Electronic Supplementary Information of

The dependence of new particle formation rates on the interaction between cluster growth, evaporation, and condensation sink

Chenxi Li ${ }^{1}$,Yue Zhao ${ }^{1}$, Ziyue Li ${ }^{1}$, Ling Liu ${ }^{2}$, Xiuhui Zhang ${ }^{2}$, Jun Zheng ${ }^{3}$, Veli-matti Kerminen ${ }^{4}$, Markku Kulmala ${ }^{4,5}$, Jingkun Jiang ${ }^{6}$, Runlong $\mathrm{Cai}^{* 4}$, Huayun Xiao ${ }^{* 1}$

${ }^{1}$ School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
${ }^{2}$ Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
${ }^{3}$ Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science \& Technology, Nanjing, 210044, China
${ }^{4}$ Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
${ }^{5}$ Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
${ }^{6}$ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
*Correspondence to: Runlong Cai (runlong.cai@helsinki.fi); Huayun Xiao (xiaohuayun@sjtu.edu.cn)

S1 Details of calculation for Fig. 2

In the simulation of cluster formation without evaporation, the monomer is assumed to have a molecular weight of $98 \mathrm{~g} / \mathrm{mol}$ and a density of $1830 \mathrm{~kg} / \mathrm{m}^{3}$. The collision rates are calculated with the free molecular collision rate equation. An enhancement factor of 2.3 is applied to all the collision rates to account for long range Van der Waals

S2 Relative contribution of coagulation to NPF rates in the absence of evaporation

Figure S1. The fraction of coagulation-induced NPF rates in the simulation for $J_{4}(\mathrm{~A})$ and $J_{6}(\mathrm{~B})$
From the simulation of the cluster formation (section 2.1 in the main text), the NPF rate contributed by clustercluster coagulation is directly retrievable. Figure S1 shows the ratio of coagulation induced particle formation to the total particle formation rates at the same simulation conditions as Fig. 2. Figure S1 reveals several trends. First of all, a comparison of Fig. S1B to S1A shows that coagulation contributes more to J_{6} than J_{4}. This is as expected since there are more possible particle formation channels by coagulation when the NPF rate is defined at a larger cluster size. Second, at a given CS value, higher vapor concentration leads to a higher fraction of particle formation by coagulation. Third, at a given monomer concentration, the contribution of coagulation to the NPF rates decreases as

CS increases.

S3 Exact solution for \boldsymbol{J}_{5}

For cluster i, we define $X_{i}=C S_{i}+E_{i}+k_{i}$. If cluster 5 is stable and its evaporation can be neglected, the relation between n_{4} and n_{1} can be derived by solving eqns (6) and (7) in the main text. n_{4} is expressed by:

$$
\begin{equation*}
n_{4}=\frac{k_{1} n_{1}}{\frac{X_{2} X_{3} X_{4}}{k_{2} k_{3}}-\frac{E_{4} X_{2}}{k_{2}}-\frac{E_{3} X_{4}}{k_{3}}} . \tag{S2}
\end{equation*}
$$

J_{5} is then given by

$$
\begin{equation*}
J_{5}=k_{4} n_{4}=\frac{k_{1} n_{1}}{\frac{X_{2} X_{3} X_{4}}{k_{2} k_{3} k_{4}}-\frac{E_{4} X_{2}}{k_{2} k_{4}}-\frac{E_{3} X_{4}}{k_{3} k_{4}}} \tag{S3}
\end{equation*}
$$

S4 Errors of eqn (12) for a homo-molecular NPF system

We compared the exact solutions of J_{4} and J_{5} (eqn (9) and eqn S3) with the approximate solution given by eqn (12). The error of the approximate solution was calculated by $\left|J_{\text {approx }}-J_{\text {exact }}\right| / J_{\text {exact }}$. In doing these calculations, we varied $C S_{1}, E_{2}, E_{3}, n_{1}$ for J_{4} and varied $C S_{1}, E_{2}, E_{3}, E_{4}, n_{1}$ for J_{5}. The collision rate coefficient for two monomers was set to $0.25 \times 10^{9} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, which considers double counting when two identical entities collide. Other collision rate coefficients were assumed to scale with $\left(1+\frac{1}{i}\right)^{\frac{1}{2}}\left(1+i^{\frac{1}{3}}\right)^{2}$ and $C S_{\mathrm{i}}$ was set to be inversely proportional to \sqrt{i} (i is the cluster size).

