Cite this: DOI: 00.0000/xxxxxxxxx

Supplementary Information: Comparison of Secondary Organic Aerosol Generated From the Oxidation of Laboratory Precursors by Hydroxyl Radicals, Chlorine Atoms, and Bromine Atoms in an Oxidation Flow Reactor

Andrew T. Lambe,^{*a} Anita M. Avery^a, Nirvan Bhattacharyya^b, Dongyu S. Wang^{b‡}, Mrinali Modi^b, Catherine G. Masoud^b, Lea Hildebrandt Ruiz^b, and William H. Brune^c

Received Date Accepted Date

DOI:00.0000/xxxxxxxxx

Fig. S1 (a) Absorption cross sections of CI and Br precursors used in this study, with references as noted: ${}^{1}C_{2}Cl_{2}O_{2}{}^{1}$, ${}^{2}C_{2}Br_{2}O_{2}{}^{2,3}$, ${}^{3}Cl_{2}{}^{4}$, ${}^{4}Br_{2}{}^{5}$. **(b)** Normalized emission spectra for low-pressure GPH436T5L/4P, F436T5/UVB/4P-313, F436T5/BLC/4P-369, and F436T5/SDI/4P-421 mercury lamps used in this study. Spectra are provided by the manufacturer (GPH436T5L/4P: Light Sources Inc.; all others: LCD Lighting, Inc.

^a Aerodyne Research Inc., Billerica, Massachusetts, USA; E-mail: lambe@aerodyne.com

^b University of Texas at Austin, Austin, Texas, USA

^c Pennsylvania State University, University Park, PA, USA

Fig. S2 Cl exposure calibration data obtained as a function of lamp voltage and external Cl reactivity for the OFR313-iCl₂ method. These data were obtained at τ_{OFR} = 130 s with 12 ppm Cl₂ injected into the OFR. Error bars represent $\pm 1\sigma$ in replicate measurements.

Fig. S3 Cl exposure calibration data obtained as a function of lamp voltage for the OFR254-iC₂Cl₂O₂ method. These data were obtained at τ_{OFR} = 90 s with 4.2 ppm C₂Cl₂O₂ and 636 ppb O₃ injected into the OFR. Error bars represent ±1 σ in replicate measurements.

Fig. S4 Br exposure calibration data obtained as a function of lamp voltage and external Br reactivity for the OFR369-iBr₂ method. These data were obtained at τ_{OFR} = 130 s with 1.9 ppm Br₂ injected into the OFR. Error bars represent $\pm 1\sigma$ in replicate measurements.

Fig. S5 Br exposure calibration data obtained as a function of lamp voltage and external Br reactivity for the OFR254-iC₂Br₂O₂ method. These data were obtained at τ_{OFR} = 130 s with 1.8 ppm C₂Br₂O₂ injected into the OFR. Error bars represent ±1 σ in replicate measurements.

Fig. S6 Relationship between Br exposure obtained using OFR421-iBr₂ and OFR369-iBr₂ methods at equivalent lamp voltages and external Br reactivity values. Symbols are sized by lamp voltage and colored by external Br reactivity. The solid linear regression line has a slope of 2.16. The dashed line represents a line with a slope of Br₂ absorption cross sections at 369 and 421 nm from Maric *et al.*⁵.

Fig. S7 L-ToF-AMS spectrum obtained during OFR conditioning with humidified air, O_3 , and OH (generated using OFR185) immediately following Cl-OFR experiments conducted using OFR254-i $C_2Cl_2O_2$. Similar spectra were obtained after OFR185 conditioning following OFR313/369-i Cl_2 studies.

Fig. S8 CI-SOA hydrogen-to-carbon (H/C) ratio as a function of the fraction of CI-SOA signal measured at m/z = 43 (f_{43}). Here, H/C and f_{43} were obtained from L-ToF-AMS spectra. Solid black line is a quadratic regression line from Ng *et al.*⁶.

Fig. S9 CI-SOA hydrogen-to-carbon (H/C) ratio as a function of the fraction of CI-SOA signal measured at m/z = 41 (f_{41}). H/C and f_{41} were obtained from L-ToF-AMS spectra. Solid black line is a power law regression line fit to the data.

