Electronic Supplementary Material (ESI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2023

C4 compounds

For C4 oxidation, considered chemical pathways represent at least 75% of the estimated reactivity.

Reactions		k298	Ea/R	References	Notes
		(M ^{-m+1} s ⁻¹)	(K)		
Oxidation of Methacrolein (MACR)					1
Pathway 1: $CH_2=C(CH_3)CHO + HO^{\bullet} \rightarrow CH_2(OH)C^{\bullet}(CH_3)CHO$		9.4 10 ⁹			BR: 100% - 2
$CH_2(OH)(C^*(CH_3)CHO + O_2 \rightarrow CH_2(OH)(COO^*)(CH_3)CHO$	D(C11)	$2.0\ 10^9$	1202	Cale View and all	3
$CH_2=C(CH_3)CHO + HO^2 \rightarrow CH_2(OH)C(OO^2)(CH_3)CHO - O_2$	K(611)	9.4·10 ⁵	1203	Schone et al.,	
		4 0 108		2014	
$CH_2(OH)C(CH_2)(O^*)CHO \rightarrow 0.50 CH_2(OH)C(CH_3)(O + 0.50 CH_2(OH) + 0.50 CH_2(OH) + 0.50 C*HO)$		4.0 10			4 - 5
C^{+} (OH) + $O_2 \rightarrow CH_2(OH)(OO^{*})$		2.0 10 ⁹			3
$C \cdot HO + O_2 \rightarrow CHO(OO \cdot)$		2.0 10 ⁹			3
2 CH ₂ (OH)C(OO [•])(CH ₃)CHO → CH ₃ COCHO + CH ₃ COCH ₂ (OH) + CH ₂ (OH)(OO [•]) + CHO(OO [•]) - O ₂	R(612)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) - 6
Oxidation of Hydroxymethacrolein (HMACR)					7
Pathway 1:CH ₂ =C(CH ₂ (OH))CHO + HO $^{\bullet} \rightarrow$ CH ₂ (OH)C $^{\bullet}$ (CH ₂ (OH))CHO		9.4 10 ⁹			BR: 100% - 2
$CH_2(OH)C^{\bullet}(CH_2(OH))CHO + O_2 \rightarrow CH_2(OH)C(CH_2(OH))(OO^{\bullet})CHO$		2.0 10 ⁹			3
CH ₂ =C(CH ₂ (OH))CHO + HO [•] → CH ₂ (OH)C(CH ₂ (OH))(OO [•])CHO - O ₂	R(613)	9.4·10 ⁹	1203		$= k(CH_2=C(CH_3)CHO + HO^{\bullet})$
2 CH ₂ (OH)C(CH ₂ (OH))(OO [•])CHO → 2 CH ₂ (OH)C(CH ₂ (OH))(O [•])CHO + O ₂		4.0 10 ⁸			
CH ₂ (OH)C(CH ₂ (OH))(O [•])CHO → 0.50 CH ₂ (OH)COCHO + 0.50 C [•] H ₂ (OH) + 0.50 CH ₂ (OH)COCH ₂ (OH) + 0.50 C [•] HO					4 - 5
$C^{\bullet}H_2(OH) + O_2 \rightarrow CH_2(OH)(OO^{\bullet})$		2.0 10 ⁹			3
$C^{\bullet}HO + O_2 \rightarrow CHO(OO^{\bullet})$		2.0 10 ⁹			3
$2 \operatorname{CH}_2(\operatorname{OH})\operatorname{C}(\operatorname{CH}_2(\operatorname{OH}))(\operatorname{OO}^{\bullet})\operatorname{CHO} \rightarrow \operatorname{CH}_2(\operatorname{OH})\operatorname{COCHO} + \operatorname{CH}_2(\operatorname{OH})\operatorname{COCH}_2(\operatorname{OH}) + \operatorname{CH}_2(\operatorname{OH})(\operatorname{OO}^{\bullet}) + \operatorname{CHO}(\operatorname{OO}^{\bullet}) - \operatorname{O}_2$	R(614)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) - 6
Oxidation of Methylvinylketone (MVK)					8
Pathway 1: $CH_2=CHCOCH_3 + HO^{\bullet} \rightarrow CH_2(OH)C^{\bullet}HCOCH_3$		7.0 10 ⁹			BR: 100% - 2
$CH_2(OH)C^{\bullet}HCOCH_3 + O_2 \rightarrow CH_2(OH)CH(OO^{\bullet})COCH_3$		2.0 10 ⁹			3
CH ₂ =CHCOCH ₃ + HO [•] → CH ₃ COCH(OO [•])CH ₂ (OH) - O ₂	R(615)	7.3 10 ⁹	1443	Schöne et al.,	
				2014	
Pathway 1: 2 CH ₃ COCH(OO')CH ₂ (OH) \rightarrow 2 CH ₃ COCOCH ₂ (OH) + H ₂ O ₂		1.8 10°			BR: 45%
Pathway 2: 2 CH ₃ COCH(OO [*])CH ₂ (OH) \rightarrow CH ₂ (OH)CH(OH)COCH ₃ + CH ₃ COCOCH ₂ (OH) + O ₂ Pathway 2: 2 CH ₃ COCH(OO [*])CH ₂ (OH) \rightarrow 2 CH ₂ COCH(O [*])CH ₂ (OH) + O ₂		8.0 10'			BR: 20%
Pathway 5. 2 Ch3COCH(OD)CH2(OH) \rightarrow 2 Ch3COCH(OD)CH2(OH) + O2 CH3COCH(O*)CH3(OH) \rightarrow 0.50 CH3(OH) + 0.50 CH3COCHO + 0.50 CH3(OH)CHO + 0.50 CH3C*O		1.4 10			4 - 5
$C^{+}H_{2}(OH) + O_{2} \rightarrow CH_{2}(OH) / O_{2}OH) + O_{2}OH O_{$		2.0 10 ⁹			3
$CH_3C^{\bullet}O + O_2 \rightarrow CH_3CO(OO^{\bullet})$		2.0 10 ⁹			3
2 CH ₃ COCH(OO [•])CH ₂ (OH) → 1.10 CH ₃ COCOCH ₂ (OH) + 0.20 CH ₂ (OH)CH(OH)COCH ₃ + 0.35 CH ₃ COCHO + 0.35	R(616)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) - 6
CH ₂ (OH)CHO + 0.35 CH ₂ (OH)(OO [•]) + 0.35 CH ₃ CO(OO [•]) + 0.45 H ₂ O ₂ - 0.15 O ₂					
Oxidation of Hydroxymethylvinylketone (MVKOH)					9
Pathway 1: $CH_2=CHCOCH_2(OH) + HO^{\bullet} \rightarrow CH_2(OH)C^{\bullet}HCOCH_2(OH)$		7.0 10 ⁹			BR: 100% - 2
$CH_2(OH)C^{\bullet}HCOCH_2(OH) + O_2 \rightarrow CH_2(OH)CH(OO^{\bullet})COCH_2(OH)$		2.0 10 ⁹			3
$CH_2=CHCOCH_2(OH) + HO^{\bullet} \rightarrow CH_2(OH)CH(OO^{\bullet})COCH_2(OH) - O_2$	R(617)	7.3 10 ⁹	1443		$= k(CH_2 = CHCOCH_3 + HO^{\bullet})$
Pathway 1: 2 CH ₂ (OH)COCH(OO $^{\bullet}$)CH ₂ (OH) \rightarrow 2 CH ₂ (OH)COCOCH ₂ (OH) + H ₂ O ₂		1.8 10 ⁸			BR: 45%
Pathway 2: 2 CH ₂ (OH)COCH(OO•)CH ₂ (OH) → CH ₂ (OH)COCH(OH)CH ₂ (OH) + CH ₂ (OH)COCOCH ₂ (OH) + O ₂		8.0 10 ⁷			BR: 20%
Pathway 3: 2 CH ₂ (OH)COCH(OO [•])CH ₂ (OH) \rightarrow 2 CH ₂ (OH)COCH(O [•])CH ₂ (OH) + O ₂		1.4 10 ⁸			BR: 35%
CH ₂ (OH)COCH(O [•])CH ₂ (OH) → 0.50 C [•] H ₂ (OH) + 0.50 CH ₂ (OH)COCHO + 0.50 CH ₂ (OH)CHO + 0.50 CH ₂ (OH)C [•] O					4 - 5
$C^{*}H_{2}(OH) + O_{2} \rightarrow CH_{2}(OH)(OO^{*})$		2.010^9			3
		2.0 107			C

Reactions		k ₂₉₈ Ea/R References (M ⁻ⁿ⁺¹ s ⁻¹) (K)	Notes
2 CH ₂ (OH)CH(OO [•])COCH ₂ (OH) → 1.10 CH ₂ (OH)COCOCH ₂ (OH) + 0.20 CH ₂ (OH)COCH(OH)CH ₂ (OH) + 0.35 CH ₂ (OH)COCHO + 0.35 CH ₂ (OH)CHO + 0.35 CH ₂ (OH)(OO [•]) + 0.35 CH ₂ (OH)CO(OO [•]) + 0.45 H ₂ O ₂ - 0.15 O ₂	R(618)	4.0 10 ⁸	= k(2 CH ₃ COCH ₂ (OO•)) - 6
Oxidation of Hydroxybutanedione			10
Pathway 1: $CH_3C(OH)(OH)COCH_2(OH) + HO^{\bullet} \rightarrow CH_3C(OH)(O^{\bullet})COCH_2(OH) + H_2O$		4.2 10 ⁸	BR: 54% - 11
$CH_{3}C(OH)(O^{\bullet})COCH_{2}(OH) \rightarrow CH_{3}CO(OH) + CH_{2}(OH)C^{\bullet}O$		0.0.100	4 - 5
$CH_2(OH)(-0 + O_2 \rightarrow CH_2(OH)(-0))$ $Pathway 2: CH_2(OH)(-0)(-OH)(-0) + H_0 + - CH_2(-0H)(-0H)(-0) + H_0$		2.0 10 ⁹ 2.6 10 ⁸	3 RD-16% 11
$CH_{3}C(OH)(OH)COC^{\bullet}H(OH) + O_{2} \rightarrow CH_{3}C(OH)(OH)COC^{\bullet}(OH) + H_{2}O$		2.010^9	3
$CH_{3}C(OH)(OH)(OH)+O(OH) + HO^{\bullet} \rightarrow 0.54 CH_{3}CO(OH) + 0.54 CH_{2}(OH)(OO^{\bullet}) + 0.46$	R(619)	7.8 10 ⁸	12
$CH_{2}C(OH)(OH)(OCH(OH)(OO^{\circ}) + H_{2}O - O_{2}$			
Patway 1: CH ₃ C(OH)(OH)COCH ₂ (OH) + NO ₃ ⁺ \rightarrow CH ₃ C(OH)(OH)COC ⁺ H(OH) + NO ₃ ⁻ + H ⁺		1.0 10 ⁶	BR: 100%
CH ₃ C(OH)(OH)COC [•] H(OH) + O ₂ → CH ₃ C(OH)(OH)COCH(OH)(OO [•])		2.0 10 ⁹	3
$CH_3C(OH)(OH)COCH_2(OH) + NO_3^{\bullet} \rightarrow CH_3C(OH)(OH)COCH(OH)(OO^{\bullet}) + NO_3^{\bullet} + H^+ - O_2$	R(620)	1.0 10 ⁶	= k(CH(OH)(OH)CH(OH)(OH)
			+ NO ₃ •) - 13
Pathway 1: CH ₃ COC(OH)(OH)CH ₂ (OH) + HO [•] → CH ₃ COC(OH)(O [•])CH ₂ (OH) + H ₂ O		4.2·10 ⁸	BR: 58% - 14
$CH_{3}COC(OH)(O^{\bullet})CH_{2}(OH) \rightarrow CH_{3}C^{\bullet}O + CH_{2}(OH)CO(OH)$		0.0.109	4 - 5
$(H_3C^*U + U_2 \rightarrow (H_3CU(UU^*))$		2.0·10 ³	3 PP: 40% 14
$Pathway 2. Ch_{3}COC(OH)(OH)C^{+}(OH) + h_{2} \rightarrow Ch_{3}COC(OH)(OH)C + h_{2}O$ $CH_{3}COC(OH)(OH)(C^{+}(OH) + h_{2} \rightarrow CH_{3}COC(OH)(OH)(OH)(OH)(OH) + h_{2}O$		2 0 10 ⁹	BN: 4270 - 14 3
CH ₃ COC(OH)(OH)CH ₂ (OH) + HO [•] → 0.58 CH ₂ (OH)CO(OH) + 0.58 CH ₃ CO(OO [•]) + 0.42	R(621)	7.2 10 ⁸	12
$CH_{3}COC(OH)(OH)(OH)(OO^{\circ}) + H_{2}O - O_{2}$	(),		
Pathway 1: $CH_3COC(OH)(OH)CH_2(OH) + NO_3^{\bullet} \rightarrow CH_3COC(OH)(OH)C^{\bullet}H(OH) + NO_3^{-} + H^{+}$		1.0 106	BR: 100%
CH ₃ COC(OH)(OH)C [•] H(OH) + O ₂ → CH ₃ COC(OH)(OH)CH(OH)(OO [•])		2.0 10 ⁹	3
CH ₃ COC(OH)(OH)CH ₂ (OH) + NO ₃ [•] → CH ₃ COC(OH)(OH)CH(OH)(OO [•]) + NO ₃ ⁻ + H ⁺ - O ₂	R(622)	1.0 10 ⁶	= k(CH(OH)(OH)CH(OH)(OH)
			+ NO ₃ •) - 13
Pathway 1: CH ₃ C(OH)(OH)C(OH)(OH)CH ₂ (OH) + HO [•] \rightarrow CH ₃ C(OH)(O [•])C(OH)(OH)CH ₂ (OH) + H ₂ O		4.6 10 ⁸	BR: 38% - 15
$(H_3(OH)(O^{*})(OH)(OH)(H_2(OH) \rightarrow CH_3(O(OH) + CH_2(OH)(C^{*}(OH)(OH))$		2.0.109	4 - 5
Pathway 2: CH ₃ C(OH)(OH)C(OH)(OH)CH ₂ (OH)(OH) + HO [•] \rightarrow CH ₃ C(OH)(OH)C(OH)(O [•])CH ₂ (OH) + H ₂ O		4.3 10 ⁸	BR: 36% - 15
$CH_{3}C(OH)(OH)(C(OH)(O^{\bullet})CH_{2}(OH) \rightarrow CH_{3}C(OH)(OH)CO(OH) + C^{\bullet}H_{2}(OH)$			4 - 5
$C^{\bullet}H_2(OH) + O_2 \rightarrow CH_2(OH)(OO^{\bullet})$		2.0 10 ⁹	3
Pathway 3: $CH_3C(OH)(OH)C(OH)(OH)CH_2(OH) + HO^{\bullet} \rightarrow CH_3C(OH)(OH)C(OH)(OH)C^{\bullet}H(OH) + H_2O$		3.1 108	BR: 26% - 15
$CH_{3}C(OH)(OH)C(OH)(OH)C^{+}(OH) + 0_{2} \rightarrow CH_{3}C(OH)(OH)C(OH)(OH)(OH)(OO^{+})$		2.010^9	3
$CH_{3}C(OH)(OH)C(OH)(OH)(CH_{2}(OH) + HO) \rightarrow 0.38 CH_{3}CO(OH) + 0.38 CH_{2}(OH)C(OH)(OH)(OH)(OU) + 0.36$	K(023)	1.2 105	12
$CH_{3}C(OH)(OH)CO(OH) + 0.36 CH_{2}(OH)(OO') + 0.26 CH_{3}C(OH)(OH)C(OH)(OH)CH(OH)(OO') + H_{2}O - O_{2}$		1.0.106	P. 100%
Patriway 1: CH ₃ C(OH)(OH)C(OH)(OH)(H ₂ OH) + NO ₃ \rightarrow CH ₃ C(OH)(OH)C(OH)(OH)C H(OH) + NO ₃ + H ² CH ₂ C(OH)(OH)C(OH)(OH)C(OH)(OH) + O ₃ \rightarrow CH ₃ C(OH)(OH)C(OH)(OH)C(OH)(OO [*])		$1.0 \ 10^{\circ}$	BR: 100%
$CH_{3}C(OH)(OH)C(OH)(OH)(CH_{2}(OH) + NO_{3}^{\bullet} \rightarrow CH_{3}C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet}) + NO_{3}^{-} + H^{+} - O_{2}$	R(624)	1.0 106	= k(CH(OH)(OH)CH(OH)(OH)
	()		+ NO ₃ •) - 13
$CH_{3}C(OH)(OH)COCH(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH_{3}C(OH)(OH)COCH(O^{\bullet})(OO^{\bullet}) + H_{2}O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		4.0 10 ⁹	- /
CH ₃ C(OH)(OH)COCH(O ⁻)(OO [•]) → CH ₃ C(OH)(OH)COCHO + $O_2^{\bullet-}$			16
CH ₃ C(OH)(OH)COCH(OH)(OO [•]) + OH ⁻ → CH ₃ C(OH)(OH)COCHO + $O_2^{\bullet-}$ + H ₂ O	R(625)	4.0 10 ⁹	= k(CH ₃ CH(OH)(OO•) + OH ⁻)
CH ₃ C(OH)(OH)COCH(OH)(OO [•]) → CH ₃ C(OH)(OH)COCHO + HO ₂ •	R(626)	1.9 10 ²	17
CH ₃ COC(OH)(OH)CH(OH)(OO [•])+ OH [−] \rightarrow CH ₃ COC(OH)(OH)CH(O [−])(OO [•]) + H ₂ O		4.0 10 ⁹	
CH ₃ COC(OH)(OH)(CH)(O ⁺) → CH ₃ COC(OH)(OH) CHO + O_2^{+-}		4.0.109	16
CH ₃ COC(OH)(OH)CH(OH)(OO ⁺) + OH ⁺ → CH ₃ COC(OH)(OH)CHO + O_2^{-+} + H ₂ O	К(627)	4.0 10 ⁵	$= K(CH_3CH(OH)(OO^{\bullet}) + OH^{\bullet})$

