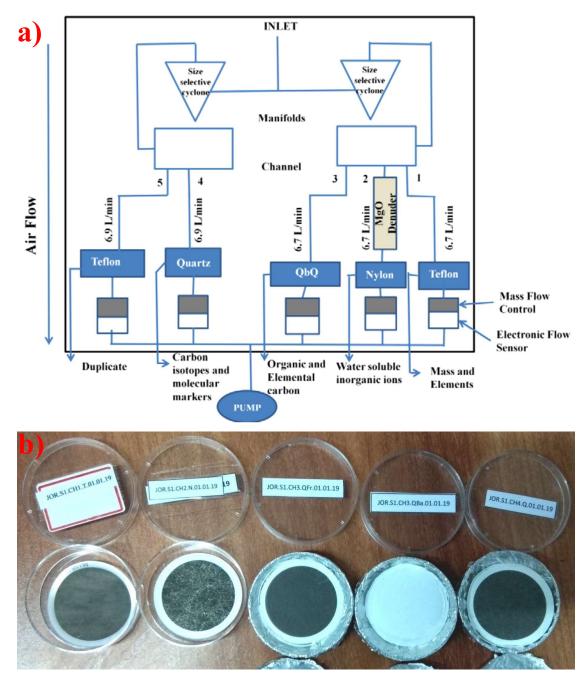
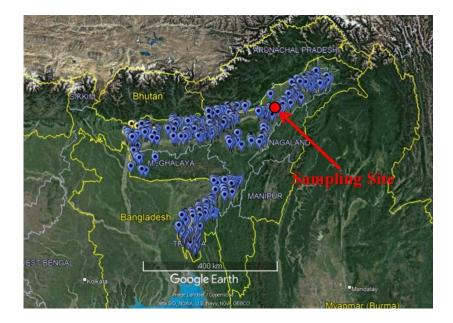
Supplementary Information

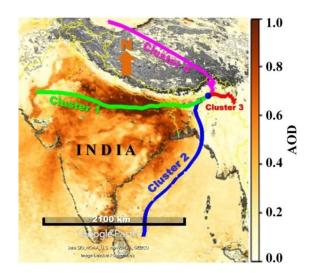

2 Year-long aerosol chemistry and meteorological implications of PM2.5 in

3 urban area of the Brahmaputra Valley, India


- 4 Shahadev Rabha^{1,2} Nazrul Islam^{1,2} Binoy K Saikia^{1,2*} Gyanesh Kumar Singh³ Adnan Mateen
- 5 Qadri³ Vivek Srivastava³ and Tarun Gupta³
- 6 ¹Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat-
- 7 785006, Assam, India
- 8 ²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- 9 ³Department of Civil Engineering, Indian Institute of Technology, Kanpur-208016 (UP),
- 10 India.
- 11 *Corresponding author: <u>bksaikia@neist.res.in;</u> <u>bksaikia@gmail.com</u>
- 12

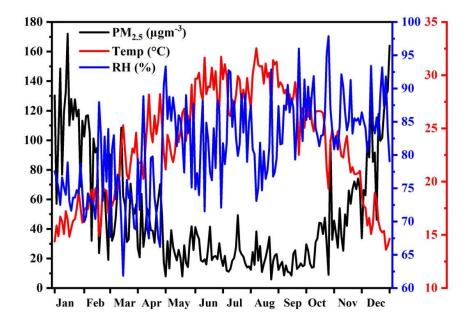
14 Supplementary Figures

- 16 Fig. S1. a) Flowchart of the SASS sampling system and b) filter substrates after sampling (only
- 17 first three filters were used in the present study)



19

Fig. S2. Location of Brick Kilns in the NER India as per the data retrieved from Google Earth 20


- (imagery date from December 2018 to April 2019, date of access was 25th to 30th August 21 2020).
- 22

24

Fig. S3. Mean five-day back-trajectory for the four main clusters at Jorhat and the map shows 25 the annual mean AOD in 2019. It shows that cluster 1 back-trajectory moves over the high 26 27 AOD region which can carry more pollutants.

28

Fig. S4. Graph between daily averages of $PM_{2.5}$ concentration ($\mu g m^{-3}$), temperature (°C), and

30 relative humidity (%) for the year 2019.