Figure S 1 shows the error of $J_{4, \text { approx }}$ for the following conditions: $C S_{1}=0.002 \mathrm{~s}^{-1}, 0.02 \mathrm{~s}^{-1}, 0.2 \mathrm{~s}^{-1} ; E_{2}=0.02$ $\mathrm{s}^{-1}, 0.2 \mathrm{~s}^{-1}, 1 \mathrm{~s}^{-1} ; n_{1}=1 \times 10^{6}-5 \times 10^{8} \mathrm{~cm}^{-3} ; E_{3}=0-E_{2}$. These conditions cover the typical values of CS and evaporation rates relevant to NPF in the atmospheric boundary layer. Figure S 1 shows that the error does not exceed 25% at these conditions.

Figure S 2 shows the error of $J_{5 \text {,approx }}$ for the following conditions: $C S_{1}=0.002 \mathrm{~s}^{-1}, 0.02 \mathrm{~s}^{-1}, 0.2 \mathrm{~s}^{-1} ; E_{2}=0.02 \mathrm{~s}^{-1}$, $0.2 \mathrm{~s}^{-1}, 1 \mathrm{~s}^{-1} ; n_{1}=1 \times 10^{6}-5 \times 10^{8} \mathrm{~cm}^{-3} ; E_{3}=E_{2} ; E_{4}=0-E_{3}$. Figure S 2 shows that the error does not exceed 45% at these conditions. We further varied E_{3} from 0 to E_{2} and found that the maximum error does not exceed 45% (results not shown).

Figure S2. The error of J_{4} calculated by eqn (12) compared to the exact solution calculated by eqn (9). The color bar shows the value of $\left|J_{4, \text { eqn 12 }}-J_{4, \text { eqn } 9}\right| / J_{4, \text { eqn } 9}$. The $C S_{1}$ and E_{2} values for each subplot are shown on the top and right of the figure. Contour lines show the value of $J_{4, \text { eqn } 9}$.

Figure S3. The error of J_{5} calculated by eqn (12) compared to the exact solution calculated by eqn (S3). The color bar shows the value of $\left|J_{5, \text { eqn } 12}-J_{5, \text { eqn } \mathrm{S}_{3}}\right| / /_{5, \text { eqn } \mathrm{S3}^{2}}$. The $C S_{1}, E_{2}$ and E_{3} values for each subplot is labelled on the top and right of the figure. Contour lines show the value of $J_{5, \text { eqn S3 }}$.

S5 NPF by coagulation in the test cases

Figure S4. The fraction of NPF by cluster coagulation in the lowest NPF rate scenario (case 1) and the highest NPF rate scenario (case 4) for both the SA-DMA nucleation (A) and the SA-AM nucleation (B). Two temperatures are shown for both the SA-DMA and the SA-AM nucleation. The simulation conditions can be found in Table 1 in the main text.

S6 Calculation of cluster evaporation rates of the $\mathrm{SA}_{\mathrm{i}} \mathrm{AM}_{\mathrm{j}}$ clusters

The weights of the $\mathrm{SA}_{\mathrm{i}} \mathrm{AM}_{\mathrm{j}}$ clusters, f_{ij} 's are calculated assuming that clusters containing the same number of SA molecules, but different number of AM molecules are at equilibrium concentration. The fraction of $\mathrm{SA}_{\mathrm{i}} \mathrm{AM}_{\mathrm{j}}$ clusters is given by

$$
\begin{equation*}
f_{i 1}=\frac{1}{1+\frac{k_{i 1}}{E_{i 2}}+\frac{k_{i 1} k_{i 2}}{E_{i 2} E_{i 3}}+\cdots+\frac{\prod_{x=1}^{i-1} k_{i x}}{\prod_{x=2}^{i} E_{i x}}} \tag{S4}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i j}=\frac{\frac{\Pi_{x=1}^{j-1} k_{i x}}{\prod_{x=2}^{j} E_{i x}}}{1+\frac{k_{i 1}}{E_{i 2}}+\frac{k_{i 1} k_{i 2}}{E_{i 2} E_{i 3}}+\cdots+\frac{\prod_{x=1}^{i-1} k_{i x}}{\prod_{x=2}^{i} E_{i x}}}(\mathrm{j} \geqslant 2) \tag{S5}
\end{equation*}
$$

where $k_{i x}$ is the collision rate between $\mathrm{SA}_{\mathrm{i}} \mathrm{AM}_{\mathrm{x}}$ with an ammonia molecule and $E_{i x}$ is the evaporation rate of an ammonia molecule from an $\mathrm{SA}_{\mathrm{i}} \mathrm{AM}_{\mathrm{x}}$ cluster. Note that in the calculation of $f_{i j}$, we have only considered cluster containing 1 to i ammonia molecules. Pure SA clusters and cluster with more base than acid molecules contribute negligibly to the cluster number concentrations.