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CH_3COC(OH)(OH)CH(OH)(OO^{\bullet}) \rightarrow CH_3COC(OH)(OH)CHO + HO_2^{\bullet}$	R(628)	1.9 10 ²			17
CH ₃ C(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) + OH ⁻ → CH ₃ C(OH)(OH)C(OH)(OH)CH(O ⁻)(OO [•]) + H ₂ O		4.0 10 ⁹			
CH ₃ C(OH)(OH)C(OH)(OH)CH(O ⁻)(OO [•]) → CH ₃ C(OH)(OH)C(OH)(OH)CHO + $O_2^{\bullet-}$					16
CH ₃ C(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) + OH ⁻ → CH ₃ C(OH)(OH)C(OH)(OH)CHO + O ₂ ^{•-} + H ₂ O	R(629)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CH ₃ C(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) → CH ₃ C(OH)(OH)C(OH)(OH)CHO + HO ₂ [•]	R(630)	1.9 10 ²			17
Oxidation of 3,4-dihydroxybutan-2-one					18
Pathway 1: $CH_2(OH)CH(OH)COCH_3 + HO^{\bullet} \rightarrow C^{\bullet}H(OH)CH(OH)COCH_3 + H_2O$		7.9 10 ⁸			BR: 81% - 19
$C^{\bullet}H(OH)CH(OH)COCH_3 + O_2 \rightarrow CH(OH)(OO^{\bullet})CH(OH)COCH_3$		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)CH(OH)COCH_3 + HO^{\bullet} \rightarrow CH_2(OH)C^{\bullet}(OH)COCH_3 + H_2O$		1.9 10 ⁸			BR: 19% - 19
$CH_2(OH)C^{\bullet}(OH)COCH_3 + O_2 \rightarrow CH_2(OH)C(OH)(OO^{\bullet})COCH_3$	- ()	2.0 10 ⁹			3
CH ₂ (OH)CH(OH)COCH ₃ + HO [•] → 0.81 CH(OH)(OO [•])CH(OH)COCH ₃ + 0.19 CH ₂ (OH)C(OH)(OO [•])COCH ₃ + H ₂ O - O ₂	R(631)	9.8 10°			12
Pathway 1: CH ₂ (OH)CH(OH)COCH ₃ + NO ₃ [•] \rightarrow C [•] H(OH)CH(OH)COCH ₃ + NO ₃ ⁻ + H ⁺		8.1 10 ⁵			BR: 81%
$C^{*}(OH)(CH(OH)(COCH_{3} + 0_{2} \rightarrow CH(OH)(OO^{*}(CH(OH)(COCH_{3} - 0_{2}))))$		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)COCH_1 + O_1 \rightarrow CH_2(OH)COCH_2 + NO_3 + H'$		$1.9 \ 10^{9}$			BR: 19%
	P(622)	2.0 10			
	N(032)	1.0 10			= N(CH(OH)(OH)(OH)(OH) $\pm \text{N}(\text{O}_{-}^{\bullet})$ 12
		1.0.1.09			+ 1003) -13
$CH(OH)(OO^*)(CH(OH)COCH_3 + OH^* \rightarrow CH(O^*)(OO^*)(CH(OH)COCH_3 + H_2O)$		4.0 10°			10
$CH(O)(OO)(CH(OH)(COCH_3 \rightarrow CH_3COCH(OH)(CHO + O_2))$	D(C22)	4 0 109			- K(CH CH(OH)(OO•) + OH-)
$(H(OH)(OU)(H(OH)(OU)) \rightarrow (H_3(OU)(H(OH)(HO) + O_2) + H_2O$	R(033)	4.0 10			$= K(CH_3CH(OH)(OO) + OH)$
CH(OH)(OO [•])CH(OH)COCH ₃ → CH ₃ COCH(OH)CHO + HO ₂ [•]	R(634)	1.9 10 ²			17
$CH_2(OH)C(OH)(OO^{\bullet})COCH_3 + OH^{-} \rightarrow CH_2(OH)C(O^{\bullet})(OO^{\bullet})COCH_3 + H_2O$		4.0 10 ⁹			10
$(H_2(OH)C(OU)(OC)(OUH) \rightarrow (H_3(OUU)(H_2(OH)) + O_2^{(1)})$		4 0 109			
$(H_2(OH)(COH)(OO)(COCH_3 + OH \rightarrow CH_3(OCOCH_2(OH) + O_2 + H_2O)$	R(035)	4.0 103			$= R(CH_3CH(OH)(OO) + OH)$
$CH_2(OH)C(OH)(OO^{\circ})COCH_3 \rightarrow CH_3COCOCH_2(OH) + HO_2^{\circ}$	K(636)	1.9 102			1/
Oxidation of 1,4-dihydroxybutanedione					20
Pathway 1: $CH_2(OH)C(OH)(OH)C(OH)(OH)CH_2(OH) + H0^{\bullet} \rightarrow CH_2(OH)C(OH)(OH)(OH)(O^{\bullet})CH_2(OH) + H_2O$		8.1 10 ⁸			BR: 58% - 21
$CH_2(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + CH_2(OH)CO(OH)$		2 0 10 ⁹			4 - 5
Pathway 2: $CH_2(OH)C(OH)(OH)(OH)(OH)(OH)(OH) + HO^ \rightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)C^{+}H(OH) + H_2O$		5 9 10 ⁸			BR· 42% - 21
$CH_{2}(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		2.0 10 ⁹			3
$CH_2(OH)C(OH)(OH)C(OH)(OH)CH_2(OH) + HO^{\bullet} \rightarrow 0.58 CH_2(OH)CO(OH) + 0.58 CH_2(OH)C(OH)(OH)(OH)(OO^{\bullet}) + 0.42$	R(637)	1.4 10 ⁹			12
$CH_2(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet}) + H_2O - O_2$	()				
Pathway 1: $CH_2(OH)(CH)(OH)(CH)(OH)(CH_2(OH) + NO_2 \rightarrow CH_2(OH)(OH)(CH)(OH)(CH)(OH) + NO_2 \rightarrow H^+$		1 0 10 ⁶			BB: 100%
$CH_{2}(OH)(CH)(OH)(OH)(CH)(OH) + O_{2} \rightarrow CH_{2}(OH)(C(OH)(OH)(CH)(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(O$		2.0 10 ⁹			3
$(H_{2}(OH)(OH)(OH)(OH)(OH)(OH) + NO_{3}^{\bullet} \rightarrow (H_{2}(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OO^{\bullet}) + NO_{3}^{\bullet} + H^{+} - O_{2}$	R(638)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
	()				+ NO ₃ •)- 13
CH₂(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO•) + OH- → CH₂(OH)C(OH)(OH)C(OH)(OH)CH(O-)(OO•) + H₂O		4.0 10 ⁹			5,
$CH_2(OH)(OH)(OH)(OH)(OH)(OO) \rightarrow CH_2(OH)(OH)(OH)(OH)(OH)(OH) + O_2^{\bullet\bullet}$					16
CH ₂ (OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) + OH ⁻ → CH ₂ (OH)C(OH)(OH)C(OH)(OH)CHO + O ₂ ^{•-} + H ₂ O	R(639)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH_2(OH)(C(OH)(OH)(CH)(OH)(OH)(OO^{\bullet}) \rightarrow CH_2(OH)(C(OH)(OH)(OH)(CHO + HO_2^{\bullet})$	R(640)	1.9 10 ²			17
Oxidation of 1,3,4-trihydroxybutanone					22
Pathway 1: CH ₂ (OH)COCH(OH)CH ₂ (OH) + HO [•] \rightarrow CH ₂ (OH)COCH(OH)C [•] H(OH) + H ₂ O		7.5 10 ⁸			BR: 58% - 23
$CH_2(OH)COCH(OH)C^{\bullet}H(OH)+O_2 \rightarrow CH_2(OH)COCH(OH)CH(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH ₂ (OH)COCH(OH)CH ₂ (OH) + HO [•] \rightarrow C [•] H(OH)COCH(OH)CH ₂ (OH) + H ₂ O		3.9 10 ⁸			BR: 30% - 23

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
C [•] H(OH)COCH(OH)CH ₂ (OH)+ O ₂ → CH ₂ (OH)CH(OH)COCH(OH)(OO [•])		2.0 10 ⁹			3
Pathway 3: CH ₂ (OH)COCH(OH)CH ₂ (OH) + HO [•] \rightarrow CH ₂ (OH)COC [•] (OH)CH ₂ (OH) + H ₂ O		1.6 10 ⁸			BR: 12% - 23
$CH_2(OH)COC^{\bullet}(OH)CH_2(OH)+O_2 \rightarrow CH_2(OH)COC(OH)(OO^{\bullet})CH_2(OH)$		2.0 10 ⁹			3
CH ₂ (OH)COCH(OH)CH ₂ (OH) + HO [•] → 0.58 CH ₂ (OH)COCH(OH)CH(OH)(OO [•]) + 0.30	R(641)	1.3 10 ⁹			12
CH ₂ (OH)CH(OH)COCH(OH)(OO [•]) + 0.12 CH ₂ (OH)COC(OH)(OO [•])CH ₂ (OH) + H ₂ O - O ₂					
Pathway 1: $CH_2(OH)COCH(OH)CH_2(OH) + NO_3^{\bullet} \rightarrow CH_2(OH)COCH(OH)C^{\bullet}H(OH) + NO_3^{-} + H^{+}$		3.8 10 ⁶			BR: 58%
CH₂(OH)COCH(OH)C•H(OH)+ O₂ → CH₂(OH)COCH(OH)(OH)(OO•)		2.0 10 ⁹			3
Pathway 2: CH₂(OH)COCH(OH)CH₂(OH) + NO ₃ • → C•H(OH)COCH(OH)CH₂(OH) + NO ₃ • + H ⁺		2.0 10 ⁶			BR: 30%
$C^{\bullet}H(OH)COCH(OH)CH_2(OH) + O_2 \rightarrow CH_2(OH)CH(OH)COCH(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 3: $CH_2(OH)COCH(OH)CH_2(OH) + NO_3^{\bullet} \rightarrow CH_2(OH)COC^{\bullet}(OH)CH_2(OH) + NO_3^{\bullet} + H^+$		8.0 10 ⁵			BR: 12%
$CH_2(OH)COC^*(OH)CH_2(OH) + 0_2 \rightarrow CH_2(OH)COC(OH)(OU^*)CH_2(OH)$	D(C(12))	2.0 105	2117		
CH ₂ (OH)COCH(OH)CH ₂ (OH) + NO ₃ → 0.58 CH ₂ (OH)COCH(OH)CH(OH)(OO) + 0.30	R(642)	6.6 10°	2117		$= K(CH_2(OH)CH_2(OH) + NO_3^{-1})$
$CH_2(OH)CH(OH)COCH(OH)(OO^{\bullet}) + 0.12 CH_2(OH)COC(OH)(OO^{\bullet})CH_2(OH) + NO_3^{-} + H^{+} - O_2$					- 13
$CH_{2}(OH)COCH(OH)(CH(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH_{2}(OH)COCH(OH)CH(O^{\bullet})(OO^{\bullet}) + H_{2}O$		4.0 10 ⁹			
CH ₂ (OH)COCH(OH)CH(O·)(OO•) → CH ₂ (OH)COCH(OH)CHO + O ₂ •	B(648)				16
CH ₂ (OH)COCH(OH)CH(OH)(OO [•]) + OH ⁻ → CH ₂ (OH)COCH(OH)CHO + O ₂ ^{•-} + H ₂ O	R(643)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH_2(OH)COCH(OH)CH(OH)(OO^{\bullet}) \rightarrow CH_2(OH)COCH(OH)CHO + HO_2^{\bullet}$	R(644)	1.9 10 ²			17
$CH_2(OH)CH(OH)COCH(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH_2(OH)CH(OH)COCH(O^{-})(OO^{\bullet}) + H_2O$		4.0 10 ⁹			
CH ₂ (OH)CH(OH)COCH(O [•]) \rightarrow CH ₂ (OH)CH(OH)COCHO + O ₂ ^{••}					16
CH ₂ (OH)CH(OH)COCH(OH)(OO [•]) + OH ⁻ → CH ₂ (OH)CH(OH)COCHO + $O_2^{\bullet-}$ + H ₂ O	R(645)	4.0 10 ⁹			= k(CH ₃ CH(OH)(OO•) + OH [_])
CH ₂ (OH)CH(OH)COCH(OH)(OO [•]) → CH ₂ (OH)CH(OH)COCHO + HO ₂ [•]	R(646)	1.9 10 ²			17
$CH_{2}(OH)COC(OH)(OO^{\bullet})CH_{2}(OH) + OH^{\bullet} \rightarrow CH_{2}(OH)COC(O^{\bullet})(OO^{\bullet})CH_{2}(OH) + H_{2}O$		4.0 10 ⁹			
$CH_2(OH)COC(O^{-})(OO^{+})CH_2(OH) \rightarrow CH_2(OH)COCOCH_2(OH) + O_2^{}$					16
CH ₂ (OH)COC(OH)(OO [•])CH ₂ (OH) + OH ⁻ → CH ₂ (OH)COCOCH ₂ (OH) + O ₂ ^{•-} + H ₂ O	R(647)	4.0 10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
$CH_2(OH)COC(OH)(OO^{\bullet})CH_2(OH) \rightarrow CH_2(OH)COCOCH_2(OH) + HO_2^{\bullet}$	R(648)	1.9 10 ²			17
Oxidation of 2,4-dihydroxy-3-oxobutanal					24
Pathway 1: CH ₂ (OH)COCH(OH)CH(OH)(OH) + HO [•] → CH ₂ (OH)COCH(OH)CH(OH)(O [•]) + H ₂ O		4.5 10 ⁸			BR: 38% - 25
$CH_2(OH)COCH(OH)CH(OH)(O^*) \rightarrow CH_2(OH)COC^*H(OH) + CHO(OH)$					4 - 5
$CH_2(OH)COC^{\bullet}H(OH) + O_2 \rightarrow CH_2(OH)COCH(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)COCH(OH)CH(OH)(OH) + HO^{\bullet} \rightarrow C^{\bullet}H(OH)COCH(OH)(CH)(OH) + H_2O$		4.0 10 ⁸			BR: 33% - 25
$C^{*}H(OH)COCH(OH)CH(OH)(OH) + O_{2} \rightarrow CH(OH)(OH)CH(OH)COCH(OH)(OU^{*})$ $Pathway 2x CH_{OH}(OH)CH(OH)(OH) + HO^{*} \rightarrow CH_{OH}(OH)COCH(OH)(OH) + H_{O}$		2.0 10 ³ 2 E 108			3 PP+20% 2E
$Pathway 3. CH_2(OH)COCH(OH)CH(OH)(OH) + HO \rightarrow CH_2(OH)COCH(OH)C(OH)(OH) + H_2O$ $CH_2(OH)COCH(OH)C^*(OH)(OH) + O_2 \rightarrow CH_2(OH)COCH(OH)(OH)(OO^*)$		$2.0 \ 10^9$			DR. 2970-23
$CH_2(OH)COCH(OH)CH(OH)(OH) + HO^{\bullet} \rightarrow 0.38 CH_2(OH)COCH(OH)(OO^{\bullet}) + 0.38 CHO(OH) + 0.33$	R(649)	1 2 10 ⁹			12
	11(015)	1.2 10			12
		F 2 105			DD. 529/
$C^{*}H(OH)COCH(OH)CH(OH)CH(OH)CH(OH)COCH(OH)CH(OH)H^{*}H_{2}$		$5.5 \ 10^{9}$			BK: 55%
Pathway 2: $CH_{0}(H)COH(OH)CH(OH)(OH) + NO_{4} \rightarrow CH_{0}(H)COCH(OH)C(OH)(OH) + NO_{4} + H^{+}$		2.0 10 4 7 10 ⁵			BB: 47%
$CH_{2}(OH)COCH(OH)(OH) + O_{2} \rightarrow CH_{2}(OH)COCH(OH)(C(OH)(OH)(OO))$		2.0 10 ⁹			3
CH ₂ (OH)COCH(OH)CH(OH)(OH) + NO ₃ • → 0.53 CH(OH)(OH)CH(OH)COCH(OH)(OO•) + 0.47	R(650)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
$CH_2(OH)COCH(OH)(COH)(OH)(OO^{\bullet}) + NO_3^{-} + H^+ - O_2$	()				+ NO ₃ •) - 13
Pathway 1: CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(OH) + HO [•] \rightarrow CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(O [•]) + H ₂ O		4.5 10 ⁸			BR: 28% - 26
CH ₂ (OH)C(OH)(OH)CH(OH)(O [•]) → CH ₂ (OH)C(OH)(OH)C [•] H(OH) + CHO(OH)					4 - 5
$CH_{2}(OH)C(OH)(OH)C^{\bullet}H(OH) + O_{2} \rightarrow CH_{2}(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(OH) + HO [•] → CH ₂ (OH)C(OH)(O [•])CH(OH)CH(OH)(OH) + H ₂ O		4.5 10 ⁸			BR: 28% - 26
$CH_{2}(OH)C(OH)(O^{*})CH(OH)CH(OH)(OH) \rightarrow CH_{2}(OH)CO(OH) + CH(OH)(OH)C^{*}H(OH)$					4 - 5
$CH(OH)(OH)C^{\bullet}H(OH)+O_2 \rightarrow CH(OH)(OO^{\bullet})CH(OH)(OH)$		2.0 10 ⁹			3

