁶ in conjunction with Olex2 ⁵ graphical user interface. All hydrogen atoms were placed in calculated positions using the riding model. Crystal data and refinement details are given in **Table S1**. CCDC 2219717-2219719 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	1	2	3
Formula	$C_{132}H_{172}N_8Sm_2$	$C_{41}H_{59}N_2O_2Sm$	$C_{87}H_{129}N_6O_3Sm$
M_r	2171.47	762.25	1457.30
Crystal System	Triclinic	Orthorhombic	Triclinic
Space group	<i>P</i> -1	P2 ₁ 2 ₁ 2 ₁	<i>P</i> -1
<i>a</i> (Å)	15.9605(2)	10.842(2)	12.6902(4)
b (Å)	17.7059(2)	18.607(4)	17.9896(7)
c (Å)	21.0634(3)	18.765(4)	20.6655(4)
α (°)	95.1820(10)	90	97.357(2)
β (°)	96.0570(10)	90	103.624(2)
γ (°)	98.3200(10)	90	108.342(3)
$V(Å^3)$	5823.06(13)	3785.6(13)	4246.3(2)
Ζ	2	4	2
$ ho_{\rm calc}, { m g \ cm^{-3}}$	1.238	1.337	1.140
μ , mm ⁻¹	1.050	1.586	5.551
$N_{ au}$	20432	47416	76924
$N(R_{int})$	20432 (-)	7196 (0.0654)	16575(0.1189)
$R_1(I > 2 \sigma(I))$	0.0448	0.0292	0.0763
wR_2 (all data)	0.1069	0.0767	0.1904
GOF	1.140	1.040	1.074

Table S1 Crystal data and structural refinement for lanthanoid complexes 1-3

4. Selected bond angles (°) and lengths (Å)

4.1 [Sm₂(DippForm)₄(COT)]·4C₆D₆ 1

Sm1-COT(cen) 2.218, Sm2-COT(cen) 2.221, Sm1-N1 2.447(4), Sm1-N2 2.534(4), Sm1-N3 2.511(4), Sm1-N4 2.458(4), Sm2-N5 2.440(4), Sm2-N6 2.541(4), Sm2-N7 2.437(4), Sm2-N8 2.525(4), N1-Sm1-N2 54.98(12), N4-Sm1-N3 55.03(13), N7-Sm2-N8 55.25(12), N5-Sm2-N6 55.06(12).

4.2 [Sm(DippForm)(COT)(thf)₂]·2thf 2

Sm1-COT(cen) 1.957, Sm-O1 2.553(4), Sm-O2 2.495(3), Sm-N1 2.542(4), Sm-N2 2.545(4), N1-C13 1.322(6), N2-C13 1.310(6), C13-N2-Sm 93.0(3), N2-C13-N1 120.6(4), N1-C13-Sm 60.3(2)

4.3 [Sm(DippForm)₂(O-C₄H₈-DippForm)(thf)] 3

Sm1-O2 2.064(4), Sm1-N2 2.453(5), Sm1-O1 2.481(4), Sm1-N1 2.470(4), Sm1-N4 2.436(5), Sm1-N3 2.531(4), N2-C13 1.321(7), N1-C13 1.334(7), N6-C58 1.448(9), N4-C38 1.328(7), N3-C38 1.317(8), N6-C71 1.360(9), N5-C71 1.281(9),O2-Sm1-O1 85.73(16), N2-Sm1-N1 55.26(15), N4-Sm1-N3 54.52(15), C55-O2-Sm1 171.7(4), C13-N2-Sm1 92.0(3), C71-N6-C58 119.5(6), C71-N6-C67 119.8(5), C67-N6-C58 120.5(6), C38-N4-Sm1 95.2(3), C38-N3-Sm1 91.2(3), N2-C13-N1 118.6(5), N3-C38-N4 118.8(5), N5-C71-N6 123.9(6)

5. References

- [1].M. L. Cole and P. C. Junk, Chem. Commun., 2005, 2695-2697.
- [2]. T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis and J. P. Kuhn, J. Synchrotron Radiat., 2002, 9, 401.
- [3]. W. Kabsch, J. Appl. Crystallogr., 1993, 26, 795.
- [4].G. M. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112.
- [5].O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- [6].G. M. Sheldrick, Acta Cryst., 2015, C71, 3.