Fig. S10 Square of the Pearson correlation coefficient (r^2) between L-ToF-AMS spectra of (**a**) n-C₁₂ OH-SOA generated at OH_{exp} = 2.2×10¹¹ cm⁻³ s) and n-C₁₂ OH-/CI-SOA obtained as a function of OH_{exp} or Cl_{exp} (**b**) toluene OH-SOA generated at OH_{exp} = 2.6×10¹¹ cm⁻³ s with toluene OH-/CI-SOA spectra obtained as a function of OH_{exp} or Cl_{exp}.

Fig. S11 Square of the Pearson correlation coefficient (r^2) between L-ToF-AMS spectra of (a) isoprene OH-SOA generated at $OH_{exp} = 3.1 \times 10^{10} \text{ cm}^{-3}$ s) and isoprene OH-/Cl-/Br-SOA obtained as a function of OH_{exp} , CI_{exp} or Br_{exp} (b) α -pinene OH-SOA generated at $OH_{exp} = 6.7 \times 10^{10} \text{ cm}^{-3}$ s with α -pinene OH-/Cl-/Br-SOA spectra obtained as a function of OH_{exp} , CI_{exp} or Br_{exp} (b) α -pinene OH-SOA generated at $OH_{exp} = 6.7 \times 10^{10} \text{ cm}^{-3}$ s with α -pinene OH-/Cl-/Br-SOA spectra obtained as a function of OH_{exp} , CI_{exp} , or Br_{exp} .

Fig. S12 High-resolution L-ToF-AMS spectrum of α -pinene Br-SOA at m/z = 245. Multiple ions were assigned to the peak at m/z=245, with the largest contribution coming from C₁₀H₁₄BrO₂⁺, followed by C₉H₁₀BrO₃⁺ and C₁₀H₁₂⁸¹BrO₂⁺.

Fig. S13 High-resolution L-ToF-AMS spectrum of α -pinene Br-SOA at m/z = 247. Multiple ions were assigned to the peak at m/z=247, with the largest contribution coming from C₁₀H₁₄ ⁸¹BrO₂⁺, followed by C₉H₁₂BrO₃⁺ and C₁₀H₁₆BrO₂⁺.

Fig. S14 Mass yields of SOA generated from (a) OH and Cl oxidation of n-C₁₂, (b) OH and Cl oxidation of toluene, **c** OH, Cl, and Br oxidation of isoprene, and (d) OH, Cl, and Br oxidation of α -pinene as a function of OH_{exp}, Cl_{exp}, or Br_{exp}. Closed symbols represent SOA yield values with particle wall loss correction factors applied; open symbols represent the same data without particle wall loss correction factors. Different y-axis scales are used in each subpanel. Error bars indicate $\pm 1\sigma$ uncertainty in binned SOA yield values, $\pm 50\%$ uncertainty in OH exposure values, and $\pm 70\%$ uncertainty in Cl and Br exposure values. Additional figure notes: ¹Cl generated using OFR254/313-iC₂Cl₂O₂; ²Cl generated using OFR313/369-iCl₂; ³Br generated using OFR254-iC₂Br₂O₂; ⁴Br generated using OFR369/421-iBr₂.

