Supplementary information

5 **Table S1:** List of O_3 background sites of the Austrian monitoring network used in this study. Station printed in bold provide NO_x observations for the whole study period along with ozone measurements. Sites marked with * indicate the sites selected for representative analysis.

	Station name	category	Airbase code		Station name	category	Airbase code
1	Amstetten	urban	AT30101	29	Arnfels	rural	AT60190
2	Graz, Schlossberg	urban	AT60018	30	Dunkelsteinerwald	Rural	AT31701
3	Leoben	urban	AT60143	31	Forsthof am Schöpfl	rural	AT30202
4	Linz, Neue Welt	urban	AT4S416	32	Gänserndorf	rural	AT30401
5	St. Pölten	urban	AT32301	33	Grundlsee	rural	AT60157
6	Vienna, Stephansplatz*	urban	AT9STEF	34	Haunsberg	rural	AT53055
7	Bad Ischl	suburban	AT4S125	35	Heidenreichstein	rural	AT30502
8	Bad Vöslau - Gainfarn	suburban	AT30201	36	Hochgössnitz	rural	AT60137
9	Eisenstadt	suburban	AT10001	37	Höfen Lärchbichl	rural	AT72705
10	Graz Nord*	suburban	AT60138	38	Illmitz*	rural	AT0ILL1
11	Hainburg	suburban	AT30301	39	Irnfritz	rural	AT30801
12	Innsbruck Sadrach	suburban	AT72113	40	Klöch*	rural	AT60185 (O ₃)
13	Judenburg	suburban	AT60018		Klöch*	rural	AT0KLH1(NO _x)
14	Klagenfurt Kreuzbergl	suburban	AT2KA41	41	Kollmitzberg	rural	AT30103
15	Klosterneuburg	suburban	AT30601	42	Kramsach Angerberg	rural	AT72538
16	Lustenau Wiesenrain	suburban	AT80706	43	Masenberg*	rural	AT60156
17	Mödling	suburban	AT31401	44	Mistelbach	rural	AT331301
18	Spittal a.d.Drau	suburban	AT2SP18	45	Obervellach	rural	AT2SP10
19	St. Johann im Pongau	suburban	AT54057	46	Pillersdorf	rural	AT0PIL1
20	Steyr	suburban	AT4S409	47	St. Georgen /Lavanttal	rural	AT2WO35
21	Traun	suburban	AT4S404	48	St. Koloman Kleinhorn	rural	AT52055
22	Vienna, Hermannskogel*	suburban	AT9JAEG	49	Stixneusiedl	rural	AT30302
23	Vienna, Hohe Warte	suburban	AT900ZA	50	Streithofen	rural	AT31904
24	Vienna, Laaer Berg	suburban	AT90LAA	51	Sulzberg - Gmeind	rural	AT80503
25	Vienna, Lobau	suburban	AT90LOB	52	Vorhegg	rural	AT0VOR1
26	Wiener Neustadt	suburban	AT332401	53	Wiesmath	rural	AT32101
27	Wolfsberg	suburban	AT2WO15	54	Wolkersdorf	rural	AT30403
28	Annaberg	rural	AT31102				

Figure S1: Empirical cumulative probability distribution functions (ECDFs) of daily average (DA) NO_x concentrations for (a) rural, (b) suburban, and (c) urban sites during spring (MAM). (d)-(f) as (a) – (c) but for summer (JJA). Dashed lines in all panels indicate the 50th and 90th percentiles.

Table S2: Ratios of selected NO_x percentiles (50% (q50) and 90%(q90)) for spring and summer seasons for different site types for 10 year study periods relative to 1990-1999.

Site category / quantile	MAM 2000-2009	MAM 2010-2019	JJA 2000-2009	JJA 2010-2019
Rural q50	0.76	0.68	0.68	0.63
Suburban q50	0.82	0.66	0.80	0.64
Urban q50	0.87	0.70	0.89	0.70
Rural q90	0.74	0.63	0.67	0.56
Suburban q90	0.82	0.65	0.81	0.62
Urban q90	0.84	0.69	0.86	0.68

Figure S2: As figure 3 but for MDA8 O₃ concentrations.

Figure S3: As figure 5 but for sites Graz (12% of observations NO_x limited in JJA), Klöch and Masenberg.

Figure S4: Evolution of ambient chemical regimes over time for (a) the urban station Vienna Stephansplatz, (b) the suburban site Hermannskogel, and (c) the rural site Illmitz; in analogy to Figure 5. The splines are calculated as polynomial fits of 4^{th} order to the envelopes of the scatterplots of MDA8 O₃ and DA NO_x for the respective decadal time slices. Note, for the rural site Illmitz the period 1990-1999 is not evaluated as NO_x measurements started only in 1995.

Figure S5: Annual cycle of (a) the sum of selected anthropogenic VOCs (iso-pentane, 1-pentene, n-pentane, 2-pentene, iso-hexane, n-hexane, benzene, iso-octane, n-heptane, toluene, n-octane, ethylbenzene, m-xylene, p-xylene, 0-xylene, 1,3,5-Trimethylbenzol, 1,2,4-trimethylbenzene and 1,2,3- trimethylbenzene) and (b) HCHO in Vienna. Data from (a) are collected during 2017-2019 close to the centre of Vienna at the monitoring site AKH. The collection cycle is every 6th day, and samples are analysed by gas chromatography. Data in (b) are HCHO data obtained during 2017-2019 by the MAX-DOAS instrument at BOKU Vienna.

Figure S6: Scatterplots of MDA8 O₃ versus Tmean for (a) the urban station Vienna Center, (b)-(c) suburban sites Hermannskogel, and Graz, and (d)-(f) rural sites Illmitz, Klöch, und Masenberg for 20010 - 2019. The red dotted line in all panels indicates the MDA8 target value for the protection of human health of $120 \mu g/m^3$, blue lines provide linear regression fits.

40

Figure S7: MDA8 ozone temperature sensitivities with respect to Tmean for rural, suburban, and urban monitors for various DA NO_x concentrations and mean temperatures. The ozone temperature sensitivities under clear sky conditions are shown for spring (MAM) in the top panel (a)-(c) and for summer (JJA) in the bottom panel (d)-(f). These data are used to compile the contour plots given in figure 7.

Figure S8: MDA8 O₃ temperature sensitivities with respect to Tmean for rural, suburban, and urban monitors for various DA NO_x concentrations and mean temperatures. The ozone temperature sensitivities for 1990-1999 under clear sky conditions are shown for spring
(MAM) in the top panel (a)-(c) and for summer (JJA) in the bottom panel (d)-(f). The contours of the temperature sensitivity of ozone are given in µg/°C.m³ with respect to changes of Tmean.

Figure S9: MDA8 O_3 temperature sensitivities with respect to Tmean for rural, suburban, and urban monitors for various DA NO_x concentrations and mean temperatures. The ozone temperature sensitivities for 1990-1999 under clear sky conditions are shown for spring (MAM) in the top panel (a)-(c) and for summer (JJA) in the bottom panel (d)-(f). The contours of the temperature sensitivity of ozone are given in $\mu g/^{\circ}C.m^3$ with respect to changes of Tmean.