Reactions k298 Ea/R Refere	ences Notes
$(M^{-n+1} s^{-1})$ (K)	
Pathway 3: CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(OH) + HO [•] \rightarrow CH ₂ (OH)C(OH)(OH)CH(OH)C [•] (OH)(OH) + H ₂ O 3.7 10 ⁸	BR: 23% - 26
$CH_{2}(OH)C(OH)(OH)CH(OH)C^{\bullet}(OH)(OH) + O_{2} \rightarrow CH_{2}(OH)C(OH)(OH)(OH)(OH)(OO^{\bullet}) $ $2.0 \ 10^{9}$	3
Pathway 4: CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(OH) + H0 ⁺ \rightarrow C ⁺ H(OH)C(OH)(OH)CH(OH)(OH) + H ₂ O 3.3 10° C ⁺ H(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH)CH(OH)(OH)CH(OH)(OH)(OH)(OH)(OH) + H ₂ O 3.0 10°	BR: 21% - 26
$CH_{0}(OH)C(OH)CH(OH)CH(OH)CH(OH)(OH) + 02 - 9 CH_{0}(OH)CH(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH) + 0.28 CH_{0}(OH)(OH)CH(OH)(OH) + 0.28 CH_{0}(OH)(OH)(OH) + 0.28 CH_{0}(OH)(OH)(OH) + 0.28 CH_{0}(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$	5 12
$CH_2(OH)C(OH)(OH)CH(OH)CH(OH)(OH) + 10^{-9} 0.28 CH_2(OH)C(OH)(OH)(CH(OH)(OU)(OH)(OH) + 0.28 CH(OH)(OH)(OH) + 0.28 CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	12
$CH_2(OH)CO(OH) + 0.28 CH(OH)(OO)(CH(OH)(OH) + 0.23 CH_2(OH)C(OH)(OH)CH(OH)C(OH)(OH)(OO) + 0.21$	
$CH(OH)(OH)CH(OH)CH(OH)(OH)(OH)(OH)(OH) + H_2O - O_2$ $Pathway 1 + CH(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	DD. 52%
Pathway 1: $Ch_2(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	DK. 55%
Pathway 2: CH ₂ (OH)Cl(OH)Cl(OH)CH(OH)CH(OH)CH(OH)Cl(OH)Cl(OH)CH(OH)CH(OH)(OH)(OH) + NO ₃ ⁻ + H ⁺ 4.7 10 ⁵	BR: 47%
$C^{*}H(OH)(OH)(CH(OH)(CH(OH)(OH) + O_2 \rightarrow CH(OH)(OH)(CH(OH)(OH)(CH(OH)(OO^{*}))$ 2.0 10 ⁹	3
CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(OH) + NO ₃ • → 0.53 CH ₂ (OH)C(OH)(OH)CH(OH)C(OH)(OH)(OO•) + 0.47 R(652) 1.0 10 ⁶	= k(CH(OH)(OH)CH(OH)(OH)
$CH(OH)(OH)CH(OH)(OH)(OH)(OO^{\bullet}) + NO_{3}^{-} + H^{+} - O_{2}$	+ NO ₃ •) - 13
$CH(OH)(OH)CH(OH)(COC^{\dagger}) + OH^{-} \rightarrow CH(OH)(OH)CH(OH)COCH(O^{-})(OO^{\bullet}) + H_{2}O $ $4.0 \ 10^{9}$	
$CH(OH)(OH)COCH(O^{-})(OO^{*}) \rightarrow CH(OH)(OH)CH(OH)COCHO + O_{2}^{*-}$	16
$CH(OH)(OH)CH(OH)COCH(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH(OH)(OH)CH(OH)COCHO + O_{2}^{\bullet-} + H_{2}O $ $R(653) $ $4.0 \ 10^{9}$	$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CH(OH)(OH)CH(OH)COCH(OH)(OO [•]) → CH(OH)(OH)CH(OH)COCHO + HO ₂ • R(654) 1.9 10^{2}	17
$CH(OH)(OH)CH(OH)C(OH)(OH)(CH(OH)(OO^{\bullet}) + OH^{\bullet} \rightarrow CH(OH)(OH)CH(OH)C(OH)(OH)CH(O^{\bullet})(OO^{\bullet}) + H_2O $ $4.0 \ 10^9$	
CH(OH)(OH)CH(OH)C(OH)(OH)CH(O ⁻)(OO [•]) → CH(OH)(OH)CH(OH)C(OH)(OH)CHO + O_2^{\bullet}	16
$CH(OH)(OH)CH(OH)C(OH)(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH(OH)(OH)CH(OH)C(OH)(OH)CHO + O_{2}^{\bullet-} + H_{2}O $ $R(655) 4.0 \ 10^{9}$	$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH(OH)(OH)CH(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)CH(OH)C(OH)(OH)CHO + HO_{2}^{\bullet} R(656) $ $1.9 \ 10^{2}$	17
$CH_2(OH)COCH(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH_2(OH)COCH(OH)C(OH)(O^{-})(OO^{\bullet}) + H_2O $ $4.0 \ 10^9$	
$CH_{2}(OH)COCH(OH)C(OH)(O^{-})(OO^{*}) \rightarrow CH_{2}(OH)COCH(OH)CO(OH) + O_{2}^{*}$	16
$CH_{2}(OH)COCH(OH)C(OH)(OH)(OO^{\bullet}) + OH \rightarrow CH_{2}(OH)COCH(OH)CO(OH) + O_{2}^{\bullet-} + H_{2}O $ $R(657) $ $4.0 \ 10^{9}$	$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH_2(OH)COCH(OH)C(OH)(OH)(OO^{\bullet}) \rightarrow CH_2(OH)COCH(OH)CO(OH) + HO_2^{\bullet} $ $R(658) 1.0 \ 10^6$	27
$CH_{2}(OH)C(OH)(OH)CH(OH)C(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH_{2}(OH)C(OH)(OH)CH(OH)C(OH)(O^{\bullet}) + H_{2}O $ $4.0 \ 10^{9}$	
$CH_2(OH)C(OH)(OH)CH(OH)C(OH)(O)(OO) \rightarrow CH_2(OH)(OH)CH(OH)CO(OH) + O_2^{\bullet}$	16
$CH_{2}(OH)C(OH)(OH)CH(OH)C(OH)(OO^{\bullet}) + OH^{-} \rightarrow CH_{2}(OH)C(OH)(OH)CH(OH)CO(OH) + O_{2}^{\bullet-} + H_{2}O$ $R(659) 4.0 10^{9}$	$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH_2(OH)C(OH)(OH)CH(OH)C(OH)(OH)(OO^{\bullet}) \rightarrow CH_2(OH)C(OH)(OH)CH(OH)CO(OH) + HO_2^{\bullet} $ $R(660) 1.0 \ 10^6$	27
Oxidation of 2-oxo-3,4-dihydroxybutanal	28
Pathway 1: CH ₂ (OH)CH(OH)C(OH)(OH)CH(OH)(OH) + HO [•] \rightarrow C [•] H(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + H ₂ O 8.6 10 ⁸	BR: 48% - 29
$C^{+}(OH)CH(OH)C(OH)(OH)(OH) + O_2 \rightarrow CH(OH)(OH)C(OH)(OH)CH(OH)(OO^{+}) $ 2.0 10 ⁹ 4.7 16 ⁸	3
Patnway 2: $CH_2(OH)CH(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(CH(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(O$	BR: 26% - 29
$CH_2(OH)CH(OH)CH(OH)(OH)+O_2 \rightarrow CH_2(OH)CH(OH)(OH)(OH)(OH)(OH)$ $2 \ 0 \ 10^9$	4-5
Pathway 3: $CH_2(OH)CH(OH)(CH)(OH)(OH)(OH) + HO^{\bullet} \rightarrow CH_2(OH)CH(OH)(O^{\bullet})CH(OH)(OH) + H_2O$ 4.7 10 ⁸	BR: 26% - 29
$CH_{2}(OH)CH(OH)C(OH)(O^{\bullet})CH(OH)(OH) \rightarrow CH_{2}(OH)C^{\bullet}H(OH) + CH(OH)(OH)CO(OH)$	4 - 5
$CH_2(OH)C^{\bullet}H(OH) + O_2 \rightarrow CH_2(OH)CH(OH)(OO^{\bullet}) $ 2.0 10 ⁹	3
CH ₂ (OH)CH(OH)C(OH)(OH)CH(OH)(OH) + HO [•] → 0.48 CH(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) + 0.26 R(661) 1.8 10 ⁹	12
CH ₂ (OH)CH(OH)C(OH)(OO [•]) + 0.26 CHO(OH) + 0.26 CH ₂ (OH)CH(OH)(OO [•]) + 0.26 CH(OH)(OH)CO(OH) +	
H ₂ O - O ₂	
Pathway 1: CH ₂ (OH)CH(OH)C(OH)(OH)(OH)(OH) + NO ₃ • \rightarrow C•H(OH)CH(OH)C(OH)(OH)(OH) + NO ₃ • + H ⁺ 1.0 10 ⁶	BR: 100%
$C^{\bullet}H(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + O_2 \rightarrow CH(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet}) $ 2.0·10 ⁹	3
$CH_2(OH)CH(OH)(OH)(OH)(OH)(OH) + NO_3^{\bullet} \rightarrow CH(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet}) + NO_3^{-} + H^+ - O_2 $ $R(662) 1.0 \ 10^6$	
	= k(CH(OH)(OH)CH(OH)(OH)

Reactions		k298	Ea/R	References	Notes
		(IVI-111 S-1)	(K)		10
$CH(OH)(OH)C(OH)(OH)(CH(OH)CH(OH)(OH) \rightarrow CHOCH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(663)	4 0 109			- k(CH-CH(OH)(OO•) + OH-) ™
CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH	R(003)	$4.0\ 10$			- K(CH3CH(OH)(OO) + OH)
CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH	N(004)	1.9 102			1/
Oxidation of 2-oxo-3-hydroxybutanedial					30
Pathway 1: CH(OH)(OH)CH(OH)C(OH)(OH)(OH)(OH)(OH) + H0• \rightarrow CH(OH)(O•)CH(OH)C(OH)(OH)(OH)(OH) + H ₂ O		4.6 10 ⁸			BR: 27% - 31
$CH(OH)(OH)C(OH)(OH)C(OH)(OH)(OH) \rightarrow CHO(OH) + CH(OH)(OH)C(OH)(OH)C(OH)(OH)C(OH)$		2 0 109			4 - 5
Pathway 2: CH(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH		$4.4 \ 10^8$			BR: 26% - 31
$CH(OH)(OH)CH(OH)(C(OH)(OH)(O+)) \rightarrow CH(OH)(OH)(CH(OH)(O+)) + CHO(OH)(OH) + CHO(OH)$					4 - 5
CH(OH)(OH)CH(OH)C [•] (OH)(OH) + O ₂ → CH(OH)(OH)CH(OH)C(OH)(OO [•])		2.0 10 ⁹			3
Pathway 3: CH(OH)(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + HO [•] → CH(OH)(OH)CH(OH)C(OH)(O [•])CH(OH)(OH) + H ₂ O		4.3 10 ⁸			BR: 25% - 31
$CH(OH)(OH)CH(OH)C(OH)(O^{+})CH(OH)(OH) \rightarrow CH(OH)(OH)C^{+}H(OH) + CH(OH)(OH)CO(OH)$		2.0.109			4 - 5
$CH(OH)(OH)C^{+}(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		$2.0 \ 10^{3}$ $2.7 \ 10^{8}$			3 PP· 77% 21
$C^{\circ}(OH)(OH)(CH)(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(O$		2.0 10 ⁹			3
$CH(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH) + HO^{\bullet} \rightarrow 0.27 CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OO^{\bullet}) + 0.26$	R(665)	1.7 10 ⁹			12
CH(OH)(OH)(CH(OH)(OH)(OH)(OH)(OH) + 0.53 CHO(OH) + 0.25 CH(OH)(OH)(OH)(OH)(OH) + 0.25					
$CH(OH)(OO^{\bullet})CH(OH)(OH) + 0.22 CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OO^{\bullet}) + H_{2}O = O_{2}$					
$P_{2} = P_{2} = P_{2$		1 0 106			BB: 100%
$C^{\circ}(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		2.0·10 ⁹			3
$CH(OH)(OH)CH(OH)C(OH)(OH)(OH)(OH) + NO_3^{\bullet} \rightarrow CH(OH)(OH)C(OH)(OH)C(OH)(OH)(OH)(OO^{\bullet}) + NO_3^{\bullet} + O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(666)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
$H^{+} = \Omega_{2}$					+ NO ₃ •) - 13
CH(OH)(OH)C(OH)(OH)CH(OH)C(OH)(OO) + OH ⁻ → CH(OH)(OH)C(OH)(OH)CH(OH)C(OH)(O ⁻)(OO) + H ₂ O		4.0 10 ⁹			
$CH(OH)(OH)C(OH)(OH)CH(OH)C(OH)(O^{-})(OO^{+}) \rightarrow CO(OH)CH(OH)C(OH)(OH)(OH)(OH) + O_{2}^{\bullet-}$					16
CH(OH)(OH)C(OH)(OH)CH(OH)C(OH)(OH)(OO [•]) + OH ⁻ → CO(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + O ₂ ^{•-} + H ₂ O	R(667)	4.0 10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
CH(OH)(OH)C(OH)(OH)CH(OH)C(OH)(OO) → CO(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + HO2•	R(668)	1.0 10 ⁶			27
Oxidation of 2,4-dioxo-3-hvdroxybutanoic acid					32
Pathway 1: CO(OH)C(OH)(OH)CH(OH)CH(OH)(OH) + HO [•] \rightarrow CH(OH)(O [•])CH(OH)C(OH)(OH)CO(OH) + H ₂ O		4.1 10 ⁸			BR: 41% - 33
$CH(OH)(O^{\bullet})CH(OH)C(OH)(OH)CO(OH) \rightarrow CHO(OH) + C^{\bullet}H(OH)C(OH)(OH)CO(OH)$					4 -5
$C^{\bullet}H(OH)C(OH)(OH)CO(OH) + O_2 \rightarrow CH(OH)(OO^{\bullet})C(OH)(OH)CO(OH)$		2.0 10 ⁹			3
Pathway 2: CO(OH)C(OH)(OH)CH(OH)CH(OH)(OH) + HO [•] \rightarrow C [•] (OH)(OH)CH(OH)C(OH)(OH)CO(OH) + H ₂ O		3.3 10 ⁸			BR: 33% - 33
$C^{(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)+O_{2} \rightarrow C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		2.0 10 ³ 2.6 10 ⁸			3 BB: 26% - 33
CH(OH)(OH)CH(OH)C(OH)(O))CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH		2.0 10			4 -5
$CH(OH)(OH)C^{\bullet}H(OH) + O_2 \rightarrow CH(OH)(OH)(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
CO(OH)C(OH)(OH)CH(OH)CH(OH)(OH) + HO [•] → 0.41 CHO(OH) + 0.41 CH(OH)(OO [•])C(OH)(OH)CO(OH) + 0.33	R(669)	1.0 10 ⁹			12
$C(OH)(OH)(OO^{\bullet})CH(OH)C(OH)(OH)CO(OH) + 0.26 CH(OH)(OH)CH(OH)(OO^{\bullet}) + 0.26 CO(OH)CO(OH) + H_2O - O_2$					
Pathway 1: CO(OH)C(OH)(OH)CH(OH)CH(OH)(OH) + NO ₃ [•] \rightarrow C [•] (OH)(OH)CH(OH)C(OH)(OH)CO(OH) + NO ₃ [•] + H ⁺		1.0 10 ⁶			BR: 100%
C•(OH)(OH)CH(OH)C(OH)(OH)CO(OH) + $O_2 \rightarrow C(OH)(OH)(OO•)CH(OH)C(OH)(OH)CO(OH)$		2.0 10 ⁹			3
$CO(OH)C(OH)(OH)CH(OH)CH(OH)(OH) + NO_3^{\bullet} \rightarrow C(OH)(OH)(OO^{\bullet})CH(OH)(OH)(OH)CO(OH) + NO_3^{-} + H^+ - O_2$	R(670)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
					+ NO ₃ •) - 13
Pathway 1: CO(O ⁻)COCH(OH)(CH)(OH) + HO [•] \rightarrow CH(OH)(O [•])CH(OH)COCO(O ⁻) + H ₂ O		4.9 10 ⁸			BR: 58% - 34
$CH(OH)(O^{*})CH(OH)COCO(O^{*}) \rightarrow CHO(OH) + C^{*}H(OH)COCO(O^{*})$		$2.0.10^{9}$			4 -5
Pathway 2: CO(0')COCH(OH)(CH(OH)(OH) + H0 [•] \rightarrow C [•] (OH)(OH)CH(OH)COCO(0') + H ₂ O		$2.0 \pm 0^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-1$			з ВВ [.] 42% - 34
$C^{\bullet}(OH)(OH)COCO(O^{-}) + O_{2} \rightarrow C(OH)(OH)(OO^{-})CH(OH)COCO(O^{-})$		2.0 10 ⁹			3