Reactant 1	Reactant 2	Product 1	Product 2	Product 3	A∞	E∞	n∞	A ₀	E ₀	n ₀	References
Cl ₂	HV254	2 Cl			7.26×10^{-22}	0	0	0	0	0	4
$\overline{Cl_2}$	HV313	2 Cl			2.032×10^{-19}	0	0	0	0	0	4
$\overline{\text{Cl}_2}$	HV369	2 Cl			8.828×10^{-20}	0	0	0	0	0	4
Cl_2	O(¹ D)	Cl_2	O(³ P)		2.19×10^{-10}	0	0	0	0	0	7
$\overline{Cl_2}$	O(¹ D)	ClŌ	Cl		$1.99{ imes}10^{-10}$	0	0	0	0	0	8
$\overline{Cl_2}$	O(³ P)	ClO	Cl		4.17×10^{-12}	1370	0	0	0	0	9
$\overline{\text{Cl}_2}$	OH	HOCl	Cl		3.6×10^{-12}	1200	0	0	0	0	9
$\overline{Cl_2}$	Cl	Cl ₃			1.51×10^{-16}	0	0	0	0	0	10
Cl_2	Br	BrCl	Cl		1.1×10^{-15}	0	0	0	0	0	11
$\tilde{Cl_2}$	ClCO	$COCl_2$	Cl		4.18×10^{-12}	1490.14	0	0	0	0	12
$C_2Cl_2O_2$	HV254	2 Cl	2 CO		2.76×10^{-19}	0	0	0	0	0	1
$\tilde{C_2Cl_2O_2}$	HV313	2 Cl	2 CO		8.19×10^{-20}	0	0	0	0	0	1
$\tilde{C_2Cl_2O_2}$	Cl	Cl_2	CO	COCl	4×10^{-14}	0	0	0	0	0	13
Br ₂	HV369	2 Br			$1.78{ imes}10^{-19}$	0	0	0	0	0	5
Br ₂	HV421	2 Br			6.45×10^{-19}	0	0	0	0	0	5
Br_2	O(³ P)	BrO	Br		5.11×10^{-13}	-989	0	0	0	0	14
Br ₂	OH	Br	HOBr		2×10^{-11}	240.558	0	0	0	0	9
Br ₂	Cl	Br	BrCl		2.3×10^{-10}	134.713	0	0	0	0	15
$C_2Br_2O_2$	HV254	2 Br	2 CO		1.68×10^{-18}	0	0	0	0	0	3
$C_2Br_2O_2$	Br	Br ₂	CO	COBr	4×10^{-14}	0	0	0	0	0	16
0,	HV254	0,	O(¹ D)		1.03×10^{-17}	0	0	0	0	0	17
0,	HV313	0,2	$O(^{1}D)$		6.84×10^{-20}	0	0	0	0	0	17
0,	HV369	0,2	O(¹ D)		3.59×10^{-23}	0	0	0	0	0	17
03	HV421	0_{2}^{2}	O(¹ D)		6.47×10^{-23}	0	0	0	0	0	17
0,3	Cl	ClO	0,		2.3×10^{-11}	200	0	0	0	0	9
0,	ClO	0,	OCIO		1×10^{-18}	0	0	0	0	0	9
0,2	ClO	O_2^2	Cloo		1.5×10^{-17}	0	0	0	0	0	9
0,	OClO	0,2	ClO ₂		2.1×10^{-12}	4700	0	0	0	0	9
0,	Cl_2O_2	0,2	ClOO	ClO	1×10^{-19}	0	0	0	0	0	9
0,	Br	0,2	BrO		1.7E-11	799.856	0	0	0	0	9
03	BrO	$2\dot{0}_{2}$	Br		2E-17	0	0	0	0	0	18
03	BrO ₂	2			5E-16	0	0	0	0	0	19
Cl	OH	HCl	O(³ P)		9.8×10 ⁻¹²	2860.24	0	0	0	0	20
Cl	HO ₂	HCl	0,		1.4×10^{-11}	-270	0	0	0	0	9
Cl	HO ₂	OH	ClO		6.3×10^{-11}	570.123	0	0	0	0	9
Cl	Cl	Cl_2			6.15E-34	-905.701	0	0	0	0	20
Cl	O_2	ClOO			0	0	0	1.4×10^{-33}	0	3.9	9
Cl	H_2	HCl	Н		3.9×10^{-11}	2310.56	0	0	0	0	9
Cl	$H_2 \tilde{O}_2$	HCl	HO_2		1.1×10^{-11}	980	0	0	0	0	9
Cl	ČO	ClCO	2		3.4×10^{-14}	0	0	0	0	0	21
ClCO		Cl	CO		4.1×10^{-10}	2960.07	0	0	0	0	9
Cl	ClCO	Cl_2	CO		$2.16{ imes}10^{-9}$	1670.68	0	0	0	0	20
ClO	HV254	Cl	O(³ P)		4.25×10^{-18}	0	0	0	0	0	22
ClO	HV313	Cl	O(³ P)		3.25×10^{-19}	0	0	0	0	0	22
ClO	O(³ P)	Cl	0,		2.5×10^{-11}	-109.454	0	0	0	0	9
ClO	OH	HCl	$\tilde{0_2}$		1.2×10^{-12}	0	0	0	0	0	9
ClO	ОН	HO ₂	Cĺ		1.9×10^{-11}	0	0	0	0	0	9
ClO	HO ₂	0_2^2	HOCl		4.8×10^{-13}	700.024	0	0	0	0	23
ClO	HO	HCI	0,		2.01×10^{-14}	0	0	0	0	0	24
ClO	Cl	Cl_2	O(³ P)		1.74×10^{-12}	4589.85	0	0	0	0	20
ClO	ClO	OClO	Cl		3.5×10^{-13}	1370	0	0	0	0	9
ClO	ClO	Cl_2O_2			1×10^{-11}	0	0	2.05×10^{-32}	0	4	9

Table S1 KinSim mechanism used to model CI and Br formation and destruction in the OFR (continued).