S7 Cluster evaporation rates of $\mathrm{SA}_{\mathbf{3}} \mathbf{D M A}_{\mathbf{2}}$ and $\mathrm{SA}_{4} \mathrm{DMA}_{3}$

Table S1. Evaporation rates $\left(\mathrm{s}^{-1}\right)$ of SA_{1} from $\mathrm{SA}_{3} \mathrm{DMA}_{2}$ and $\mathrm{SA}_{4} \mathrm{DMA}_{3}$ at 298 K . In the calculation of the evaporation rates, the collision rate coefficients of SA_{1} with $\mathrm{SA}_{2} \mathrm{DMA}_{2}$ and $\mathrm{SA}_{3} \mathrm{DMA}_{2}$ are set to $1.12 \times 10^{-9} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and $1.27 \times 10^{-9} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, respectively. These collision rate coefficients are 2.3 times higher than the hard sphere collision coefficients to account for collision enhancement due to long range interactions between colliding entities.

Source	$\mathrm{SA}_{3} \mathrm{DMA}_{2} \rightarrow$ $\mathrm{SA}_{2} \mathrm{DMA}_{2}+\mathrm{SA}_{1}$	$\mathrm{SA}_{4} \mathrm{DMA}_{3} \rightarrow$ $\mathrm{SA}_{3} \mathrm{DMA}_{3}+\mathrm{SA}_{1}$
Li et al. ${ }^{1}$	0.0428	0.1501
Myllys et al. ${ }^{2}$	0.0440	18.5745
Ortega et al. ${ }^{3}$	8.0362	0.2414

S8 Derivation of eqns (15), (18) and (19)

Recall that $[\mathrm{SA}]_{\mathrm{t}}$ is the combined concentration of SA_{1} and $\mathrm{SA}_{1} \mathrm{DMA}_{1}$. We consider how $[\mathrm{SA}]_{\mathrm{t}}$ is distributed between SA_{1} and $\mathrm{SA}_{1} \mathrm{DMA}_{1}$. Neglecting coagulation with other clusters as well as $\mathrm{SA}_{1} \mathrm{DMA}_{1}$ formation due to the evaporation of larger clusters, the balance equation for $\mathrm{SA}_{1} \mathrm{DMA}_{1}$ at steady state is

$$
\begin{equation*}
n_{\mathrm{SA}} n_{\mathrm{DMA}} \beta_{\mathrm{SA}-\mathrm{DMA}}=n_{\mathrm{SA}_{1} \mathrm{DMA}_{1}}\left(E_{1}+C S_{1}+k_{1}\right) \tag{S6}
\end{equation*}
$$

Since k_{1} is much lower than $E_{1}+C S_{1}$ for most conditions (see Table 1 for the values of E_{1}),

$$
\begin{equation*}
n_{\mathrm{SA}_{1} \mathrm{DMA}_{1}}=n_{\mathrm{SA}} n_{\mathrm{DMA}} \frac{\beta_{\mathrm{SA}-\mathrm{DMA}}}{E_{1}+C S_{1}}=n_{S A} \frac{k_{0}}{E_{1}+C S_{1}} \tag{S7}
\end{equation*}
$$

Using the relation $n_{\mathrm{t}}=n_{\mathrm{SA}}+n_{\mathrm{SA}_{1} \mathrm{DMA}_{1}}$,

$$
\begin{gather*}
n_{\mathrm{SA}}=\frac{n_{\mathrm{t}}\left(E_{1}+\mathrm{CS}_{1}\right)}{k_{0}+E_{1}+\mathrm{CS}_{1}} \tag{S8}\\
n_{\mathrm{SA}_{1} \mathrm{DMA}_{1}}=\frac{n_{\mathrm{t}} k_{0}}{k_{0}+E_{1}+\mathrm{CS}_{1}} \tag{S9}
\end{gather*}
$$