Reactions		k298	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
CO(O ⁻)COCH(OH)CH(OH)(OH) + HO [•] → 0.58 CHO(OH) + 0.58 CH(OH)(OO [•])COCO(O ⁻) + 0.42	R(671)	8.4 10 ⁸			12
$C(OH)(OH)(OO^{\bullet})CH(OH)COCO(O^{-}) + H_2O - O_2$					
Pathway 1: CO(O ⁻)COCH(OH)CH(OH)(OH) + NO ₃ · \rightarrow C [•] (OH)(OH)CH(OH)COCO(O ⁻) + NO ₃ · + H ⁺		1.0 10 ⁶			BR: 100%
$C^{\bullet}(OH)(OH)CH(OH)COCO(O^{-}) + O_2 \rightarrow C(OH)(OH)(OO^{\bullet})CH(OH)COCO(O^{-})$		2.0 10 ⁹			3
$CO(O^{-})COCH(OH)CH(OH)(OH) + NO_{3}^{\bullet} \rightarrow C(OH)(OH)(OO^{\bullet})CH(OH)COCO(O^{-}) + NO_{3}^{-} + H^{+} - O_{2}$	R(672)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH) + NO ₃ •) - 13
С(ОН)(ОН)(ОО•)СН(ОН)С(ОН)(ОН)СО(ОН) + ОН⁻ → С(ОН)(О⁻)(ОО•)СН(ОН)С(ОН)(ОН)СО(ОН) + Н₂О		4.0 10 ⁹			
C(OH)(O ⁻)(OO [•])CH(OH)C(OH)(OH)CO(OH) → CO(OH)CH(OH)C(OH)(OH)CO(OH) + $O_2^{\bullet-}$					16
C(OH)(OH)(OO [•])CH(OH)C(OH)(OH)CO(OH) + OH ⁻ → CO(OH)CH(OH)C(OH)(OH)CO(OH) + $O_2^{\bullet-}$ + H_2O	R(673)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
C(OH)(OH)(OO $^{\circ}$)CH(OH)C(OH)(OH)CO(OH) → CO(OH)CH(OH)C(OH)(OH)CO(OH) + HO _{2$^{\circ}$}	R(674)	1.0 10 ⁶			27
$C(OH)(OH)(OO^{\bullet})CH(OH)COCO(O^{\bullet}) + OH^{\bullet} \rightarrow C(OH)(O^{\bullet})(OO^{\bullet})CH(OH)COCO(O^{\bullet}) + H_{2}O$		4.0 10 ⁹			
$C(OH)(O^{\bullet})CH(OH)COCO(O^{\circ}) \rightarrow CO(O^{\circ})CH(OH)C(OH)(OH)CO(OH) + O_2^{\bullet \circ}$					16
C(OH)(OH)(OO [•])CH(OH)COCO(O ⁻) + OH ⁻ → CO(O ⁻)CH(OH)C(OH)(OH)CO(OH) + O ₂ ^{•-} + H ₂ O	R(675)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
C(OH)(OH)(OO [•])CH(OH)COCO(O ⁻) → CO(O ⁻)CH(OH)C(OH)(OH)CO(OH) + HO ₂ [•]	R(676)	1.0 10 ⁶			27
Oxidation of 2,3-dioxobutanal					35
Pathway 1: CH ₃ COC(OH)(OH)CH(OH)(OH) + HO [•] \rightarrow CH ₃ COC(OH)(OH)CH(OH)(O [•]) + H ₂ O		4.6 10 ⁸			BR: 54% - 36
СН₃СОС(ОН)(ОН)СН(ОН)(О•) → СН₃СОС•(ОН)(ОН) + СНО(ОН)					4 - 5
$CH_{3}COC^{\bullet}(OH)(OH) + O_{2} \rightarrow CH_{3}COC(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH ₃ COC(OH)(OH)CH(OH)(OH) + HO [•] → CH ₃ COC(OH)(O [•])CH(OH)(OH) + H ₂ O		4.0 10 ⁸			BR: 46% - 36
$CH_3COC(OH)(O^{+})CH(OH)(OH) → CH_3C^{+}O + CH(OH)(OH)CO(OH)$					4 - 5
$CH_3C^*O + O_2 \rightarrow CH_3CO(OO^*)$		$2.0\ 10^9$			3
CH ₃ COC(OH)(OH)(CH(OH)(OH) + HO [•] → 0.54 CH ₃ COC(OH)(OH)(OO [•]) + 0.54 CHO(OH) + 0.46 CH ₃ CO(OO [•]) +	R(677)	8.6 IU°			12
0.46 CH(OH)(OH)CO(OH) + H ₂ O - O ₂					
Pathway 1: $CH_3C(OH)(OH)C(OH)(OH)(OH)(OH) + HO^{\bullet} \rightarrow CH_3C(OH)(O^{\bullet})C(OH)(OH)(OH)(OH) + H_2O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		4.5 10 ⁸			BR: 35% - 37
$CH_{3}C(OH)(O^{\bullet})C(OH)(OH)(OH)(OH) \rightarrow CH_{3}CO(OH) + C^{\bullet}(OH)(OH)(OH)(OH)$					4 - 5
$C^{\bullet}(OH)(OH)(CH)(OH) + O_2 \rightarrow CH(OH)(OH)(COH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: $CH_3C(OH)(OH)(CH)(OH)(OH)(OH)(OH) + HO^2 \rightarrow CH_3C(OH)(OH)(OH)(OH)(OH)(OH)(O^2) + H_2O$		4.3 10°			BR: 33% - 37
$Ch_{2}(Oh)(Oh)(C(Oh)(Oh)(Ch)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(O$		2 O 10 ⁹			4 - 5
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		$4.2 \cdot 10^{8}$			5 BB: 37% - 37
$Harmad := Carlo (OH)(OH)(OH) \rightarrow CH^{-}(OH)(OH) \rightarrow (CH(OH)(OH) + CH(OH)(OH)(OH))$		4.2 10			4 - 5
$CH_{3}(C)(O(H)(O(H) = 0) \rightarrow CH_{3}(C)(O(H)(O(H)(O(O)))$		2.0 10 ⁹			3
CH ₃ C(OH)(OH)C(OH)(OH)(OH)+HO [•] \rightarrow 0.35 CH ₃ CO(OH) + 0.35 CH(OH)(OH)(OH)(OH)(OO [•]) + 0.33	R(678)	1.3 10 ⁹			12
$CH_{2}C(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H) + 0.33 CH(\Omega H) + 0.33 CH_{2}C(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)$	(- /				
\square_{2}					
Oz Ovidation of 2 hydroxy 2 ovobutanal					20
		F 0 10 ⁸			30 DD: 50% 20
$Paliway = (n_3 \cup \cup n_1 \cup n_1$		5.0 10°			DN: 28% - 39

Oxidation of 2-hydroxy, 5-oxobutanal			38	
Pathway 1: CH ₃ COCH(OH)CH(OH)(OH) + HO [•] → CH ₃ COCH(OH)CH(OH)(O [•]) + H ₂ O		5.0 10 ⁸	BR: 58% - 39	
CH ₃ COCH(OH)(C+) → CH ₃ COC+H(OH) + CHO(OH)			4 - 5	
CH ₃ COC ⁺ H(OH) + O ₂ → CH ₃ COCH(OH)(OO ⁺)		2.0 10 ⁹	3	
Pathway 2: CH ₃ COCH(OH)CH(OH)(OH) + HO [•] → CH ₃ COCH(OH)C [•] (OH)(OH) + H ₂ O		3.7 10 ⁸	BR: 42% - 39	
CH₃COCH(OH)C•(OH)(OH) + O₂ → CH₃COCH(OH)C(OH)(OO•)		2.0 10 ⁹	3	
CH₃COCH(OH)CH(OH)(OH) + HO• → 0.58 CH₃COCH(OH)(OO•) + 0.58 CHO(OH) + 0.42	R(679)	8.7 10 ⁸	12	
$CH_3COCH(OH)C(OH)(OO^{\bullet}) + H_2O - O_2$				
Pathway 1: CH₃COCH(OH)CH(OH)(OH) + NO₃ [•] → CH₃COCH(OH)C•(OH)(OH) + NO₃ ⁻ + H ⁺		1.0 10 ⁶	BR: 100%	
CH ₃ COCH(OH)C [•] (OH)(OH) + O ₂ → CH ₃ COCH(OH)C(OH)(OO [•])		2.0 10 ⁹	3	

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CH_{3}COCH(OH)CH(OH)(OH) + NO_{3}^{\bullet} \rightarrow CH_{3}COCH(OH)C(OH)(OH)(OO^{\bullet}) + NO_{3}^{-} + H^{+} - O_{2}$	R(680)	1.0 106	. ,		= k(CH(OH)(OH)CH(OH)(OH)
$CH^{3}COCH(OH)(OH)(OO_{\bullet}) + OH_{\bullet} \rightarrow CH^{3}COCH(OH)(CO_{\bullet})(OH)(OO_{\bullet}) + H^{3}O$		4 0 10 ⁹			+ NO ₃) - 15
CH ₃ COCH(OH)C(O ⁻)(OH)(OO ⁺) → CH ₃ COCH(OH)CO(OH) + O ₂ ^{•-}					16
CH ₃ COCH(OH)C(OH)(OO [•]) + OH ⁻ → CH ₃ COCH(OH)CO(OH) + O ₂ ^{•-} + H ₂ O	R(681)	4.0 10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
$CH_3COCH(OH)C(OH)(OO^{\bullet}) \rightarrow CH_3COCH(OH)CO(OH) + HO_2^{\bullet}$	R(682)	1.0 10 ⁶			27
Oxidation of 2-hydroxy.3-oxobutanoïc acid					40
Pathway 1: CH ₃ COCH(OH)CO(OH) + H0 [•] \rightarrow C [•] H ₂ COCH(OH)CO(OH) + H ₂ O		9.4 10 ⁷			BR: 63% - 41
$C^{+}H_2COCH(OH)CO(OH) + O_2 \rightarrow CO(OH)CH(OH)COCH_2(OO^{+})$		2.0 10 ⁹			3
Pathway 2: CH ₃ COCH(OH)CO(OH) + HO [•] \rightarrow CH ₃ COCH(O [•])CO(OH) + H ₂ O		5.6 10 ⁷			BR: 37% - 41
CH ₃ COCH(O [•])CO(OH) \rightarrow CH ₃ COCHO + C [•] O(OH)					4 - 5
$C^{\bullet}O(OH) + O_2 \rightarrow CO(OH)(OO^{\bullet})$		2.0 10 ⁹			3
CH ₃ COCH(OH)CO(OH) + HO [•] → 0.63 CO(OH)CH(OH)COCH ₂ (OO [•]) + 0.37 CH ₃ COCHO + 0.37 CO(OH)(OO [•]) + H ₂ O - O ₂	R(683)	1.5 10 ⁸			12
Pathway 1: CH ₃ COCH(OH)CO(OH) + NO ₃ [•] \rightarrow C [•] H ₂ COCH(OH)CO(OH) + NO ₃ ⁻ + H ⁺		2 1 10 ⁶			BB: 100%
$C^{+}_{2}COCH(OH)CO(OH) + O_{2} \rightarrow CO(OH)CH(OH)COCH_{2}(OO^{*})$		2.0 10 ⁹			3
$CH_{3}COCH(OH)CO(OH) + NO_{3}^{\bullet} \rightarrow CO(OH)CH(OH)COCH_{2}(OO^{\bullet}) + NO_{3}^{\bullet} + H^{+} - O_{2}$	R(684)	2.1 10 ⁶	3248		= k(CH ₃ CH(OH)CO(OH) +
	()				NO ₃ •) - 13
Pathway 1: CH ₃ C(OH)(OH)CH(OH)CO(OH) + HO• \rightarrow CH ₃ C(OH)(O•)CH(OH)CO(OH) + H ₂ O		4.6 10 ⁸			BR: 85% - 42
CH ₃ C(OH)(O [•])CH(OH)CO(OH) → CH ₃ CO(OH) + C [•] H(OH)CO(OH)					4 - 5
$C^{+}H(OH)CO(OH) + O_2 \rightarrow CH(OH)(OO^{+})CO(OH)$		2.0 10 ⁹			3
Pathway 2: CH₃C(OH)(OH)CH(OH)CO(OH) + HO [•] → C [•] H₂C(OH)(OH)CH(OH)CO(OH) + H₂O		8.0 10 ⁷			BR: 15% - 42
C ⁺ H ₂ C(OH)(OH)CH(OH)CO(OH) + O ₂ → CO(OH)CH(OH)C(OH)(OH)CH ₂ (OO [•])		2.0 10 ⁹			3
CH ₃ C(OH)(OH)CH(OH)CO(OH) + HO [•] → 0.85 CH ₃ CO(OH) + 0.85 CH(OH)(OO [•])CO(OH) + 0.15 CO(OH)CH(OH)C(OH)(OH)CH ₂ (OO [•]) + H ₂ O - O ₂	R(685)	5.4 10 ⁸			12
$CH_{3}C(OH)(OH)CH(OH)CO(OH) + NO_{3}^{\bullet} \rightarrow C^{\bullet}H_{2}C(OH)(OH)CH(OH)CO(OH) + NO_{3}^{-} + H^{+}$		2.1 10 ⁶			BR: 100%
$C^{+}H_2C(OH)(OH)CH(OH)CO(OH) + O_2 \rightarrow CO(OH)CH(OH)C(OH)(OH)CH_2(OO^{+})$		2.0 10 ⁹			3
$CH_{3}C(OH)(OH)CH(OH)CO(OH) + NO_{3}^{\bullet} \rightarrow CO(OH)CH(OH)C(OH)(OH)CH_{2}(OO^{\bullet}) + NO_{3}^{\bullet} + H^{+} - O_{2}$	R(686)	2.1 10 ⁶	3248		= k(CH₃CH(OH)CO(OH) +
					NO ₃ •) - 13
Pathway 1: CH ₃ COCH(OH)CO(O ⁻) + HO [•] → CH ₃ COCH(OH)CO(O [•]) + OH ⁻		1.1 10 ⁸			BR: 36% - 43
CH ₃ COCH(OH)CO(O [•]) → CH ₃ COC [•] H(OH) + CO ₂					4 - 5
$CH_{3}COC^{\bullet}H(OH) + O_{2} \rightarrow CH_{3}COCH(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH ₃ COCH(OH)CO(O ⁻) + HO [•] → CH ₃ COCH(O [•])CO(O ⁻) + H ₂ O		1.1 10 ⁸			BR: 33% - 43
$CH_{3}COCH(0^{\circ}) \rightarrow CH_{3}COCHO + C^{\circ}O(0^{\circ})$					4 - 5
$C^{*}O(O) + O_2 \rightarrow CO(O)(OO^*)$		2.0 10 ⁹			3
Pathway 3: $CH_3COCH(OH)CO(O') + HO^{\bullet} \rightarrow C^{\bullet}H_2COCH(OH)CO(O') + H_2O$		1.0 10°			BR: 31% - 43
		$2.0 \ 10^{3}$			5
$CH_{3}CO(H(OH)CO(O) + HO \rightarrow 0.36 CH_{3}CO(H(OH)(OO) + 0.33 CH_{3}CO(HO + 0.31 CO(O)(CH(OH)CO(H_{2}(OO)) + 0.33 CH_{3}CO(HO) + 0.31 CO(O)(CH(OH)CO(H_{2}(OO)) + 0.36 CH_{2}(OO) + 0.36 CH_{2}(OO) + 0.36 CH_{2}(OO) + 0.31 CO(O)(CH(OH)CO(H_{2}(OO)) + 0.36 CH_{2}(OO) + 0.36 CH_{2}(OO) + 0.31 CO(O)(CH(OH)CO(H_{2}(OO)) + 0.36 CH_{2}(OO) + 0.36 CH_{2}(OO) + 0.31 CO(O)(CH(OH)CO(H_{2}(OO)) + 0.36 CH_{2}(OO) + 0.31 CO(O)(OO)(OO) + 0.36 CH_{2}(OO) + 0.36 CH_{2}(OO) + 0.31 CO(O)(OO)(OO) + 0.31 CO(O)(OO)(OO)(OO) + 0.31 CO(O)(OO)(OO)(OO) + 0.31 CO(O)(OO)(OO)(OO)(OO)(OO) + 0.31 CO(O)(OO)(OO)(OO)(OO)(OO)(OO)(OO)(OO)(OO$	K(087)	3.2 10°			12
Pathway 1: CH_2COCH(OH)CO(Or) + NO.* \rightarrow C*H_2COCH(OH)CO(Or) + NO.* + H*		$1.0.10^{7}$			BB: 100%
$CH^{2}CO(C)(CH)(OH)(O(C) + O^{2} \rightarrow CO(C)(CH)(OH)(OC))$		$2.0.10^{9}$			3
$CH_{3}COCH(OH)CO(O^{-}) + NO_{3}^{\bullet} \rightarrow CO(O^{-})CH(OH)COCH_{2}(OO^{\bullet}) + NO_{2}^{\bullet-} + H^{+} - O_{2}$	R(688)	$1.0 \cdot 10^{7}$	2646		- = k(CH₃CH(OH)CO(O⁻) +
	()	-			NO ₃ •) - 13
Pathway 1: 2 CO(OH)CH(OH)COCH ₂ (OO [•]) \rightarrow 2 CO(OH)CH(OH)COCHO + H ₂ O ₂		1.8 10 ⁸			BR: 45%
Pathway 2: 2 CO(OH)CH(OH)COCH ₂ (OO [•]) \rightarrow CO(OH)CH(OH)COCHO + CO(OH)CH(OH)COCH ₂ (OH) + O ₂		8.0 10 ⁷			BR: 20%
Pathway 3: 2 CO(OH)CH(OH)COCH ₂ (OO•) \rightarrow 2 CO(OH)CH(OH)COCH ₂ (O•) + O ₂		1.4 10 ⁸			BR: 35%
CO(OH)CH(OH)COCH ₂ (O [•]) → CO(OH)CH(OH)C [•] O + CH ₂ O					4 - 5

