Supporting Information For:

Chemical Characterization of Prescribed Burn Emissions from a Mixed Forest in Northern Michigan

Jamy Y. Lee^a, Conner Daube^b, Ed Fortner^b, Nicholas Ellsworth^a, Nathaniel W. May^a, Jason Tallant^c, Scott Herndon^b, Kerri A. Pratt^{*a,d}

^aDepartment of Chemistry, University of Michigan, Ann Arbor, MI, USA ^bAerodyne Research Inc., Billerica, MA, USA ^cDepartment of Ecology and Evolutionary Biology and Biological Station, University of Michigan, Ann Arbor and Pellston, MI, USA ^dDepartment of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI, USA

*Corresponding Author: Kerri A. Pratt, prattka@umich.edu

Organic Carbon-Nitrate-Sulfate Particle Type

6.5 ± 0.3%, by number, of the 5,894 total individual particles measured during the smoke plume periods did not correspond to biomass burning particles and were instead classified as organic carbon-nitrate-sulfate (**Figure S5**). The organic carbon-nitrate-sulfate individual particles measured with the ATOFMS had prominent organic carbon positive ion markers (m/z 27 (C₂H₃⁺ and/or CHN⁺), 37 (C₃H⁺), and 43 (C₂H₃O⁺, CHNO⁺ and/or C₃H₇⁺)), and negative organic nitrogen ion markers (m/z -26 (CN⁻), and -42 (CNO⁻)).¹ These particles were internally mixed with nitrate (m/z -46 (NO₂⁻) and -62 (NO₃⁻)), sulfate (m/z -97 (HSO₄⁻)), phosphate (m/z -97 (H₂PO₄⁻) and -79 (PO₃⁻)).^{2, 3} While these particles were not classified as biomass burning, the ion peak at m/z 39 likely corresponds, in part, to potassium (K⁺), a prominent biomass burning marker, and/or a polycyclic aromatic hydrocarbon (PAH) ion fragment (C₃H₃⁺).⁴ Additional PAH fragments present in this particle type include m/z 51, 63, 77, 87, 91, 102, and 115.^{4, 5} Elemental carbon ion peaks (m/z 12 (C⁺), 24 (C₂⁺), C_n⁺, and -24 (C₂⁻), -36 (C₃⁻), C_n⁻)⁶ were also present in these particle mass spectra.

Biomass Burning Individual Particles Peak Number Fractions

To examine the heterogeneity in the chemical composition of biomass burning particles, **Figure S6** shows the number of particles that contain different ion peaks and their relative peak intensities. As discussed in the main text, biomass burning particles are characterized by dominant potassium (m/z 39 (K⁺)), sulfate (m/z -97 (HSO₄⁻)), and nitrate (m/z -46 (NO₂⁻) and -62 (NO₃⁻)) peaks,^{1, 7} as apparent in **Figure S6**. As shown in **Figure S6**, intense potassium, sulfate, and nitrate ion peaks were in most of the biomass burning particles. Less than 40% of the biomass burning particles had all three levoglucosan ion fragments ion (m/z -45 (CHO₂⁺), -59 $(C_2H_3O_2^+)$, and -71 $(C_3H_3O_2^+)$),¹ with *m/z* peaks -45 and -59 occurring more frequently, and generally with a higher relative abundance than *m/z* peak -71. Less than 1% of biomass burning particles had minor (relative peak areas between 1 – 5%) potassium cluster salt clusters (*m/z* -163 (K(NO_3)_2^-), -137 (KSO_4^-), and -109 (KCl_2)). Greater than 60% of biomass burning particles had prominent organic carbon (*m/z* 27 (C₂H₃⁺), 37 (C₃H⁺), and 43 (C₂H₃O⁺)), organic nitrogen (*m/z* 27 (NCH⁺), -26 (CN⁻), -42 (CNO⁻)), and aromatic fragments of *m/z* 51 (C₄H₃⁺) and 63 (C₅H₃^{++).4, 5} Fewer than half the particles had an aromatic fragment peak of *m/z* 77 and less than 20% of the particles had larger PAH ion peaks at *m/z* 87, 91, 102, 115, 128, 139, 152, 165, 178, 189, and 202. About 10% of biomass burning particles had the aromatic peak at *m/z* 212 (C₁₀H₁₂O₅⁺⁾⁴ that was prevalent in the individual particles sampled during Plume 1 (see main text).

References

- 1. P. J. Silva, D.-Y. Liu, C. A. Noble and K. A. Prather, Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species, *Environmental Science & Technology*, 1999, **33**, 3068-3076.
- L. S. Hughes, J. O. Allen, P. Bhave, M. J. Kleeman, G. R. Cass, D. Y. Liu, D. P. Fergenson, B. D. Morrical and K. A. Prather, Evolution of Atmospheric Particles along Trajectories Crossing the Los Angeles Basin, *Environmental Science & Technology*, 2000, **34**, 3058-3068.
- 3. S. H. Pastor, J. O. Allen, L. S. Hughes, P. Bhave, G. R. Cass and K. A. Prather, Ambient single particle analysis in Riverside, California by aerosol time-of-flight mass spectrometry during the SCOS97-NARSTO, *Atmospheric Environment*, 2003, **37**, 239-258.
- 4. P. J. Silva and K. A. Prather, Interpretation of Mass Spectra from Organic Compounds in Aerosol Time-of-Flight Mass Spectrometry, *Analytical Chemistry*, 2000, **72**, 3553-3562.
- 5. D. A. Sodeman, S. M. Toner and K. A. Prather, Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions, *Environmental Science & Technology*, 2005, **39**, 4569-4580.
- 6. M. T. Spencer and K. A. Prather, Using ATOFMS to Determine OC/EC Mass Fractions in Particles, *Aerosol Science and Technology*, 2006, **40**, 585-594.
- X. Qin and K. A. Prather, Impact of biomass emissions on particle chemistry during the California Regional Particulate Air Quality Study, *International Journal of Mass Spectrometry*, 2006, 258, 142-150.