010	<u>c10</u>	000	C1		0.00.10-15	0	0	0	0	0	9
CIO	CIO	CIOO			8.06×10 ⁻¹¹	0	0	0	0	0	25
CIO	CIO	O_2	2 CI		3×10^{-12}	2450	0	0	0	0	9
CIO	CIO	O_2			1×10^{-12}	1590	0	0	0	0	9
CIO	BrO	OCIO	Br		1.6×10^{-12}	-430.599	0	0	0	0	9
CIO	BrO	CIOO	Br		2.9×10^{-12}	-220.111	0	0	0	0	9
CIO	BrO	BrCl	02		5.8×10^{-13}	-169.593	0	0	0	0	9
OClO	HV254	ClO	O(³ P)		3.49×10^{-19}	0	0	0	0	0	22
OClO	HV313	ClO	O(³ P)		1.74×10^{-18}	0	0	0	0	0	22
OClO	HV369	ClO	O(³ P)		9.03×10^{-18}	0	0	0	0	0	22
OClO	O(³ P)	ClO	O_2		2.4×10^{-12}	960	0	0	0	0	9
OClO	O(³ P)	ClO ₃			3.11×10^{-11}	0	1	1.91E-31	0	0	9
OClO	OH	0 ₂	HOCl		1.4×10^{-12}	-600	0	0	0	0	9
OClO	Cl	2 ClO			3.2×10^{-11}	-169.593	0	0	0	0	9
OClO	ClO	Cl_2O_3			2.4×10^{-11}	0	0	6.2×10^{-32}	0	4.7	9
OClO	Br	ClO	BrO		2.7×10^{-11}	1300.22	0	0	0	0	9
ClOO	HV254	ClO	O(³ P)		1.24×10^{-17}	0	0	0	0	0	26
Cloo		Cl	02		0	0	0	2.8×10^{-10}	1820	0	9
Cloo	Н	ClO	OĤ		5.65×10^{-11}	0	0	0	0	0	20
Cloo	O(³ P)	ClO	0,		4.98×10 ⁻¹¹	0	0	0	0	0	27
C100	Cl	Cla	O_2		2.3×10^{-10}	0	0	0	0	0	23
C100	Cl	2 ClO	- 2		1.2×10^{-11}	0	0	0	0	0	23
C100	Br	0.	BrCl		5.15×10^{-14}	0	0	0	0	0	28
	HV/254	<u>ClO</u>	<u>C1</u>		1.84×10^{-18}	0	0	0	0	0	29,30
Cl_2O	HV212	Cl	Cl		1.04×10^{-19}	0	0	0	0	0	29,30
Cl_2O	HV260	Cl_2	Cl		5.94×10^{-21}	0	0	0	0	0	29,30
Cl_2O	11/209	Cl_2			3.43×10^{-11}	0	0	0	0	0	31
Cl_2O			псі		4.1×10 2 7 × 10 ⁻¹¹	520	0	0	0	0	9
Cl_2O			CIO		2.7×10 E 1 × 10 ⁻¹²	100	0	0	0	0	32
Cl_2O	CI	rioci	CIO		5.1×10^{-11}	-100	0	0	0	0	9
Cl_2O	Cl	Cl ₂	ClO		0.20×10^{-16}	129.901	0	0	0	0	27
Cl_2O	CIO		CIOO	0	4.32×10^{-15}	0	0	0	0	0	27
Cl ₂ 0	CIO			O_2	1.08×10^{-10}	0	0	0	0	0	9
CI ₂ 0	Br	CIU	BrCI		2.1×10 ⁻¹¹	4/0.291	0	0	0	0	20.22
Cl_2O_2	HV254	CIOO	Cl		6.01×10^{-10}	0	0	0	0	0	30,33
Cl_2O_2	HV313	CIOO	Cl		3.81×10^{-19}	0	0	0	0	0	30,33
Cl_2O_2	HV369	Cloo	Cl		4.76×10^{-20}	0	0	0	0	0	30,33
Cl_2O_2		2 ClO			3.7×10^{-7}	7690.64	0	0	0	0	9
Cl_2O_2	OH	HOCl	ClOO		6×10^{-13}	-670	0	0	0	0	32
Cl_2O_2	Cl	Cl_2	ClOO		7.6×10^{-11}	-65	0	0	0	0	9
Cl ₂ O ₂	Br	ClOO	BrCl		5.9×10^{-12}	169.593	0	0	0	0	9
Cl_2O_3	HV254				1.443×10^{-17}	0	0	0	0	0	22
Cl_2O_3	HV313				$1.86 imes 10^{-18}$	0	0	0	0	0	22
Cl ₂ O ₃		ClO	OClO		1.4×10^{-10}	3810.44	0	0	0	0	9
BrO	HV369	Br	O(³ P)		1.01×10^{-18}	0	0	0	0	0	34
BrO	O(³ P)	BrO ₂			5×10^{-11}	0	0	0	0	0	34
BrO	O(³ P)	Br	O_2		1.9×10^{-11}	-230	0	0	0	0	9
BrO	OH	O_2	HBr		1×10^{-12}	0	0	0	0	0	35
BrO	OH	-			1.8×10^{-11}	-250.18	0	0	0	0	9
BrO	HO ₂	0,	HOBr		6.19×10^{-12}	500.361	0	0	0	0	36
BrO	BrÓ	Br	BrO ₂		5.25×10^{-11}	449.844	0	0	0	0	37
BrO	BrO	0,	2 Br		2.7×10^{-12}	0	0	0	0	0	9
BrO	BrO	Br ₂	0,		2.5×10^{-14}	0	0	0	0	0	9
BrOa	HV421	 BrO	O(³ P)		5.70×10^{-18}	0	0	0	0	0	22
BrO_{2}	O(³ P)	BrO	0.		4.25×10^{-12}	Õ	0	0	0	Õ	34
2102		210				5	5	0	5	5	