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CO(OH)CH(OH)C^{\bullet}O + O_2 \rightarrow CO(OH)CH(OH)CO(OO^{\bullet})$		2.0 10 ⁹			3
2 CO(OH)CH(OH)COCH ₂ (OO•) → 1.10 CO(OH)CH(OH)COCHO + 0.20 CO(OH)CH(OH)COCH ₂ (OH) + 0.70 CH ₂ O +	R(689)	4.0 10 ⁸			$= k(2 CH_3COCH_2(OO^{\bullet})) - 6$
0.70 CO(OH)CH(OH)CO(OO [•]) + 0.45 H ₂ O ₂ - 0.15 O ₂					
Pathway 1: 2 CO(OH)CH(OH)C(OH)(OH)CH ₂ (OO [•]) \rightarrow 2 CO(OH)CH(OH)C(OH)(OH)CHO + H ₂ O ₂		1.8 10 ⁸			BR: 45%
Pathway 2: 2 CO(OH)CH(OH)C(OH)(OH)CH ₂ (OO [•]) → CO(OH)CH(OH)C(OH)(OH)CH0 + CO(OH)CH(OH)C(OH)(OH)CH ₂ (OH) + O ₂		8.0 10 ⁷			BR: 20%
Pathway 3: 2 CO(OH)CH(OH)C(OH)(OH)CH ₂ (OO $^{\bullet}$) \rightarrow 2 CO(OH)CH(OH)C(OH)(OH)CH ₂ (O $^{\bullet}$) + O ₂		1.4 10 ⁸			BR: 35%
$CO(OH)CH(OH)C(OH)(OH)CH_2(O^{\bullet}) \rightarrow CO(OH)CH(OH)C^{\bullet}(OH)(OH) + CH_2O$					4 - 5
$CO(OH)CH(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CO(OH)CH(OH)(OH)(OO^{\bullet})$	<i>.</i> .	2.0 10 ⁹			3
2 CO(OH)CH(OH)C(OH)(OH)CH2(OO•)→ 1.10 CO(OH)CH(OH)C(OH)(OH)CHO + 0.20	R(690)	4.0 10 ⁸			$= k(2 CH_3COCH_2(OO^{\bullet})) - 6$
CO(OH)CH(OH)C(OH)(OH)CH ₂ (OH) + 0.70 CH ₂ O + 0.70 CO(OH)CH(OH)C(OH)(OH)(OO [•]) + 0.45 H ₂ O ₂ - 0.15 O ₂					
Pathway 1: 2 CO(O ⁻)CH(OH)COCH ₂ (OO [•]) \rightarrow 2 CO(O ⁻)CH(OH)COCHO + H ₂ O ₂		1.8 10 ⁸			BR: 45%
Pathway 2: 2 CO(O ⁻)CH(OH)COCH ₂ (OO•) → CO(O ⁻)CH(OH)COCHO + CO(O ⁻)CH(OH)COCH ₂ (OH) + O ₂		8.0 107			BR: 20%
Pathway 3: 2 CO(0 ⁻)CH(0H)COCH ₂ (O0 [•]) \rightarrow 2 CO(0 ⁻)CH(0H)COCH ₂ (0 [•]) + O ₂		1.4 10 ⁸			BR: 35%
$CO(O^{-})CH(OH)COCH_{2}(O^{+}) \rightarrow CO(O^{-})CH(OH)C^{+}O + CH_{2}O$					4 - 5
$CO(O^{-})CH(OH)C^{\bullet}O + O_2 \rightarrow CO(O^{-})CH(OH)CO(OO^{\bullet})$		2.0 10 ⁹			3
2 CO(O ⁻)CH(OH)COCH ₂ (OO [•]) → 1.10 CO(O ⁻)CH(OH)COCHO + 0.20 CO(O ⁻)CH(OH)COCH ₂ (OH) + 0.70 CH ₂ O +	R(691)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) -6
0.70 CO(O ⁻)CH(OH)CO(OO [•]) + 0.45 H ₂ O ₂ - 0.15 O ₂					
Oxidation of 2,4-dihydroxy-3-oxobutanoic acid					44
Pathway 1: $CH_2(OH)C(OH)(OH)CH(OH)CO(OH) + HO^{\bullet} \rightarrow CH_2(OH)C(OH)(O^{\bullet})CH(OH)CO(OH) + H_2O$		4.7 10 ⁷			BR: 58% - 45
CH₂(OH)C(OH)(O•)CH(OH)CO(OH) → CH₂(OH)CO(OH) + CO(OH)C•H(OH)					4 - 5
CO(OH)C•H(OH) + O₂ → CH(OH)(OO•)CO(OH)		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)C(OH)(OH)CH(OH)CO(OH) + HO \rightarrow C \cdot H(OH)C(OH)(OH)CH(OH)CO(OH) + H_2O$		3.4 107			BR: 42% - 45
$C^{+}(OH)C(OH)(OH)CH(OH)CO(OH) + O_2 \rightarrow CO(OH)CH(OH)C(OH)(OH)(OH)(OO^{+})$	- ()	2.0 10 ⁹			3
CH₂(OH)(OH)(OH)CH(OH)CO(OH) + HO [•] → 0.58 CH₂(OH)CO(OH) + 0.58 CH(OH)(OO [•])CO(OH) + 0.42	R(692)	8.1 10 ⁸			12
$CO(OH)CH(OH)(OH)(OH)(OH)(OO^{\bullet}) + H_2O - O_2$					
Pathway 1: CH₂(OH)C(OH)(OH)CH(OH)CO(OH) + NO₃⁺ → C⁺H(OH)C(OH)(OH)CH(OH)CO(OH) + NO₃⁻ + H⁺		1.0 10 ⁶			BR: 100%
C•H(OH)C(OH)(OH)CH(OH)CO(OH) + $O_2 \rightarrow CO(OH)CH(OH)C(OH)(OH)(OH)(OO•)$		2.0 10 ⁹			3
CH ₂ (OH)C(OH)(OH)CH(OH)CO(OH) + NO ₃ [•] → CO(OH)CH(OH)C(OH)(OH)CH(OH)(OO [•]) + NO ₃ ⁻ + H ⁺ - O ₂	R(693)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
					+ NO ₃ •) - 13
Pathway 1: $CH_2(OH)COCH(OH)CO(O^-) + HO^{\bullet} \rightarrow C^{\bullet}H(OH)COCH(OH)CO(O^-) + H_2O$		3.9 10 ⁸			BR: 63% - 46
C•H(OH)COCH(OH)CO(O ⁻) + O ₂ → CO(O ⁻)CH(OH)COCH(OH)(OO•)		2.0 10 ⁹			3
Pathway 2: CH₂(OH)COCH(OH)CO(O ⁻) + HO ⁺ → CH₂(OH)COCH(OH)CO(O ⁺)+ OH ⁻		1.2 10 ⁸			BR: 19% - 46
$CH_2(OH)COCH(OH)CO(O^{\bullet}) \rightarrow CH_2(OH)COC^{\bullet}H(OH) + CO_2$					4 - 5
$CH_2(OH)COC^{\bullet}H(OH) + O_2 \rightarrow CH_2(OH)COCH(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 3: $CH_2(OH)COCH(OH)CO(O') + HO' \rightarrow CH_2(OH)COCH(O')CO(O') + H_2O$		1.1 10°			BR: 18% - 46
$CH_2(OH)(COCH(O^*)(CO(O^*) \rightarrow CH_2(OH)(C^*) + CHOCO(O^*)$		2.0.109			4 - 5
$CH_2(OH) \subset O + O_2 \rightarrow CH_2(OH)(O(O))$	D(COA)	$2.0 \cdot 10^{3}$			3
$CH_2(OH)COCH(OH)CO(O') + HO' \rightarrow 0.63 CO(O')CH(OH)COCH(OH)(OO') + 0.19CH_2(OH)COCH(OH)(OO') + 0.18$	K(694)	6.2 10 ³			12
$CHOCO(O^{-}) + 0.18 CH_2(OH)CO(OO^{+}) + 0.19 CO_2 + 0.19 OH^{-} + 0.81 H_2O - O_2$					
Pathway 1: CH ₂ (OH)COCH(OH)CO(O ⁻) + NO ₃ • \rightarrow C ⁺ H(OH)COCH(OH)CO(O ⁻) + NO ₃ • + H ⁺		1.0 10 ⁶			BR: 100%
$C^{\bullet}H(OH)COCH(OH)CO(O^{\circ}) + O_2 \rightarrow CO(O^{\circ})CH(OH)COCH(OH)(OO^{\bullet})$		2.0·10 ⁹			3
CH ₂ (OH)COCH(OH)CO(O ⁻) + NO ₃ • → CO(O ⁻)CH(OH)COCH(OH)(OO•) + NO ₃ ⁻ + H ⁺ - O ₂	R(695)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
					+ NO ₃ •) - 13
$CO(OH)CH(OH)C(OH)(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CO(OH)CH(OH)C(OH)(OH)CH(O^{-})(OO^{\bullet}) + H_{2}O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		4.0 10 ⁹			
CO(OH)CH(OH)C(OH)(OH)CH(O ⁻)(OO ⁺) → CO(OH)CH(OH)C(OH)(OH)CHO + O_2^{+-}					16
$CO(OH)CH(OH)C(OH)(OH)CH(OH)(OO^{\bullet}) + OH^{-} \rightarrow CO(OH)CH(OH)C(OH)(OH)CHO + O_{2}^{\bullet^{-}} + H_{2}O$	R(696)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CO(OH)CH(OH)C(OH)(OH)CH(OH)(OO $^{\bullet}$) → CO(OH)CH(OH)C(OH)(OH)CHO + HO ₂ $^{\bullet}$	R(697)	1.9 10 ²			17

Reactions		k ₂₉₈ (M ⁻ⁿ⁺¹ s ⁻¹)	Ea/R (K)	References	Notes
$CO(O^{-})CH(OH)COCH(OH)(OO^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(OH)COCH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet}) + H_{2}O(O^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(OH)COCH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet}) + H_{2}O(O^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(OH)COCH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(OH)COCH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(OH)COCH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-})(OO^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-})(OO^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-})(OO^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-})CH(O^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-})CH(O^{-}) + OH^{-} \rightarrow CO(O^{-})CH(O^{-})CH(O^{-})CH(O^{-}) + OH^{-} \rightarrow CO(O^{-})CH$		4.0 10 ⁹	. ,		
$CO(O^{-})CH(OH)COCH(O^{-})(OO^{\bullet}) \rightarrow CO(O^{-})CH(OH)COCHO + O_{2}^{\bullet-}$		_			16
CO(O ⁻)CH(OH)COCH(OH)(OO [•]) + OH ⁻ → CO(O ⁻)CH(OH)COCHO + O ₂ ^{•-} + H ₂ O	R(698)	4.0 10 ⁹			= k(CH ₃ CH(OH)(OO•) + OH⁻)
$CO(O^{-})CH(OH)COCH(OH)(OO^{-}) \rightarrow CO(O^{-})CH(OH)COCHO + HO_{2}^{\bullet}$	R(699)	1.9 10 ²			17
Oxidation of 2-hydroxy, 3,4-dioxobutanoic acid					47
Pathway 1: CO(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + HO• → CO(OH)CH(OH)C(OH)(OH)(OH)(O•) + H ₂ O		4.6 10 ⁸			BR: 50% - 48
$CO(OH)CH(OH)C(OH)(OH)(OH)(O+) \rightarrow CO(OH)CH(OH)(C+(OH)(OH) + CHO(OH)$		0			4 - 5
$CO(OH)CH(OH)C^{*}(OH)(OH) + O_{2} \rightarrow CO(OH)CH(OH)(OH)(OO^{*})$ $Pathway 2 + CO(OH)CH(OH)C(OH)(OH)(OH) + HO^{*} \rightarrow CO(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH) + HO^{*}$		2.0 10 ⁹			3
Pathway 2: CO(OH)CH(OH)C(OH)(OH)CH(OH)(OH) + H0' \rightarrow CO(OH)CH(OH)C(OH)(OH)(OH)(OH) + H ₂ O		4.6 108			BR: 50% - 48 4 5
$CO(OH)C(OH)C(OH)(O)(OH)(OH) \rightarrow CO(OH) + CO(OH)(OH)(OH)(OH)(OH)(OH)$		2 0 10 ⁹			4 - 5
$CO(OH)CH(OH)(OH)(OH)(OH)(OH) + HO^{\bullet} \rightarrow 0.50 CO(OH)(OH)(OH)(OH)(OH)(OO^{\bullet}) + 0.50 CHO(OH) + 0.50$	B(700)	9 2 10 ⁸			12
	1(()00)	5.2 10			12
		4 1 1 0 8			DD: 50% 40
$Patnway 1: CO(O)CH(OH)COCH(OH)(OH) + HO \rightarrow CO(O)CH(OH)COCH(OH)(O) + H_2O$		4.1 10°			BR: 58% - 49 4 5
$Co(\alpha)CH(\alpha)(c;\alpha + \alpha_{\alpha} > co(\alpha)CH(\alpha)(c;\alpha))$		2 0 10 ⁹			4-5
Pathway 2: $CO(O^{-})CH(OH)COCH(OH)(OH) + HO^{\bullet} \rightarrow CO(O^{-})CH(OH)COC^{\bullet}(OH)(OH) + H_{2}O$		1.9 10 ⁸			BR: 26% - 49
$CO(O^{-})CH(OH)COC^{\bullet}(OH)(OH) + O_2 \rightarrow CO(O^{-})CH(OH)COC(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 3: CO(O)CH(OH)COCH(OH)(OH) + HO $ \rightarrow$ CO(O)CH(OH)COCH(OH)(OH) + OH		1.1 10 ⁸			BR: 16% - 49
CO(O [•])CH(OH)COCH(OH)(OH) \rightarrow CO ₂ + C [•] H(OH)COCH(OH)(OH)					4 - 5
$C^{+}H(OH)COCH(OH)(OH) + O_2 \rightarrow CH(OH)(OH)COCH(OH)(OO^{+})$		2.0 10 ⁹			3
CO(O ⁻)CH(OH)COCH(OH)(OH) + HO [•] → 0.58 CO(O ⁻)CH(OH)CO(OO•) + 0.58 CHO(OH) + 0.26 CO(O ⁻	R(701)	7.1 10 ⁸			12
)CH(OH)COC(OH)(OH)(OO [•]) + 0.16 CH(OH)(OH)COCH(OH)(OO [•]) + 0.16 CO ₂ + 0.84 H ₂ O + 0.16 OH ⁻ - O ₂					
Pathway 1: CO(O ⁻)CH(OH)COCH(OH)(OH) + NO ₃ • → CO(O ⁻)CH(OH)COC•(OH)(OH) + NO ₃ • + H ⁺		1.8 10 ⁵			BR: 100%
$CO(O^{-})CH(OH)COC^{\bullet}(OH)(OH) + O_{2} \rightarrow CO(O^{-})CH(OH)COC(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
$CO(O^{-})CH(OH)COCH(OH)(OH) + NO_{3}^{\bullet} \rightarrow CO(O^{-})CH(OH)COC(OH)(OH)(OO^{\bullet}) + NO_{3}^{-} + H^{+} - O_{2}$	R(702)	1.8 10 ⁵			= k(CH(OH)(OH)CO(O [_]) +
					NO ₃ •) - 13
Pathway 1: CO(O ⁻)CH(OH)C(OH)(OH)CH(OH)(OH) + HO ⁺ \rightarrow CO(O ⁻)CH(OH)C(OH)(OH)CH(OH)(O ⁺) + H ₂ O		4.6 10 ⁸			BR: 42% - 50
$CO(O^{-})CH(OH)C(OH)(OH)CH(OH)(O^{+}) \rightarrow CO(O^{-})CH(OH)C^{+}(OH)(OH) + CHO(OH)$		2.0.100			4 - 5
$CO(U^{*})CH(OH)C^{*}(OH)(OH) + U_{2} \rightarrow CO(U^{*})CH(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		$2.0\ 10^9$			3 DD: 42% EQ
Pathway 2: CO(O)CH(OH)C(OH)(OH)CH(OH)(OH) + HO \rightarrow CO(O)CH(OH)C(OH)(O)CH(OH)(OH) + H ₂ O		4.0 10°			BR: 42% - 50 4 - 5
$CO(O)(C^{\bullet})(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)$		2 0 10 ⁹			4 - 5
Pathway 3: CO(0 ⁻)CH(OH)C(OH)(OH)CH(OH)(OH) + H0 [•] \rightarrow CO(0 ⁻)CH(OH)C(OH)(OH)C [•] (OH)(OH) + H ₂ O		1.8 10 ⁸			BR: 16% - 50
$CO(O^{-})CH(OH)C(OH)(OH)C^{+}(OH)(OH) + O_{2} \rightarrow CO(O^{-})CH(OH)C(OH)(OH)C(OH)(OO^{+})$		2.0 10 ⁹			3
$CO(O^{-})CH(OH)C(OH)(OH)CH(OH)(OH) + HO^{\bullet} \rightarrow 0.42 CO(O^{-})CH(OH)C(OH)(OH)(OO^{\bullet}) + 0.42 CHO(OH) + 0.42$	R(703)	1.1 10 ⁹			12
$CH(OH)(OO^{\bullet})CO(O^{\bullet}) + 0.42 CH(OH)(OH)CO(OH) + 0.16 CO(O^{\bullet})CH(OH)C(OH)(OH)(OH)(OH)(OO^{\bullet}) + H_2O - O_2$					
Pathway 1: $CO(C_1)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		1 8 10 ⁵			BB: 100%
$CO(O^{-})CH(OH)C(OH)(OH)C^{+}(OH)(OH) + O_{2} \rightarrow CO(O^{-})CH(OH)C(OH)(OH)(OH)(OO^{+})$		2.0 10 ⁹			3
$CO(O^{-})CH(OH)C(OH)(OH)CH(OH)(OH) + NO_{3}^{\bullet} \rightarrow CO(O^{-})CH(OH)C(OH)(OH)C(OH)(OH)(OO^{\bullet}) + NO_{3}^{-} + H^{+} - O_{2}$	R(704)	1.8 10 ⁵			= k(CH(OH)(OH)CO(O [_]) +
	()				NO ₃ •) - 13
CO(O ⁻)CH(OH)COC(OH)(OH)(OO [•]) + OH ⁻ → CO(O ⁻)CH(OH)COC(O ⁻)(OH)(OO [•]) + H ₂ O		4.0 10 ⁹			- ,
CO(O ⁻)CH(OH)COC(O ⁻)(OH)(OO [•]) → CO(O ⁻)CH(OH)COCO(OH) + O ₂ ^{•-}					16
CO(O ⁻)CH(OH)COC(OH)(OH)(OO [•]) + OH ⁻ → CO(O ⁻)CH(OH)COCO(OH) + O ₂ ^{•-} + H ₂ O	R(705)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CO(O^{-})CH(OH)COC(OH)(OH)(OO^{-}) \rightarrow CO(O^{-})CH(OH)COCO(OH) + HO_{2}^{\bullet}$	R(706)	1.0 10 ⁶			27
CO(OH)CH(OH)C(OH)(OH)C(OH)(OO [•]) + OH ⁻ → CO(OH)CH(OH)C(OH)(OH)C(O ⁻)(OH)(OO [•]) + H₂O	. ,	4.0 10 ⁹			
$CO(OH)CH(OH)(OH)(OH)(OO^{\bullet}) \rightarrow CO(OH)CH(OH)CO(OH) + O_2^{\bullet-1}$					16