Compound	Background	Plume 1	Plume 2	Plume 3	Plume 4	Plume 5	Plume 6
CO ₂ (ppm)	391.9 ± 0.2	401 ± 5	392 ± 2	393 ± 1	392 ± 1	391 ± 1	392 ± 3
CO (ppb)	134 ± 1	190 ± 20	260 ± 20	490 ± 40	420 ± 30	290 ± 20	200 ± 10
CH₄ (ppb)	1858.3 ± 0.4	1848 ± 1	1878 ± 2	1896 ± 4	1888 ± 3	1874 ± 2	1865 ± 2
C ₂ H ₂ (ppb)	0.17 ± 0.03	0.5 ± 0.1	0.8 ± 0.1	1.6 ± 0.1	1.2 ± 0.1	0.8 ± 0.1	0.4 ± 0.1
C ₂ H ₆ (ppb)	1.25 ± 0.03	1.5 ± 0.1	2.4 ± 0.2	4.2 ± 0.3	3.7 ± 0.3	2.6 ± 0.2	1.8 ± 0.1
HCN (ppb)	0.03 ± 0.01	0.57 ± 0.03	0.31 ± 0.03	0.55 ± 0.04	0.43 ± 0.03	0.31 ± 0.03	0.15 ± 0.03
O₃ (ppb)	26.4 ± 0.2	24 ± 3	27 ± 1	27 ± 1	29 ± 1	27 ± 1	25 ± 1
NO (ppb)	2.17 ± 0.01	12 ± 7	3 ± 1	3.1 ± 0.3	3 ± 1	3±1	5 ± 2
N ₂ O (ppb)	352.7 ± 0.1	353.7 ± 0.3	352.9 ± 0.1	352.9 ± 0.1	352.94 ± 0.05	352.7 ± 0.1	352.7 ± 0.2
Total Particle Concentration (#/cm ³)	1500 ± 900	11000 ± 7000	10000 ± 1000	33000 ± 4000	26000 ± 3000	14000 ± 1000	7000 ± 2000

Table S1: Average trace gas (CO₂, CO, CH₄, C₂H₆, C₂H₂, HCN, NO, N₂O) mole ratios, and total particle (CPC) number concentrations for the background and six plume periods with the 95% confidence intervals reported.

Table S2: Average SP-AMS PM_1 emission ratios (mg/g) and OA/rBC ratios for the six plume periods with the 95% confidence intervals reported.

Species	Plume 1	Plume 2	Plume 3	Plume 4	Plume 5	Plume 6
OA	80 ± 20	90 ± 10	120 ± 10	84 ± 8	74 ± 7	50 ± 10
rBC	4 ± 2	3.3 ± 0.6	4.5 ± 0.6	2.3 ± 0.2	2.3 ± 0.4	2.2 ± 0.9
SO ₄ ²⁻	1.1 ± 0.2	0.82 ± 0.07	0.6 ± 0.1	0.56 ± 0.05	0.8 ± 0.1	1.2 ± 0.2
NO ₃	0.7 ± 0.2	0.8 ± 0.1	1.2 ± 0.1	0.9 ± 0.1	0.8 ± 0.1	0.4 ± 0.1
NH_4^+	0.3 ± 0.1	0.37 ± 0.07	0.5 ± 0.1	0.4 ± 0.04	0.46 ± 0.07	0.5 ± 0.1
Chl	0.20 ± 0.04	0.14 ± 0.01	0.12 ± 0.02	0.09 ± 0.01	0.12 ± 0.01	0.18 ± 0.02
OA/rBC	25 ± 5	33 ± 6	30 ± 3	37 ± 2	35 ± 5	31 ± 7

Figure S1: Average SP-AMS organic aerosol size distribution.

Figure S2: Fractional contributions to OA from hydrocarbon ion signal (CH), oxygenated (CHO_{>=1}), nitrogen-containing (CHNO_{>=0}), sulfur-containing (CS), and carbon fragments (C_{frag}) for Plumes 2, 3, and 6. Plume 4 is omitted due to different instrument settings.

Figure S3: Average organic mass spectra for Plumes 1 - 3, 5, and 6. Plume 4 was omitted for consistency due to the SP-AMS operating with the continuous wave laser off, as only mass spectra associated with nonrefractory organics would be observed with the laser off.

Figure S4: SP-AMS average organic aerosol mass spectrum for Plume 5 subtracted from the signal from Plume 1 with ion family peaks colored. Positive relative peak intensities correspond to greater abundance during Plume 1; negative relative peak intensities correspond to greater abundance during Plume 5.

Figure S6: ATOFMS average positive and negative mass spectrum of organic carbon-nitrate-sulfate particles.

Figure S5: ATOFMS positive and negative ion digital mass spectra showing the number fractions of individual biomass burning particles (y-axis) containing each m/z ion (x-axis), as a function of relative peak area (color scale).

Figure S7: ATOFMS average positive and negative mass spectra of individual biomass burning particles for each plume period. Mass spectra were similar for Plumes 2 – 6. Plume 1 displayed a stronger m/z 212 ion peak (highlighted) and fewer PAH ion fragments (highlighted) compared to Plumes 2 – 6, further discussed in the main text.