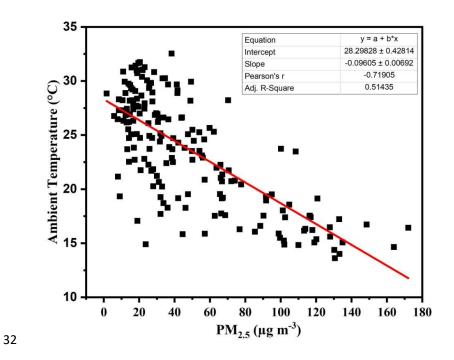
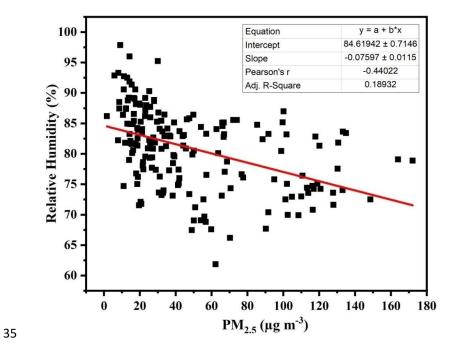
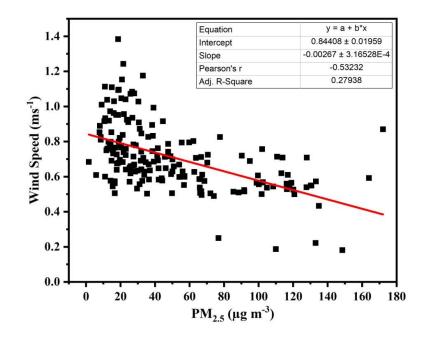
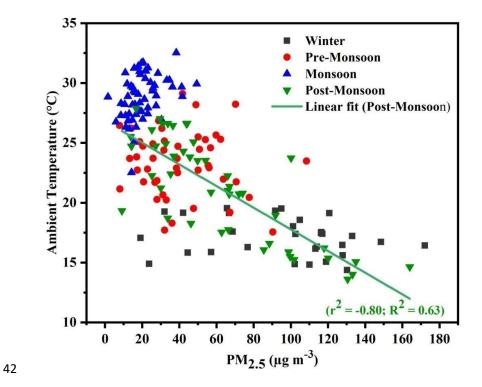
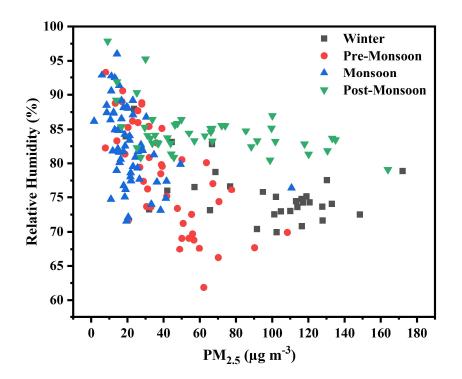




Fig. S5. Scatter plot between PM_{2.5} and ambient temperature showing a strong negativecorrelation.

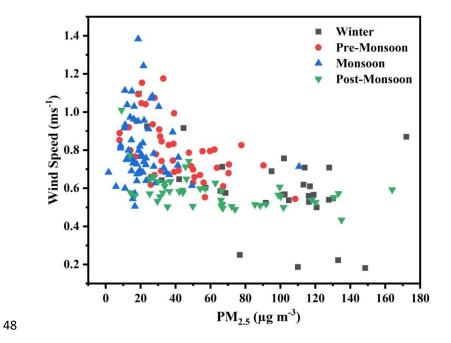


36 Fig. S6. Scatter plot between $PM_{2.5}$ and relative humidity showing a weak negative 37 correlation.



39

40 Fig. S7. Scatter plot between PM_{2.5} and wind speed showing a weak negative correlation.



43 Fig. S8. Seasonal relationship between ambient temperature and PM_{2.5}.

45

46 Fig. S9. Seasonal relationship between relative humidity and PM_{2.5}.

49 Fig. S10. Seasonal relationship between wind speed and $PM_{2.5}$.

50 Supplementary Tables

PM _{2.5} (µg m ⁻³)	Average \pm SD	Maximum	Minimum
Annual (n= 183)	48.9 ± 37.8	172.1	5.9
Winter (n= 30)	95.3 ± 37.9	172.1	19.1
Pre-Monsoon (n= 46)	41.1 ± 21.8	108.5	7.9
Monsoon (n= 61)	21.8 ± 14.5	110.7	5.9
Post-Monsoon (n= 46)	62.4 ± 37.5	164.0	9.1

Table S1: Annual, seasonal, and monthly concentration of PM_{2.5} in 2019.

52 *SD = Standard Deviation, n = number of sample

Table S2: Seasonal and annual percentage concentration of cations and anions of total $PM_{2.5}$

Iong	% Concentration					
Ions	Winter	Pre-Monsoon	Monsoon	Post-Monsoon	Annual	
Cl-	20.4	8.7	23.5	33.3	20.5	
NO ₃ -	14.7	7.5	2.4	10.1	9.7	
SO4 ²⁻	30.5	43.3	5.4	23.3	27.3	
Na ⁺	2.4	2.0	0.5	1.4	1.8	
NH4 ⁺	20.4	26.4	60.0	18.9	29.4	
Mg^{2+}	0.9	2.7	1.9	1.0	1.6	
$\frac{Mg^{2+}}{K^+}$	7.7	6.4	4.2	9.5	7.0	
Ca ²⁺	3.2	3.1	2.1	2.4	2.8	
Total Anions	65.5	59.5	31.3	66.7	57.5	
Total Cations	34.5	40.5	68.7	33.3	42.5	

- 55 Table S3: Comparative ionic ratios of aerosols and seawater for determining the marine
- 56 influence to the $PM_{2.5}$ mass.