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CO(OH)CH(OH)C(OH)(OH)(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CO(OH)CH(OH)C(OH)(OH)CO(OH) + O_{2}^{\bullet-} + H_{2}O$	R(707)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CO(OH)CH(OH)C(OH)(OH)(OH)(OO^{\bullet}) \rightarrow CO(OH)CH(OH)C(OH)(OH)CO(OH) + HO_2^{\bullet}$	R(708)	1.0 10 ⁶			27
$CO(O^{-})CH(OH)C(OH)(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CO(O^{-})CH(OH)C(OH)(OH)C(O^{-})(OH)(OO^{\bullet}) + H_{2}O$		4.0 10 ⁹			
$CO(O^{-})CH(OH)C(OH)(OH)C(O^{-})(OH)(OO^{\bullet}) \rightarrow CO(O^{-})CH(OH)C(OH)(OH)CO(OH) + O_{2}^{\bullet-}$					16
CO(O ⁻)CH(OH)C(OH)(OH)C(OH)(OH)(OO [•]) + OH ⁻ → CO(O ⁻)CH(OH)C(OH)(OH)CO(OH) + O ₂ ^{•-} + H ₂ O	R(709)	4.0 10 ⁹			= k(CH ₃ CH(OH)(OO•) + OH⁻)
CO(O ⁻)CH(OH)C(OH)(OH)(OH)(OO [•]) → CO(O ⁻)CH(OH)C(OH)(OH)CO(OH) + HO ₂ [•]	R(710)	1.0 10 ⁶			27
Oxidation of 2-oxomalic acid					51
Pathway 1: CO(OH)CH(OH)C(OH)(OH)CO(OH) + HO [•] \rightarrow CO(OH)CH(OH)C(OH)(O [•])CO(OH) + H ₂ O		3.0 10 ⁸			BR: 100% - 52
$CO(OH)CH(OH)C(OH)(O^{\bullet})CO(OH) \rightarrow CO(OH)CH(OH)CO(OH) + C^{\bullet}O(OH)$					4 - 5
$C^{\bullet}O(OH) + O_2 \rightarrow CO(OH)(OO^{\bullet})$		2.0 10 ⁹			3
CO(OH)CH(OH)C(OH)(OH)CO(OH) + HO [•] → CO(OH)CH(OH)CO(OH) + CO(OH)(OO [•]) + H ₂ O - O ₂	R(711)	3.0 10 ⁸			12
Pathway 1: CO(OH)CH(OH)COCO(O ⁻) + HO ⁺ \rightarrow CO(OH)CH(OH)COCO(O ⁺) + OH ⁻		6.0 10 ⁷			BR: 50% - 53
$CO(OH)CH(OH)COCO(0^{\bullet}) \rightarrow CO(OH)CH(OH)C^{\bullet}O + CO_{2}$		2.0.109			4 - 5
$CO(0H)CH(0H)C^{-}0 + 0 \xrightarrow{2} CO(0H)CH(0H)CO(0O)$		2.0 10 ³			3 DD: 50% 50
$Palnway 2: CO(OH)CH(OH)COCO(O) + HO \rightarrow CO(OH)CH(O)COCO(O) + H_2O$		6.0 10'			BR: 50% - 53
$C^{0}(OH) + O_{2} \rightarrow CO(OH)(OO^{\bullet})$		2 0 10 ⁹			3
$CO(OH)CH(OH)COCO(O^{-}) + HO^{\bullet} \rightarrow 0.50 CO(OH)CH(OH)CO(OO^{\bullet}) + 0.50 CO(O^{-})COCHO + 0.50 CO(OH)(OO^{\bullet}) + 0.50 CO(OH)(OH)(OO^{\bullet}) + 0.50 CO(OH)(OH)(OO^{\bullet}) + 0.50 CO(OH)(OO^{\bullet}) + 0.50 CO(OH)(OO^{\bullet}) + 0.50 CO(OH)(OO^{\bullet}) + 0.50 CO(OH)(OO^{\bullet}) + 0.50 CO(OH)(OH)(OO^{\bullet}) + 0.50 CO(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(712)	1.2 10 ⁸			12
$0.50 H_{2}O + 0.50 OH^{-} = O_{2}$		112 10			
Pathway 1: $CO(OH)CH(OH)CO(O^{-}) + HO^{\bullet} \rightarrow CO(OH)CH(OH)C(OH)(O^{\bullet})CO(O^{-}) + H_{2}O$		5 4 10 ⁸			BB: 100% - 54
$CO(OH)CH(OH)C(OH)(O)CO(O) \rightarrow CO(OH)CH(OH)CO(OH) + C O(O)$		5.4 10			4 - 5
$C^{\circ}O(O^{\circ}) + O_{2} \rightarrow CO(O^{\circ})(OO^{\circ})$		2.0 10 ⁹			3
$CO(OH)CH(OH)C(OH)(OH)CO(O^{-}) + HO^{\bullet} \rightarrow CO(OH)CH(OH)CO(OH) + CO(O^{-})(OO^{\bullet}) + H_{2}O - O_{2}$	R(713)	5.4 10 ⁸			
Pathway 1: CO(O ⁻)CH(OH)C(OH)(OH)CO(OH) + HO [•] \rightarrow CO(O ⁻)CH(OH)C(OH)(O [•])CO(OH) + H ₂ O		2.6 10 ⁸			BR: 55% - 55
$CO(O^{-})CH(OH)C(OH)(O^{+})CO(OH) \rightarrow CO(OH)CH(OH)CO(O^{-}) + C^{+}O(OH)$					4 - 5
$C^{\bullet}O(OH) + O_2 \rightarrow CO(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CO(O ⁻)CH(OH)C(OH)(OH)CO(OH) + HO $^{\bullet} \rightarrow$ CO(O $^{\bullet}$)CH(OH)C(OH)(OH)CO(OH) + OH ⁻		1.1 10 ⁸			BR: 24% - 55
$CO(0^{\circ})CH(OH)C(OH)(OH)CO(OH) \rightarrow CO_2 + C^{\circ}H(OH)C(OH)(OH)CO(OH)$					4 - 5
$C^{+}H(OH)C(OH)(OH)CO(OH) + O_{2} \rightarrow CH(OH)(OO^{+}C(OH)(OH)CO(OH)$		2.0 10 ⁹			3
$Palnway 3: CO(O)(CH(OH)CO(OH) \rightarrow CO(O) + HO \rightarrow CO(O)(CH(O)(CH)(OH)CO(OH) + H_2O)$		1.0 105			BR: 21% - 55
$C_{0}(0, 1 + 0^{3}) \rightarrow C_{0}(0, 1)(0, 0, 1) \rightarrow C_{0}(0, 1)C_{0}(0, 1)C_{0}(0,$		2 0 10 ⁹			3
$CO(O^{-})CH(OH)CO(OH)+HO^{\bullet} \rightarrow 0.55 CO(OH)CH(OH)CO(O^{-})+0.24 CH(OH)(OO^{\bullet})C(OH)(OH)CO(OH) +$	R(714)	4.7 10 ⁸			12
$0.21 CO(OH)(OH)(OH)(OH)(CHO + 0.24 CO_2 + 0.55 CO(OH)(OO^{•}) + 0.21 CO(O^{•})(OO^{•}) + 0.76 H_2O + 0.24 OH^{-}_{-}O_2$					
0.21 CO[O1](C[O1](C[O1](C[O1](C[O1](C[O2)(C[O2](C[O2)(C[O2](C[O2)(C[O2](C[O2)(C[O2)(C[O2](C[O2)(C(C(C(C(C(C)(C(C(C(C(C(C(C(C		1 1 108			BB: 39% - 56
$CO(0^{\circ})CH(OH)COCO(0^{\circ}) \rightarrow C0^{\circ} + C^{\circ}H(OH)COCO(0^{\circ})$		1.1 10			4 - 5
$C^{\bullet}H(OH)COCO(O^{\circ}) + O_2 \rightarrow CH(OH)(OO^{\circ})COCO(O^{\circ})$		2.0 10 ⁹			3
Pathway 2: CO(O ⁻)CH(OH)COCO(O ⁻) + HO [•] \rightarrow CO(O ⁻)CH(O [•])COCO(O ⁻) + H ₂ O		1.0 10 ⁸			BR: 35% - 56
$CO(O^{-})CH(O^{+})COCO(O^{-}) \rightarrow C^{\bullet}O(O^{-}) + CO(O^{-})COCHO$					4 - 5
$C^{\bullet}O(O^{\bullet}) + O_2 \rightarrow CO(O^{\bullet})(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 3: CO(O ⁻)CH(OH)COCO(O ⁻) + HO [•] \rightarrow CO(O ⁻)C [•] (OH)COCO(O ⁻) + H ₂ O		8.0 10 ⁷			BR: 26% - 56
$CO(0^{-})C^{\bullet}(OH)COCO(0^{-}) + O_2 \rightarrow CO(0^{-})C(OH)(OO^{\bullet})COCO(0^{-})$		2.0 10 ⁹			3
$CO(O^{-})CH(OH)COCO(O^{-}) + HO^{\bullet} \rightarrow 0.39 CH(OH)(OO^{\bullet})COCO(O^{-}) + 0.35 CO(O^{-})COCHO + 0.26 CO(O^{-})C$	R(715)	2.9 10°			12
)C(OH)(OO [•])COCO(O ⁻) + 0.39 CO ₂ + 0.35 CO(O ⁻)(OO [•]) + 0.39 OH ⁻ + 0.61 H ₂ O - O ₂					
Pathway 1: CO(O ⁻)CH(OH)COCO(O ⁻) + NO ₃ [•] \rightarrow CO(O ⁻)C [•] (OH)COCO(O ⁻) + NO ₃ ⁻ + H ⁺		2.3 10 ⁷			BR: 100%
$CO(0^{\circ})C^{\bullet}(OH)COCO(0^{\circ}) + O_2 \rightarrow CO(0^{\circ})C(OH)(OO^{\bullet})COCO(0^{\circ})$		2.0 109			3