BrO ₂	Br			5×10 ⁻¹¹	0	0	0	0	0	34
BrO_2	ClO			1.5×10^{-13}	0	0	0	0	0	38
BrO_2	OClO			6×10^{-14}	0	0	0	0	0	38
HCl	Н	H ₂	Cl	$1.32{ imes}10^{-11}$	1710.37	0	0	0	0	20
HCl	O(¹ D)	Cl	OH	1×10^{-10}	0	0	0	0	0	39
HCl	O(¹ D)	ClO	Н	3.6×10^{-11}	0	0	0	0	0	39
HCl	O(³ P)	Cl	OH	1×10^{-11}	3300	0	0	0	0	23
HCl	OH	Cl	H ₂ O	1.72×10^{-12}	229.733	0	0	0	0	9
HOCl	HV254	OH	Cl	1.46×10^{-19}	0	0	0	0	0	40
HOCl	HV313	OH	Cl	5.84×10^{-20}	0	0	0	0	0	40
HOCl	HV369	OH	Cl	9.19×10^{-21}	0	0	0	0	0	40
HOCl	Н	HCl	OH	6.71×10^{-13}	0	0	0	0	0	41
HOCl	O(³ P)	ClO	OH	1.7×10^{-13}	0	0	0	0	0	9
HOCl	OH	ClO	H ₂ O	3.01×10^{-12}	500	0	0	0	0	23
HOCl	Cl	ClO	HCl	3.4×10^{-12}	130	0	0	0	0	23
HOCl	Cl	OH	Cl_2	3.4×10^{-13}	0	0	0	0	0	41
HBr	Н	Br	H ₂	8.32×10^{-12}	81.7898	1.05	0	0	0	42
HBr	O(¹ D)			1.5×10^{-10}	0	0	0	0	0	23
HBr	O(³ P)	Br	OH	5.8×10^{-12}	1500	0	0	0	0	23
HBr	OH	Br	H ₂ O	6.7×10^{-12}	-155.16	0	0	0	0	9
HBr	Cl	Br	HCl	7.8×10^{-12}	0	0	0	0	0	20
HBr	ClO	Br	HOCl	5.60×10^{-15}	0	0	0	0	0	43
HBr	BrO	Br	HOBr	6.19×10^{-15}	0	0	0	0	0	43
HOBr	HV254	OH	Br	$6.19 imes 10^{-20}$	0	0	0	0	0	22
HOBr	HV369	OH	Br	$9.32{ imes}10^{-20}$	0	0	0	0	0	22
HOBr	HV421	OH	Br	9.67×10^{-21}	0	0	0	0	0	22
HOBr	O(³ P)	BrO	OH	$1.2 imes 10^{-10}$	430.6	0	0	0	0	9
HOBr	OH			5×10 ⁻¹³	0	0	0	0	0	44
HOBr	Cl	BrCl	OH	8×10 ⁻¹¹	0	0	0	0	0	44
BrCl	HV254	Br	Cl	3.24×10^{-20}	0	0	0	0	0	5
BrCl	HV313	Br	Cl	2.51×10^{-20}	0	0	0	0	0	5
BrCl	HV369	Br	Cl	3.96×10^{-19}	0	0	0	0	0	5
BrCl	HV421	Br	Cl	1.78×10^{-19}	0	0	0	0	0	5
BrCl	O(³ P)	BrO	Cl	2.09×10^{-11}	0	0	0	0	0	45
BrCl	OH			1.5×10^{-12}	0	0	0	0	0	44
BrCl	Cl	Cl_2	Br	1.45×10^{-11}	0	0	0	0	0	46
BrCl	Br	Br ₂	Cl	$3.32{ imes}10^{-15}$	0	0	0	0	0	20