Combining eqn (S6) and eqn (12), we have

$$
\begin{equation*}
J=k_{1} n_{\mathrm{t}} \frac{E_{1}+\mathrm{CS}_{1}}{k_{0}+E_{1}+\mathrm{CS}_{1}} \prod_{i=1}^{3} \frac{k_{i}}{k_{i}+C S_{i}+E_{i}} \tag{S10}
\end{equation*}
$$

To account for the instability of $\mathrm{SA}_{4} \mathrm{DMA}_{3}$ and $\mathrm{SA}_{3} \mathrm{DMA}_{2}$, we only need to modify the relevant cluster growth rates in eqn (S10). If $\mathrm{SA}_{4} \mathrm{DMA}_{3}$ is so unstable that it instantly evaporates, the cluster $\mathrm{SA}_{3} \mathrm{DMA}_{3}$ can only grow by the
addition of $\mathrm{SA}_{1} \mathrm{DMA}_{1}$, hence its growth rate should be $k_{3}^{\prime}=\beta_{3} n_{\mathrm{SA}_{1} \mathrm{DMA}_{1}}$. Replacing k_{3} in eqn (S10) by k_{3}^{\prime} and above procedure. This leads to

$$
\begin{equation*}
J=k_{0} n_{\mathrm{t}} \frac{E_{1}+\mathrm{CS}_{1}}{k_{0}+E_{1}+\mathrm{CS}_{1}}\left(\frac{k_{0}}{k_{0}+E_{1}+\mathrm{CS}_{1}}\right)^{2} \prod_{i=1}^{3} \frac{k_{i}}{k_{i}+C S_{i}+E_{i}} . \tag{S10}
\end{equation*}
$$

S9 CS dependency of different terms in eqns (15), (18) and (19)

Figure S3 compares the contribution of CS dependency from different terms in eqns (15), (18) and (19). These contributions are calculated by derivatizing $\log \left(\frac{k_{0}}{k_{0}+E_{1}+C S_{1}}\right)$ and $\log \left(\prod_{i=1}^{3} \frac{k_{i}}{k_{i}+C S_{i}+E_{i}}\right)$ with respect to \log (CS) while holding other variables (k_{i} 's and E_{i} 's) constant. Figure S 3 shows that $\frac{k_{0}}{k_{0}+E_{1}+\mathrm{CS}_{1}}$ has a power dependency on CS for no more than $\mathrm{CS}^{-0.28}$ (blue squares; $10^{\text {th }}$ percentile -0.03 ; median $-0.08 ; 90^{\text {th }}$ percentile -0.16) and hence $\left(\frac{k_{0}}{k_{0}+E_{1}+\mathrm{CS}_{1}}\right)^{0-2}$ has a power dependency for no more than $\mathrm{CS}^{-0.56}$. In contrast, the power dependency of $\prod_{i=1}^{3} \frac{k_{i}}{k_{i}+C S_{i}+E_{i}}$ on CS is in the range of $\mathrm{CS}^{-0.66}$ to $\mathrm{CS}^{-2.4}$ (red circles; $10^{\text {th }}$ percentile -1.1 ; median $-1.4 ; 90^{\text {th }}$ percentile 1.9).

Figure S5. Comparison of the CS power dependency of the term $\frac{k_{0}}{k_{0}+E_{1}+C S_{1}}$ (blue squares) and $\prod_{i=1}^{3} \frac{k_{i}}{k_{i}+C S_{i}+E_{i}}$ (red circles) in eqns (15), (18) and (19).

References

1. H. Li, A. Ning, J. Zhong, H. Zhang, L. Liu, Y. Zhang, X. Zhang, X. C. Zeng and H. He, Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation, Chemosphere, 2020, 245, 125554.
2. N. Myllys, S. Chee, T. Olenius, M. Lawler and J. Smith, Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid-Amine-Ammonia Mixed Clusters, J. Phys. Chem. A, 2019, 123, 2420-2425.
3. I. K. Ortega, O. Kupiainen, T. Kurtén, T. Olenius, O. Wilkman, M. J. McGrath, V. Loukonen and H. Vehkamäki, From quantum chemical formation free energies to evaporation rates, Atmos. Chem. Phys., 2012, 12, 225235.