Reactions		k298	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CO(O^{-})CH(OH)COCO(O^{-}) + NO_{3}^{\bullet} \rightarrow CO(O^{-})C(OH)(OO^{\bullet})COCO(O^{-}) + NO_{3}^{-} + H^{+} - O_{2}$	R(716)	2.3 10 ⁷			$= k(CO(O^{-})CH_2CO(O^{-}) + NO_3^{\bullet})$
					- 13
$CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)CO(OH) + OH^{-} \rightarrow CO(OH)C(O^{-})(OO^{\bullet})C(OH)(OH)CO(OH) + H_{2}O$		4.0 10 ⁹			
$CO(OH)C(O+)(OO^{*})C(OH)(OH)CO(OH) \rightarrow CO(OH)(OH)(OH)(OH)(O(OH) + O_{2}^{**}$	D(717)	4 0 109			$\frac{16}{16}$
$CO(OH)C(OH)(OO)C(OH)(OH)(OH)CO(OH) + OH \rightarrow CO(OH)COC(OH)(OH)(OH)CO(OH) + O_2 + H_2O$	R(717)	4.0 10 ³			$= K(CH_3CH(OH)(OO) + OH)$
$CO(OH)C(OH)(OO^{*})C(OH)(OH)CO(OH) \rightarrow CO(OH)COC(OH)(OH)CO(OH) + HO_{2}^{*}$	R(718)	1.9 102			17
$CO(OH)(OO^{*})COCO(O^{*}) \rightarrow CO(OH)C(O^{*})(OO^{*})COCO(O^{*}) + O_{2}^{\bullet}$		4.0 105			16
$CO(OH)C(OH)(OO^{\circ})COCO(O^{\circ}) + OH^{\circ} \rightarrow CO(OH)COCOCO(O^{\circ}) + O2^{\circ^{\circ}} + H2O$	R(719)	4.0 10 ⁹			= k(CH ₃ CH(OH)(OO•) + OH ⁻)
$CO(OH)C(OH)(OO^{\bullet})COCO(O^{-}) \rightarrow CO(OH)COCOCO(O^{-}) + HO_2^{\bullet}$	R(720)	1.9 10 ²			17
$CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)CO(O^{-}) + OH^{-} \rightarrow CO(OH)C(O^{-})(OO^{\bullet})C(OH)(OH)CO(O^{-}) + H_{2}O(OH)(OH)CO(O^{-}) + H_{2}O(OH)(OH)CO(O^{-}) + H_{2}O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		4.0 10 ⁹			
$CO(OH)C(O^{-})(OO^{+})C(OH)(OH)CO(O^{-}) \rightarrow CO(OH)COC(OH)(OH)CO(O^{-}) + O_{2}^{\bullet-}$					16
$CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)CO(O^{-}) + OH^{-} \rightarrow CO(OH)COC(OH)(OH)CO(O^{-}) + O_{2}^{\bullet-} + H_{2}O(OH)CO(O^{-}) + O_{2}^{\bullet-} + O_{2}^{$	R(721)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CO(OH)C(OH)(OO [•])C(OH)(OH)CO(O ⁻) → CO(OH)COC(OH)(OH)CO(O ⁻) + HO ₂ •	R(722)	1.9 10 ²			17
$CO(O^{-})C(OH)(OO^{+})C(OH)(OH)CO(OH) + OH^{-} \rightarrow CO(O^{-})C(O^{-})(OO^{+})C(OH)(OH)CO(OH) + H_{2}O(OH)(OH)(OH)CO(OH) + H_{2}O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		4.0 10 ⁹			
$CO(O^{-})C(O^{-})(OO^{+})C(OH)(OH)CO(OH) \rightarrow CO(OH)C(OH)(OH)COCO(O^{-}) + O_{2}^{*-}$	<i>.</i>				16
$CO(O^{-})C(OH)(OO^{\bullet})C(OH)(OH)CO(OH) + OH^{-} \rightarrow CO(OH)C(OH)(OH)COCO(O^{-}) + O_{2}^{\bullet^{-}} + H_{2}O$	R(723)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CO(O^{-})C(OH)(OO^{\bullet})C(OH)(OH)CO(OH) \rightarrow CO(OH)C(OH)(OH)COCO(O^{-}) + HO_{2}^{\bullet}$	R(724)	1.9 10 ²			17
$CO(0^{-})C(OH)(OO^{+})COCO(O^{-}) + OH^{-} \rightarrow CO(O^{-})C(O^{-})(OO^{+})COCO(O^{-}) + H_{2}O$		4.0 10 ⁹			10
$CO(0^{-})C(0^{-})(CO(0^{-}) \rightarrow CO(0^{-})CO(CO(CO(0^{-}) + 0^{2^{-}})) = O(0^{-})CO(0^{-})CO(CO(CO(0^{-}) + 0^{2^{-}})) = O(0^{-})CO(CO(CO(0^{-}) + 0^{2^{-}})) = O(0^{-})CO(CO(CO(0^{-}))) = O(0^{-})CO(CO(0^{-})) = O(0^{-})CO(0^{-})CO(0^{-})CO(0^{-})) = O(0^{-})CO(0^{-})CO(0^{-})CO(0^{-})CO(0^{-})CO(0^{-})) = O(0^{-})CO(0^{-})$		4 0 109			- k(CH CH(OH)(OO•) + OH-)
$CO[O] CO[O] CO[O] + OH \rightarrow CO[O] COCOCO[O] + O_2 + H_2O$	R(723)	$4.0\ 10^{-1}$			$= K(CH_3CH(OH)(OO) + OH)$
$CO[O] C(OH)[OO] COCO[O] \rightarrow CO[O] COCOCO[O] + HO_2$	N(720)	1.9 10-			
					57
Pathway 1: CO(OH)C(OH)(OH)C(OH)(OH)CO(OH) + H0 $^{\circ} \rightarrow$ CO(OH)C(OH)(OH)C(OH)(O^{\circ})CO(OH) + H_2O = CO(OH)C(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH)(O^{\circ})CO(OH) + CO(OH)(O^{\circ})CO		4.6 10°			BR: 100% - 58
$C^{O}(OH) + O_{2} \rightarrow CO(OH)(OO^{*})$		2 0 10 ⁹			4-5
$CO(OH)C(OH)(OH)C(OH)(OH)CO(OH) + HO^{\bullet} \rightarrow CO(OH)C(OH)(OH)CO(OH) + CO(OH)(OO^{\bullet}) + H_2O - O_2$	R(727)	4.6 10 ⁸			12
Pathway 1: CO(OH)C(OH)COCO(0 ⁻) + H0 [•] \rightarrow CO(OH)C(OH)(0 [•])COCO(0 ⁻) + H ₂ O	()	2.5 10 ⁸			BR: 100% - 59
$CO(OH)C(OH)(O^{\bullet})COCO(O^{\bullet}) \rightarrow C^{\bullet}O(OH) + CO(OH)COCO(O^{\bullet})$					4 - 5
$C^{\bullet}O(OH) + O_2 \rightarrow CO(OH)(OO^{\bullet})$		2.0 10 ⁹			3
$CO(OH)C(OH)(OH)COCO(O^{-}) + HO^{\bullet} \rightarrow CO(OH)COCO(O^{-}) + CO(OH)(OO^{\bullet}) + H_2O - O_2$	R(728)	2.5 10 ⁸			12
Pathway 1: CO(OH)C(OH)(OH)C(OH)(OH)CO(O ⁻) + HO [•] \rightarrow CO(OH)C(OH)(OH)C(OH)(O [•])CO(O ⁻) + H ₂ O		4.3 10 ⁸			BR: 64% - 60
$C^{0}(\Omega^{1}) + \Omega_{2} \rightarrow CO(\Omega^{1})(\Omega\Omega^{1})$		2 0 10 ⁹			4 - 5
Pathway 2: CO(OH)C(OH)(OH)C(OH)(OH)CO(O ⁻) + HO [•] \rightarrow CO(OH)C(OH)(O [•])C(OH)(OH)CO(O ⁻) + H ₂ O		2.4 10 ⁸			BR: 36% - 60
$CO(OH)C(OH)(O^{-})C(OH)(OH)CO(O^{-}) \rightarrow C^{*}O(OH) + CO(OH)C(OH)(OH)CO(O^{-})$					4 - 5
$C^{\bullet}O(OH) + O_2 \rightarrow CO(OH)(OO^{\bullet})$		2.0 10 ⁹			3
CO(OH)C(OH)(OH)C(OH)(OH)CO(O ⁻) + HO [•] → 0.64 CO(OH)C(OH)(OH)CO(OH) + 0.36 CO(OH)C(OH)(OH)CO(O ⁻)	R(729)	6.7 10 ⁸			12
+ 0.64 CO(O ⁻)(OO [•]) + 0.36 CO(OH)(OO [•]) + H ₂ O - O ₂					
Pathway 1: CO(O')COCOCO(O') + HO' \rightarrow CO(O')COCOCO(O') + OH'		8.3 10 ⁷			BR: 100% - 61
$CO(0^{-})CO(CO(CO(0^{+}) \rightarrow CO(0^{+})CO(C^{+}) + CO_{2})$		$2.0.10^{9}$			4 - 5
$CO(O^{-})CO(O(O^{-}) + HO^{\bullet} \rightarrow CO(O^{-})CO(O(OO^{\bullet}) + CO_{0} + OH^{-} = O_{0}$	B(730)	2.0 10 ⁷ 8 3 10 ⁷			5 12
Pathway 1: $CO(O_1)COC(OH)(OH)(OH)(O_1) + HO^* \rightarrow CO(O_1)COC(OH)(O^*)(O(O_1) + H_{2O})$	N(750)	4 4 10 ⁸			BR: 100% - 62
$CO(0^{-})COC(0H)(0^{-}) \rightarrow CO(0H)COCO(0^{-}) + C^{*}O(0^{-})$		T.T 10			4 - 5
$C^{\bullet}O(O^{-}) + O_2 \rightarrow CO(O^{-})(OO^{\bullet})$		2.0 10 ⁹			3

Reactions		k ₂₉₈ (M ⁻ⁿ⁺¹ s ⁻¹)	Ea/R (K)	References	Notes
$CO(O^{-})COC(OH)(OH)CO(O^{-}) + HO^{\bullet} \rightarrow CO(OH)COCO(O^{-}) + CO(O^{-})(OO^{\bullet}) + H_2O - O_2$	R(731)	4.4 10 ⁸			12
Oxidation of 2,3-dioxobutanedial					63
Pathway 1: CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH) + H0 $^{\circ} \rightarrow$ CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(O^{\circ}) + H ₂ O		8.8 10 ⁸			BR: 52% - 64 4 - 5
$CH(OH)(OH)C(OH)(OH)(OH)(OH) + O_2 \rightarrow CH(OH)(OH)C(OH)(OH)(OH)(OH)(OO)$		2.0 10 ⁹			3
$Pathway\ 2:\ CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH) + HO^\bullet \rightarrow CH(OH)(OH)C(OH)(OH)(OH)(OH)(OH) + H_2OH(OH)$		8.2 10 ⁸			BR: 48% - 64
$CH(OH)(OH)C(OH)(O+)C(OH)(O+)(OH)(OH) \rightarrow CH(OH)(OH)C^{\bullet}(OH)(OH) + CH(OH)(OH)CO(OH)$					4 - 5
$CH(OH)(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CH(OH)(OH)(OH)(OO^{\bullet})$		2.010^9			3
$CH(OH)(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)(OH) + HO^{2} \rightarrow 0.52 CH(OH)(OH)C(OH)(OH)(OH)(OH)(OO^{2}) + 0.52 CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(732)	1.7 103			12
CHO(OH) + 0.48 CH(OH)(OH)C(OH)(OH)(OO [•]) + 0.48 CH(OH)(OH)CO(OH) + H ₂ O - O ₂					
Oxidation of 2,3-dioxobutanoic acid					65
Pathway 1: CH ₃ C(OH)(OH)C(OH)(OH)CO(OH) + HO [•] \rightarrow CH ₃ C(OH)(O [•])C(OH)(OH)CO(OH) + H ₂ O		6.2 10 ⁸			BR: 62% - 66
$CH_{3}C(OH)(O^{*})C(OH)(OH)(OH) \rightarrow CH_{3}CO(OH) + CO(OH)(OH)(OH)$		2 0 1 0 9			4 - 5
Pathway 2: CH ₂ C(OH)(OH)C(OH)(OH)CO(OH) + HO [•] \rightarrow CH ₂ C(OH)(OH)C(OH)(O [•])CO(OH) + H ₂ O		$2.0\ 10^{-5}$			5 BB: 38% - 66
$CH_{3}C(OH)(OH)C(OH)(O^{\bullet})CO(OH) \rightarrow CH_{3}C^{\bullet}(OH)(OH) + CO(OH)CO(OH)$		2.0 10			4 - 5
$CH_3C^{\bullet}(OH)(OH) + O_2 \rightarrow CH_3C(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
CH ₃ C(OH)(OH)C(OH)(OH)CO(OH) + HO [•] → 0.62 CH ₃ CO(OH) + 0.62 CO(OH)C(OH)(OH)(OO [•]) + 0.38	R(733)	6.8 10 ⁸			12
$CO(OH)CO(OH) + 0.38 CH_3C(OH)(OH)(OO^{\bullet}) + H_2O - O_2$					
Pathway 1: CH ₃ COCOCO(O ⁻) + HO [•] \rightarrow C [•] H ₂ COCOCO(O ⁻) + H ₂ O		6.9 10 ⁷			BR: 63% - 67
$C^{\bullet}H_2COCOCO(0^{-}) + O_2 \rightarrow CH_2(OO^{\bullet})COCOCO(0^{-})$		2.0 10 ⁹			3
Pathway 2: CH ₃ COCOCO(0 ⁻) + H0 [•] \rightarrow CH ₃ COCOCO(0 [•]) + OH ⁻		4.1 10 ⁷			BR: 37% - 67
$(H_3COCOLO(0^*) \rightarrow CH_3COCO(00^*)$		2 0 109			4 - 5
$CH_{2}COCO(O^{*}) + 0.27 CH_{2}COCO(O^{*}) + 0.27 CH_{2}COCO(O^{*}) + 0.27 CH_{2}COCO(O^{*}) + 0.27 CO_{2} + 0.62 H_{2}O + 0.27 OH^{*}$	R(734)	$2.0\ 10^{-1}$			5 10
O_2	N(754)	1.1 10			12
Pathway 1: CH ₃ COCOCO(O ⁻) + NO ₃ [•] \rightarrow C [•] H ₂ COCOCO(O ⁻) + NO ₃ ⁻ + H ⁺		1.9 10 ⁷			BR: 100%
$C^{+}H_{2}COCOCO(0^{-}) + O_{2} \rightarrow CH_{2}(OO^{+})COCOCO(0^{-})$		2.0 10 ⁹	2007		3
$CH_3COCOCO(O) + NO_3 \rightarrow CH_2(OO) COCOCO(O) + NO_3 + H^2 - O_2$	K(735)	1.9 10'	2887		$= K(CH_3COCO(O) + NO_3^{-}) - 13$
Pathway 1: CH ₃ C(OH)(OH)COCO(O ⁻) + HO [•] \rightarrow CH ₃ C(OH)(O [•])COCO(O ⁻) + H ₂ O		4.5 10 ⁸			BR: 100% - 68
$CH_{3}C(OH)(O^{\bullet})COCO(O^{\bullet}) \rightarrow CH_{3}CO(OH) + CO(O^{\bullet})C^{\bullet}O$					4 - 5
$CO(O^{\cdot})C^{\bullet}O + O_2 \rightarrow CO(O^{\cdot})CO(OO^{\bullet})$		2.0 10 ⁹			3
$CH_{3}C(OH)(OH)COCO(O^{-}) + HO^{\bullet} \rightarrow CH_{3}CO(OH) + CO(O^{-})CO(OO^{\bullet}) + H_{2}O - O_{2}$	R(736)	4.5 10 ⁸			12
Pathway 1: CH ₃ COC(OH)(OH)CO(O ⁻) + HO [•] \rightarrow CH ₃ COC(OH)(O [•])CO(O ⁻) + H ₂ O		4.8 10 ⁸			BR: 100% - 69
$CH_3COC(OH)(O^{\circ})CO(O^{\circ}) \rightarrow CH_3COCO(OH) + C^{\circ}O(O^{\circ})$		2.0.109			4 - 5
$CU_{1}CO(0) + U_{2} \rightarrow CU(0)(00)$	D(727)	2.0 10 ³ 4 9 10 ⁸			3
$C_{13}COC(OT)(OT)(CO(OT) + HO \rightarrow C_{13}COCO(OT) + CO(OT)(OT)(COT) + H_2O - O_2$	N(737)	4.8 10			
Pathway 2: 2 $Ch_2(OO)C(OH)(OH)C(OH)(OH)CO(OH) \rightarrow CHOC(OH)(OH)C(OH)(OH)CO(OH) + Ch_2(OH)C(OH)(OH)C(OH)(OH)CO(OH) + O_2$		1.8 10 8 0 10 ⁷			BR: 20%
Pathway 3: 2 CH ₂ (OO ⁺)C(OH)(OH)C(OH)(OH)CO(OH) \rightarrow 2 CH ₂ (O ⁺)C(OH)(OH)CO(OH) + O ₂		1.4 10 ⁸			BR: 35%
$CH_2(O^{\bullet})C(OH)(OH)C(OH)(OH)CO(OH) \rightarrow CO(OH)C(OH)(OH)C^{\bullet}(OH)(OH) + CH_2O$					4 - 5
$CO(OH)C(OH)(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CO(OH)C(OH)(OH)(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
2 CH ₂ (OO•)C(OH)(OH)C(OH)(OH)CO(OH) → 1.10 CHOC(OH)(OH)C(OH)(OH)CO(OH) + 0.20	R(738)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) - 6
CH ₂ (OH)C(OH)(OH)C(OH)(OH)CO(OH) + 0.70 CO(OH)C(OH)(OH)C(OH)(OO [•]) + 0.70 CH ₂ O + 0.45 H ₂ O ₂ -					
0.15 O ₂					