Table S1 KinSim mechanism used to model CI and Br formation and destruction in the OFR (continued).

References

- 1 B. Ghosh, D. K. Papanastasiou and J. B. Burkholder, The Journal of Chemical Physics, 2012, 137, 164315.
- 2 J. E. Tuttle and G. K. Rollefson, J. Am. Chem. Soc., 1941, 63, 1525-1530.
- 3 H. Shimada, R. Shimada and Y. Kanda, Bulletin of the Chemical Society of Japan, 1968, 41, 1289–1295.
- 4 D. Maric, J. Burrows, R. Meller and G. Moortgat, Journal of Photochemistry and Photobiology A: Chemistry, 1993, 70, 205 214.
- 5 D. Maric, J. Burrows and G. Moortgat, Journal of Photochemistry and Photobiology A: Chemistry, 1994, 83, 179 192.
- 6 N. L. Ng, M. R. Canagaratna, J. L. Jimenez, P. S. Chhabra, J. H. Seinfeld and D. R. Worsnop, *Atmospheric Chemistry and Physics*, 2011, **11**, 6465–6474.
- 7 I. S. Fletcher and D. Husain, Berichte der Bunsengesellschaft für physikalische Chemie, 1976, 80, 982–985.
- 8 K. Freudenstein and D. Biedenkapp, Colloid and Polymer Science, 1977, 255, 928–928.
- 9 R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, *Atmospheric Chemistry and Physics*, 2007, 7, 981–1191.
- 10 E. Hutton and M. Wright, Trans. Faraday Soc., 1965, 61, 78-89.
- 11 D. A. Dolson and S. R. Leone, The Journal of Physical Chemistry, 1987, 91, 3543-3550.
- 12 W. G. Burns and F. S. Dainton, Trans. Faraday Soc., 1952, 48, 39-52.
- 13 A. V. Baklanov and L. N. Krasnoperov, J. Phys. Chem. A, 2001, 105, 97–103.
- 14 M. H. Harwood, D. M. Rowley, R. A. Cox and R. L. Jones, J. Phys. Chem. A, 1998, 102, 1790-1802.
- 15 Y. Bedjanian, G. Laverdet and G. Le Bras, J. Phys. Chem. A, 1998, 102, 953-959.
- 16 C.-C. Wu, H.-C. Lin, Y.-B. Chang, P.-Y. Tsai, Y.-Y. Yeh, H. Fan, K.-C. Lin and J. S. Francisco, The Journal of Chemical Physics, 2011, 135, 234308.
- 17 J. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt and J. Orphal, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 1999, **61**, 509–517.
- 18 R. Atkinson, D. Baulch, R. Cox, J. Crowley, J. Hampson, R.F, J. Kerr, M. Rossi and J. Troe, *IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry Web Version*, 2001.
- 19 Z. Li, J. Phys. Chem. A, 1999, 103, 1206–1213.
- 20 D. L. Baulch, J. Duxbury, S. J. Grant and D. C. Montague, J. Phys. Chem. Ref. Data, 1981, 10, year.
- 21 A. D. Hewitt, K. M. Brahan, G. D. Boone and S. A. Hewitt, International Journal of Chemical Kinetics, 1996, 28, 763–771.
- 22 S. Sander, R. Friedl, D. Golden, M. Kurylo, G. Moortgat, H. Keller-Rudek, P. Wine, A. R. Ravishankara, C. Kolb, M. Molina, B. Finlayson-Pitts, R. Huie and V. Orkin, *JPL Publication*, 2006, 1–523.