	Marine Influence					
	Cl ⁻ /Na ⁺	K^+/Na^+	Mg^{2+}/Na^{+}	Ca ²⁺ /Na ⁺	SO4 ²⁻ /Na ⁺	
Winter	8.6	3.2	0.4	1.3	12.8	
Pre-Monsoon	4.3	3.2	1.3	1.5	21.4	
Monsoon	50.4	9.0	4.1	4.6	11.5	
Post-Monsoon	23.4	6.7	0.7	1.7	16.4	
Annual	13.2	4.3	1.1	1.7	16.2	
Seawater	1.80	0.04	0.01	0.04	0.25	

$I_{ons}(u_{\alpha}m^{-3})$	Winter ±	Pre-Monsoon	Monsoon	Post-Monsoon	Annual Mean
Ions ($\mu g m^{-3}$)	SD	\pm SD	\pm SD	\pm SD	\pm SD
Cl-	4.6 ± 0.8	1.2 ± 1.3	2.7 ± 0.3	3.5 ± 0.9	3.0 ± 1.5
NO ₃ -	3.4 ± 1.6	1.1 ± 1.5	0.3 ± 0.3	1.1 ± 0.8	1.4 ± 1.5
SO4 ²⁻	6.9 ± 5.5	6.1 ± 3.9	0.6 ± 1.1	2.4 ± 2.4	4.0 ± 4.1
Na ⁺	0.5 ± 0.4	0.3 ± 0.2	0.1 ± 0.1	0.2 ± 0.2	0.3 ± 0.3
$\mathrm{NH_4}^+$	4.6 ± 1.4	3.7 ± 1.8	7.0 ± 9.8	2.0 ± 1.3	4.3 ± 6.1
Mg^{2+}	0.2 ± 0.1	0.4 ± 0.4	0.2 ± 0.5	0.1 ± 0.1	0.2 ± 0.4
\mathbf{K}^+	1.8 ± 0.6	0.9 ± 0.4	0.5 ± 0.2	1.0 ± 1.3	1.0 ± 0.8
Ca^{2+}	0.7 ± 0.5	0.4 ± 0.2	0.3 ± 0.1	0.3 ± 0.1	0.4 ± 0.3
Total Anions	14.9 ± 6.9	8.3 ± 4.4	3.6 ± 1.4	6.9 ± 3.7	8.5 ± 5.6
Total Cations	7.9 ± 1.7	5.7 ± 2.2	8.0 ± 9.8	3.5 ± 2.0	6.2 ± 6.1
Total WSIIs	22.8 ± 8.1	14.0 ± 5.6	11.6 ± 9.5	10.4 ± 5.6	15.0 ± 8.6

57 Table S4: Concentration of water-soluble inorganic ions (WSIIs) in 2019

59 Table S5: Average annual concentration and seasonal variation of major inorganic/metal

60 elements (ng m⁻³).

Species	Winter	Pre-Monsoon	Monsoon	Post-Monsoon	Annual
species	\pm SD	\pm SD	\pm SD	\pm SD	\pm SD
Na	73.7 ± 86.1	212.8 ± 124.8	130.5 ± 105.8	134.0 ± 153.4	142.9 ± 130.0
Al	26.4 ± 53.4	413.2 ± 413.6	14.8 ± 58.6	280.1 ± 1836.5	183.4 ± 950.9
Si	602.5 ± 219.7	1671.8 ± 1106.9	262.1 ± 249.5	256.1 ± 94.1	677.6 ± 838.1
S	2252.2 ± 858.3	1873.5 ± 921.6	889.9 ± 675.7	1153.3 ± 729.7	1432.7 ± 951.9
Cl	1215.5 ± 983.9	141.4 ± 149.6	65.5 ± 33.0	751.6 ± 983.6	444.3 ± 775.1
K	1837.1 ± 797.3	900.0 ± 474.9	234.6 ± 156.3	$1130.4 \pm \! 1967.8$	890.7 ± 1197.1
Са	29.0 ± 27.4	108.4 ± 101.2	23.7 ± 63.2	12.4 ± 31.5	43.5 ± 76.3
Fe	150.6 ± 94.2	479.5 ± 363.4	49.8 ± 93.1	44.2 ± 63.0	181.0 ± 204.9

61

62 Table S6: Average annual concentration and seasonal variation of trace inorganic/metal

63 elements (ng m⁻³).

