
Electronic Supplementary Material (ESI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2022

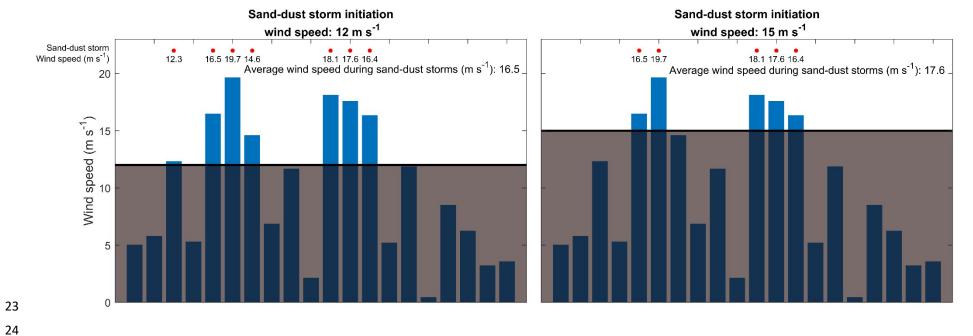
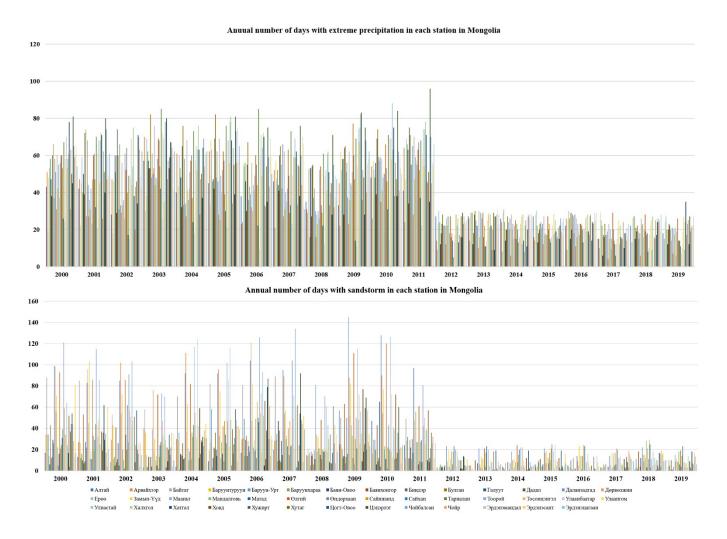

1	Stronger spring winds increase sand-dust storm risk in northern China
2	Yi Liu ¹ , Rongrong Xu ^{1*} , Alan D. Ziegler ² , Zhenzhong Zeng ^{1*}
3	¹ School of Environmental Science and Engineering, Southern University of Science
4	and Technology, Shenzhen, China
5	² Faculty of Fisheries Technology and Aquatic Resources, Mae Jo University, Chiang
6	Mai, Thailand
7	* Correspondence: <u>zengzz@sustech.edu.cn</u> (Z. Zeng); <u>xurr@sustech.edu.cn</u> (R. Xu)
8	
9	Manuscript for Environmental Science: Atmospheres
10	September 12th, 2022

Figure S1. Explanation of how overall wind speed decreases sand-dust storm frequency and average wind speed. Bars demonstrate randomly generated instant wind speed. The black line shows the sand-dust storm initiation wind speed (*e.g.*, 12 m s⁻¹)¹. The red dots on the top indicate sand-dust storms. The numbers below the red dots are the recorded wind speed during sand-dust storms. Taking the average of them, we will get the average wind speed during sand-dust storms in that situation. The left and right figures show high and low wind speed (high wind speed distribution minus 5 m s⁻¹) situations respectively.



19 Figure S2. Explanation of how ecological restoration (higher sand-dust storm initiation wind speed) decreases sand-dust storm

frequency but increases average sand-dust storm wind speed. Bars demonstrate randomly generated instant wind speed. The red dots on the top indicate sandstorm events. The left and right figures show low sand-dust storm initiation wind speed, *e.g.*, 12 m s⁻¹ and high sand-dust storm initiation wind speed, *e.g.*, 15 m s⁻¹ respectively¹.

26 Figure S3. Jump of sand-dust days data and extreme precipitation data in Mongolia.

28 References.

- 29 1. Kurosaki Y, Mikami, M. Threshold wind speed for dust emission in east Asia and
- its seasonal variations, Journal of Geophysical Research. 2007 September 6;
- 31 112:D17202.