- 23 W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb and M. J. Molina, *JPL Publication 97-4*, 1997.
- 24 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr (Chairman) and J. Troe, Journal of Physical and Chemical Reference Data, 1989, 18, 881–1097.
- 25 A. Horowitz, D. Bauer, J. N. Crowley and G. K. Moortgat, Geophysical Research Letters, 1993, 20, 1423–1426.
- 26 H. S. Johnston, E. D. Morris and J. Van den Bogaerde, J. Am. Chem. Soc., 1969, 91, 7712–7727.
- 27 N. Basco, S. K. Dogra and R. G. W. Norrish, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1971, 323, 401–415.
- 28 M. A. A. Clyne, J. A. Coxon and J. W. Linnett, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1967, 298, 424–452.
- 29 C. M. Nelson, T. A. Moore, M. Okumura and T. K. Minton, The Journal of Chemical Physics, 1994, 100, 8055–8064.
- 30 D. K. Papanastasiou, K. J. Feierabend and J. B. Burkholder, The Journal of Chemical Physics, 2011, 134, 204310.
- 31 S. J. Wategaonkar and D. W. Setser, The Journal of Chemical Physics, 1989, 90, 251-264.
- 32 J. C. Hansen, R. R. Friedl and S. P. Sander, J. Phys. Chem. A, 2008, 112, 9229-9237.
- 33 T. A. Moore, M. Okumura, J. W. Seale and T. K. Minton, J. Phys. Chem. A, 1999, 103, 1691–1695.
- 34 N. Butkovskaya, I. Morozov, V. Tal'rose and E. Vasiliev, Chemical Physics, 1983, 79, 21-30.
- 35 Y. Bedjanian, V. Riffault, G. Le Bras and G. Poulet, J. Phys. Chem. A, 2001, 105, 6154–6166.
- 36 W. DeMore, S. Sander, D. Golden, R. Hampson, M. Kurylo, C. Howard, A. Ravishankara, C. Kolb and M. Molina, *JPL Publication* 94-26, 1994.
- 37 M. A. A. Clyne and H. W. Cruse, Trans. Faraday Soc., 1970, 66, 2214-2226.
- 38 Z. Li, G. R. Jeong and E. C. Person, International Journal of Chemical Kinetics, 2002, 34, 430–437.
- 39 A. Chichinin, Chemical Physics Letters CHEM PHYS LETT, 2000, 316, 425-432.
- 40 R. J. Barnes, A. Sinha and H. A. Michelsen, J. Phys. Chem. A, 1998, 102, 8855-8859.

- 41 R. Vogt and R. N. Schindler, Berichte der Bunsengesellschaft für physikalische Chemie, 1993, 97, 819-829.
- 42 M. Seakins, P.W.; Pilling, J. Phys. Chem., 1991, 9878–9881.
- 43 A. A. Turnipseed, J. W. Birks and J. G. Calvert, J. Phys. Chem., 1991, 95, 4356-4364.
- 44 A. Kukui, U. Kirchner, T. Benter and R. N. Schindler, ChemInform, 1996, 27, year.
- 45 M. A. A. Clyne, P. B. Monkhouse and L. W. Townsend, International Journal of Chemical Kinetics, 1976, 8, 425-449.
- 46 M. A. A. Clyne and H. W. Cruse, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 1377-1387.