Species	Winter ± SD	$\frac{\text{Pre-Monsoon} \pm}{\text{SD}}$	$\begin{array}{c} Monsoon \\ \pm \ SD \end{array}$	Post-Monsoon ± SD	Annual Mean ± SD
Ti	1.1 ± 3.1	27.5 ± 28.8	2.7 ± 7.5	<mdl< td=""><td>7.8 ± 13.2</td></mdl<>	7.8 ± 13.2
V	83.4 ± 10.2	76.8 ± 18.7	100.3 ± 16.5	71.5 ± 23.0	83.0 ± 12.5
Mn	2.4 ± 3.4	5.9 ± 6.8	0.1 ± 0.5	3.3 ± 8.2	2.9 ± 2.4
Co	9.8 ± 3.7	9.4 ± 6.2	15.0 ± 5.7	7.4 ± 6.5	10.4 ± 3.3
Ni	14.4 ± 1.8	12.9 ± 1.6	14.1 ± 3.6	14.6 ± 0.8	14.0 ± 0.8
Zn	57.2 ± 40.5	44.2 ± 58.2	9.1 ± 19.4	41.5 ± 50.3	38.0 ± 20.5
Br	3.1 ± 2.4	0.7 ± 1.0	<mdl< td=""><td>1.2 ± 2.0</td><td>1.2 ± 1.3</td></mdl<>	1.2 ± 2.0	1.2 ± 1.3
Rb	2.5 ± 3.5	0.1 ± 0.4	<mdl< td=""><td>1.1 ± 3.9</td><td>0.9 ± 1.2</td></mdl<>	1.1 ± 3.9	0.9 ± 1.2

Sr	17.5 ± 4.5	14.2 ± 3.5	10.6 ± 2.0	12.6 ± 4.7	13.7 ± 2.9
Zr	2.4 ± 1.0	2.6 ± 1.9	2.8 ± 1.6	1.1 ± 1.2	2.2 ± 0.8
Мо	6.8 ± 9.9	$9.2\pm\!\!13.8$	30.0 ± 20.3	13.8 ± 16.8	15.0 ± 10.4
Sb	8.9 ± 9.9	11.9 ± 16.2	$23.6\ \pm 17.8$	8.1 ± 14.29	13.1 ± 7.2
Ι	2.4 ± 2.8	0.2 ± 0.4	<mdl< th=""><th>0.8 ± 2.0</th><th>$0.8\ \pm 1.1$</th></mdl<>	0.8 ± 2.0	$0.8\ \pm 1.1$
Cs	15.4 ± 8.4	3.8 ± 6.4	<mdl< th=""><th>5.0 ± 7.6</th><th>6.1 ± 6.6</th></mdl<>	5.0 ± 7.6	6.1 ± 6.6
Ba	$53.0\pm\!10.3$	42.8 ± 21.6	51.1 ± 17.6	43.2 ± 37.2	47.5 ± 5.3
Pb	11.8 ± 8.1	7.8 ± 9.0	1.3 ± 4.5	7.5 ± 7.1	7.1 ± 4.3

Table S7: Average annual concentration and seasonal variation of carbonaceous matters (µg

66 m⁻³).

Species	Winter ± SD	Pre-Monsoon ± SD	Monsoon ± SD	Post-Monsoon ± SD	Annual ± SD
OC	14.8 ± 7.3	4.9 ± 3.1	3.2 ± 1.4	10.5 ± 7.5	6.1 ± 5.4
EC	12.1 ± 6.7	2.8 ± 1.2	1.0 ± 1.2	8.7 ± 7.0	4.3 ± 3.8
SOC	7.9 ± 4.5	3.3 ± 2.1	1.6 ± 1.3	5.5 ± 4.0	3.7 ± 1.6
OC+EC	26.9 ± 14.0	7.7 ± 4.3	3.2 ± 2.6	19.2 ± 14.5	10.4 ± 9.3
Char-EC	3.0 ± 2.5	0.0 ± 1.5	0.1 ± 0.7	2.2 ± 3.1	1.1 ± 2.4
Soot-EC	9.1 ± 4.6	2.8 ± 2.1	0.9 ± 0.9	6.5 ± 4.4	4.3 ± 4.4

67

Table S8: Percentage (%) of air mass back-trajectory arriving at Jorhat from different clusters

69 during the sampling period.

Season	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Winter(n= 30)	70	-	23	7
Pre-Monsoon(n= 46)	67	21	12	-
Monsoon(n= 61)	10	68	22	-
Post-Monsoon(n= 61)	38	22	40	-