3D Printing of Cellulose/Leaf-like Zeolitic Imidazolate Frameworks (CelloZIF-L) for Adsorption of Carbon dioxide (CO₂) and Heavy Metal Ions

Hani Nasser Abdelhamid^{1,2,3*}, Sahar Sultan¹, Aji P. Mathew^{1*}

 ¹Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
²Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt
³Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
*Corresponding to Abdelhamid (<u>hany.abdelhamid@aun.edu.eg</u>); Mathew (aji.mathew@mmk.su.se)

Figure S1 XRD pattern for Zinc hydroxyl nitrate and simulated pattern.

Figure S2 XRD patterns for $Zn(NO_3)_2/NaOH/TOCNF$ and CelloZIF-L ink in wet and dry forms.

Figure S3 a) SEM image, b) EDX analysis, and c) EDX mapping for Cu²⁺ (5 ppm) adsorbed into 3D CelloZIF-L_Cubs.

Figure S4 a) SEM image, b) EDX analysis, and c) EDX mapping for Cu^{2+} (10 ppm) adsorbed into 3D CelloZIF-L_Cubs.

Figure S5 a) SEM image, b) EDX analysis, and c) EDX mapping for Cu^{2+} (50 ppm) adsorbed into 3D CelloZIF-L_Cubs.

Figure S6 a) SEM image, b) EDX analysis, and c) EDX mapping for Cu²⁺ (100 ppm) adsorbed into 3D CelloZIF-L_Cubs.