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
Pathway 1: 2 CH ₂ (OO*)COCOCO(O ⁻) \rightarrow 2 CHOCOCOCO(O ⁻) + H ₂ O ₂		1.8 10 ⁸			BR: 45%
Pathway 2: 2 CH ₂ (OO•)COCOCO(O ⁻) \rightarrow CHOCOCOCO(O ⁻) + CH ₂ (OH)COCOCO(O ⁻) + O ₂		8.0 10 ⁷			BR: 20%
Pathway 3: 2 CH ₂ (OO*)COCOCO(O ⁻) \rightarrow 2 CH ₂ (O*)COCOCO(O ⁻) + O ₂		1.4 10 ⁸			BR: 35%
$CH_2(0^{\bullet})COCOCO(0^{-}) \rightarrow CO(0^{-})COC^{\bullet}O + CH_2O$					4 -5
$CO(0^{-})COC^{+}O + O_2 \rightarrow CO(0^{-})COCO(00^{+})$		2.0 10 ⁹			3
2 CH ₂ (OO [•])COCOCO(O ⁻) → 1.10 CHOCOCOCO(O ⁻) + 0.20 CH ₂ (OH)COCOCO(O ⁻) + 0.70 CO(O ⁻)COCO(OO [•]) + 0.70	R(739)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) - 6
CH ₂ O + 0.45 H ₂ O ₂ - 0.15 O ₂					
Pathway 1: 2 CH ₂ (OO*)C(OH)(OH)COCO(O ⁻) \rightarrow 2 CHOC(OH)(OH)COCO(O ⁻) + H ₂ O ₂		1.8 10 ⁸			BR: 45%
Pathway 2: 2 CH ₂ (OC)(C(OH)(OH)COCO(O) \rightarrow CHOC(OH)(OH)(COCO(C) + CH ₂ (OH)C(OH)(OH)COCO(O) + O ₂		8.0 10'			BR: 20%
Pathway 3: 2 CH ₂ (OU ⁻)C(OH)(OH)(OCO(O ⁻) \rightarrow 2 CH ₂ (O ⁻)C(OH)(OH)COCO(O ⁻) + O ₂		1.4 10°			BR: 35%
$C_{2}(0) = C_{1}(0) + (0) + C_{2}(0) + C_{$		2 0 10 ⁹			4 - 5
	R(740)	2.0 10 4 0 10 ⁸			$= k(3 CH_{-}COCH_{-}(OO^{\bullet})) = 6$
$2 Ch_{2}(OC) (CON)(ON)(OC)(O) + 0.70 CH O + 0.45 H O = 0.15 O$	Ν(740)	4.0 10			
$CO(O)(COC(OH)(OH)(OU) + 0.70 CH_2O + 0.45 H_2O_2 - 0.15 O_2$		1.0.10%			DD 450/
Pathway 1: 2 CH ₂ (OU [*])COC(OH)(OH)(OH)(CO(O [*]) \rightarrow 2 CHOCOC(OH)(OH)(OH)(CO(O [*]) + H ₂ O ₂		1.8 10°			BR: 45%
Pathway 2: 2 CH2(00)(COC(OH)(OH)CO(O) \rightarrow CHCCC(OH)(OH)(CO(OH)(CH)(COC(OH)(OH)CO(O) + 02 Pathway 2: 2 CH2(OO)(COC(OH)(OH)(CO(O) \rightarrow CHCCC(OH)(OH)(CO(OH)(CH)(CO(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C		8.0 10 [°] 1 4 10 ⁸			DR: 20%
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0		1.4 10			4 - 5
$CO(O)C(OH)(OH)C(O+O + O) \rightarrow CO(O)C(OH)(CO(OO))$		2.0 10 ⁹			3
2 CH ₂ (OO [•])COC(OH)(OH)CO(O ⁻) → 1.10 CHOCOC(OH)(OH)CO(O ⁻) + 0.20 CH ₂ (OH)COC(OH)(OH)CO(O ⁻) + 0.70	R(741)	4.0 10 ⁸			= k(2 CH ₃ COCH ₂ (OO•)) - 6
$CO(O^{-})C(OH)(OH)CO(OO^{-}) + 0.70 CH_{2}O + 0.45 H_{2}O_{2} - 0.15 O_{2}$					
Oxidation of 2.3-dioxo-4-hydroxybutanal					70
Pathway 1: $CH_2(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH) + HO^{\bullet} \rightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CH(OH)(O^{\bullet}) + H_2O$		4.2 10 ⁸			BR: 28% - 71
$CH_{2}(OH)C(OH)(OH)C(OH)(OH)(OH)(O^{\bullet}) \rightarrow CH_{2}(OH)C(OH)(OH)C^{\bullet}(OH)(OH) + CHO(OH)$					4 - 5
$CH_2(OH)C(OH)(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CH_2(OH)C(OH)(OH)(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH₂(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH) + HO• → CH₂(OH)C(OH)(O•)C(OH)(OH)CH(OH)(OH) + H₂O		4.0 10 ⁸			BR: 27% - 71
$CH_2(OH)C(OH)(O^{\bullet})C(OH)(OH)(OH)(OH) \rightarrow CH_2(OH)CO(OH) + CH(OH)(OH)(OH)(OH)$					4 - 5
$CH(OH)(OH)+O_2 \rightarrow CH(OH)(OH)(OH)(OH)(OH)(OH)$		2.0 10 ⁹			3
Pathway 3: $CH_2(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + HO^2 \rightarrow CH_2(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + H_2O$		3.8 10°			BR: 25% - 71
$CH_2(OH)(C(OH)(OH) + O_{2} \rightarrow CH_2(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		2 0 10 ⁹			4 - 5
$Pathway 4: CH_2(OH)(C(OH)(OH)(OH)(OH)(OH)(OH) + Ho^{\bullet} > C^{\bullet}(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + H_2(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		$3.0.10^{8}$			BB: 20% - 71
$C^{H}(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		2.0 10 ⁹			3
CH ₂ (OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH) + HO [•] → 0.28 CH ₂ (OH)C(OH)(OH)(OH)(OH)(OO [•]) + 0.28 CHO(OH)	R(742)	1.5 10 ⁹			12
$+ 0.27 \text{ CH}_{0}(\Omega H)(\Omega H) + 0.27 \text{ CH}(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega O^{\bullet}) + 0.25 \text{ CH}_{0}(\Omega H)(\Omega H)(\Omega H)(\Omega O^{\bullet}) + 0.25 \text{ CH}_{0}(\Omega H)(\Omega H)(\Omega H)(\Omega O^{\bullet}) + 0.25 \text{ CH}_{0}(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)(\Omega H)$	()				
CH(OH)(OH)(OH)(OH) + 0.20 CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH					
$Pathway 1: CH_2(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(O$		1 0 106			BB: 100%
$C^{H}(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		2.010^9			3
$CH_{3}(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH) + NO_{3}^{\bullet} \rightarrow CH(OH)(OH)C(OH)(OH)CH(OH)(OH)CH(OH)(OO^{\bullet}) + NO_{3}^{\bullet} + O(OH)(OH)(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(743)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
$H^{+} = \Omega_{2}$	()				+ NO ₃ •) - 13
$CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO^{*}) + OH^{-} \rightarrow CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(O^{-})(OO^{*}) + H_{2}O(OH)(OH)CH(OH)CH(OH)(OH)CH(OH)$		4.0 10 ⁹			·
$CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(O')(OO') \rightarrow CHOC(OH)(OH)C(OH)(OH)(OH)(OH) + O_2^{\bullet}$					16
$CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet}) + OH^{\bullet} \rightarrow CHOC(OH)(OH)C(OH)(OH)CH(OH)(OH) + O_2^{\bullet^{\bullet}} + H_2O(OH)(OH)(OH)(OH)(OH) + O_2^{\bullet^{\bullet}} + O_2^{\bullet^{\bullet} $	R(744)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH(OH)(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OO^{\bullet}) \rightarrow CHOC(OH)(OH)(OH)(OH)(OH)(OH) + HO_{2}^{\bullet}$		1.9 10 ²			17
Oxidation of 2,3-dioxo-4-hydroxybutanoic acid					72
Pathway 1: CH ₂ (OH)C(OH)(OH)C(OH)(OH)CO(OH) + HO [•] → CH ₂ (OH)C(OH)(O [•])C(OH)(OH)CO(OH) + H ₂ O		4.0 10 ⁸			BR: 42% - 73

Reactions		k298	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CH_2(OH)C(OH)(O^{\bullet})C(OH)(OH)CO(OH) \rightarrow CH_2(OH)CO(OH) + CO(OH)C^{\bullet}(OH)(OH)$					4 - 5
$CO(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CO(OH)C(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)C(OH)(OH)C(OH)(OH)CO(OH) + HO^{\bullet} \rightarrow C^{\bullet}H(OH)C(OH)(OH)C(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)CO(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)(OH)CO(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)CO(OH)(OH)CO(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)CO(OH)(OH)CO(OH)(OH)CO(OH)(OH)CO(OH) + H_2O(OH)CO(OH)CO(OH)C$		2.9 10 ⁸			BR: 31% - 73
$C^{+}(OH)C(OH)(OH)C(OH)(OH)CO(OH) + O_{2} \rightarrow CO(OH)C(OH)(OH)C(OH)(OH)(OH)(OO^{+})$		2.0 10 ⁹			3
Pathway 3: $CH_2(OH)(CH)(OH)(CH)(OH)(CO(OH) + H0^+ \rightarrow CH_2(OH)(C(OH)(OH)(CH)(O^+)(CO(OH) + H_2O))$		2.5 10°			BR: 27% - 73
$CH_2(OH)(C(OH)(OH) + O_{C} \rightarrow CH_2(OH)(C(OH)(OH) + CO(OH)(C(OH))$		2 O 10 ⁹			4 - 5
$CH_2(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH) + U(A) = U(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$	R(745)	9.4.10 ⁸			10
$c_{12}(0)(c_{10})(c_{10})(c_{10})(c_{10})(c_{10}) + 10^{-3} = 0.42 = c_{12}(0)(c_{10})(c_{10}) + 0.42 = c_{10}(0)(c_{10})(c_$	N(743)	5.4 10			12
$0.31CO(OH)C(OH)C(OH)(OH)CH(OH)(OO) + 0.27 CO(OH)CO(OH) + 0.27 CH_2(OH)C(OH)(OH)(OO) + H_2O - 0.27 CH_2(OH)C(OH)(OH)(OO) + H_2O - 0.27 CH_2(OH)C(OH)(OH)(OO) + 0.27 CH_2(OH)C(OH)(OH)(OH)(OO) + 0.27 CH_2(OH)C(OH)(OH)(OH)(OO) + 0.27 CH_2(OH)C(OH)(OH)(OH)(OO) + 0.27 CH_2(OH)C(OH)(OH)(OH)(OH)(OO) + 0.27 CH_2(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$					
O ₂					
Pathway 1: $CH_2(OH)C(OH)(OH)C(OH)(OH)CO(OH) + NO_3^{\bullet} \rightarrow C^{\bullet}H(OH)C(OH)(OH)CO(OH) + NO_3^{\bullet} + H^{\bullet}$		1.0 106			BR: 100%
$C^{+}(OH)C(OH)(OH)C(OH)(OH)CO(OH) + O_{2} \rightarrow CO(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)(OO^{+})$	$D(\overline{A}AC)$	$2.0\ 10^9$			3
$CH_2(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + NO_3^* \rightarrow CO(OH)(OH)(OH)(OH)(OH)(OH)(OO^*) + NO_3^* + H^* - O_2$	R(746)	1.0 108			= K(CH(OH)(OH)CH(OH)(OH)
		4.0.108			$+ NO_3^{\bullet}) - 13$
Pathway 1: $CH_2(OH)(CH)(OH)(OH)(OU(O') + HO' \rightarrow CH_2(OH)(CO')(COU(O') + H_2O)$		4.0 10°			BR: 58% - 74
$CO[O_1]C(OH)(O)(OCO(O)) \rightarrow CO[O_1]CO(OH) + CO[O_1]CO(OH) + CO[O_1]CO(OH) + CO[O_2]CO(OH) + CO$		2 0 10 ⁹			4 - 5
Pathway 2: $CH_2(OH)C(OH)(OH)(OCO(O_1) + HO^* \rightarrow C^*H(OH)C(OH)(OH)COCO(O_1) + H_2O$		2.010 2.910 ⁸			BB: 42% - 74
$C^{+}(OH)(OH)(OH)(OCO(O^{-}) + O_2 \rightarrow CO(O^{-})COC(OH)(OH)(OH)(OH)(OO^{-})$		2.0 10 ⁹			3
$CH_2(OH)C(OH)(OH)COCO(O^2) + HO^{\bullet} \rightarrow 0.58 CH_2(OH)CO(OH) + 0.58 CO(O^2)CO(OO^{\bullet}) + 0.42 CO(O^2)$	R(747)	6.9 10 ⁸			12
$(-1)^{(-1)}(-1)^{(-1)}(-1)^{(-1)} + H_{2}(-1)^{(-1)}(-1)}(-1)^{(-1)}(-1)^{($	()				
Pathway 1: $CH_2(OH)(OH)(OH)(OCO(O_1) + NO_2^* \rightarrow C^*H(OH)(OH)(OH)(OCO(O_1) + NO_2^* + H^*)$		1 0 106			BB: 100%
$C^{H}(OH)C(OH)(OH)COCO(O^{-}) + O^{-} \rightarrow CO(O^{-})COC(OH)(OH)CH(OH)(OH)(OO^{-})$		2.010^9			3
$CH_2(OH)(OH)(OH)(OCO(O^{-}) + NO_3^{\bullet} \rightarrow CO(O^{-})(OH)(OH)(OH)(OO^{\bullet}) + NO_3^{-} + H^+ - O_2$	R(748)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
	()				+ NO ₃ •) - 13
Pathway 1: CH ₂ (OH)C(OH)(OH)C(OH)(OH)CO(O ⁻) + HO [•] \rightarrow CH ₂ (OH)C(OH)(OH)C(OH)(O [•])CO(O ⁻) + H ₂ O		4.7 10 ⁸			BR: 39% - 75
$CH_{2}(OH)C(OH)(OH)C(OH)(O^{\bullet})CO(O^{\bullet}) \rightarrow CH_{2}(OH)C^{\bullet}(OH)(OH) + CO(OH)CO(O^{\bullet})$					4 - 5
$CH_2(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CH_2(OH)C(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)C(OH)(OH)C(OH)(OH)CO(O^-) + HO^{\bullet} \rightarrow CH_2(OH)C(OH)(O^{\bullet})C(OH)(OH)CO(O^-) + H_2O(OH)CO(O^-) + H_2O(OH)CO(OH)CO(O^-) + H_2O(OH)CO(O^-) + H_2O(OH)CO(OH)CO(OH)CO(O^-) + H_2O(OH)CO($		4.2 10 ⁸			BR: 35% - 75
$CH_{2}(OH)C(OH)(O^{\bullet})C(OH)(OH)CO(O^{-}) \rightarrow CH_{2}(OH)CO(OH) + CO(O^{-})C^{\bullet}(OH)(OH)$					4 - 5
$CO(0^{-})C^{\bullet}(OH)(OH) + O_2 \rightarrow CO(0^{-})C(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 3: $CH_2(OH)(CH)(OH)(CH)(OH)(CO(O') + HO' \rightarrow C'H(OH)(CH)(OH)(CH)(OH)(CH)(OH)(OH)) + H_2O$		3.1 10°			BR: 26% - 75
	P(740)	$2.0 10^{-1}$			3
$CH_2(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$	N(749)	1.2 10-			12
$CH_2(OH)CO(OH) + 0.35 CO(O) (C(OH)(OH)(OO) + 0.26 CO(O) (C(OH)(OH)(CH)(OH)(OO) + H_2O - O_2$					
Pathway 1: $(H_2(OH)C(OH)(OH)(OH)(C(O) + NO_3^{-2} C^+H(OH)C(OH)(CH)(OH)CO(O^+ + NO_3^{-2} + H^+$		$1.0\ 10^{\circ}$			BR: 100%
$CH(OH)C(OH)(OH)C(OH)(OH)(OH)CO(O) + 0_2 \rightarrow CO(O)C(OH)(OH)(OH)CH(OH)(OU)(OU)(OU)(OU)(OU)(OU)(OU)(OU)(OU)(OU$		$2.0 \ 10^{5}$			
$CH_2(OH)C(OH)(OH)C(OH)(OH)C(O) + NO_3 \rightarrow CO(O)C(OH)(OH)C(OH)(OH$	R(750)	1.0 10°			= K(CH(OH)(OH)CH(OH)(OH)
		4 0 1 0 9			$+ NO_3 - 13$
CO(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH)CH(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH		4.0 10-			16
$CO(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH)CO(OH)(OH)C(OH)(OH)CO(OH)(OH)CO(OH) + O_2^{\bullet-} + H_2O$	R(751)	4 0 10 ⁹			$= k(CH_{2}CH(OH)(OO^{\bullet}) + OH^{-})$
	P(752)	$+.0\ 10^{2}$			17
CO[OP]C(OP](OP](OP)(OP)(OP)(OP)(OP)(OP)(OP)(OP)(OP)(OP)	ri(/32)	1.9 10-			± /
$CO[O^{+}]COOHCH[O^{+}] \rightarrow CHOC(OH)(OH)CO[O(O^{+}] + O_{2}^{-}]$		4.0 105			16
$CO[O_{CO}(O_{C}) + O_{C}(O_{C}) + $	R(753)	4 0 10 ⁹			$= k(CH_{2}CH(OH)(OO^{\bullet}) + OH^{-})$
co(o)coc(o)(o)(o)(o)(o)(o) > coc(o)(o)(o)(coco(o)) + 02 + 120	D(75)	$+.0 \pm 0$			17
$CO[O] COC[O] [O] COC[O] COC[O] COC[O] COC[O] + HO_2$	ri(754)	T'A TO-			±/

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CO(O^{-})C(OH)(OH)C(OH)(OH)(OH)(OO^{\bullet}) + OH^{-} \rightarrow CO(O^{-})C(OH)(OH)C(OH)(OH)CH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet})(OH)(OH)CH(O^{-})(OO^{\bullet}) + H_{2}O(O^{\bullet})(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		4.0 10 ⁹			
$CO(O^{-})C(OH)(OH)C(OH)(OH)C(OO^{*}) \to CH(OH)(OH)C(OCO(O^{-}) + O_{2}^{\bullet}$					16
CO(O ⁻)C(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) → CHOC(OH)(OH)C(OH)(OH)CO(O ⁻) + O ₂ • ⁻ + H ₂ O	R(755)	4.0 10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
CO(O ⁻)C(OH)(OH)C(OH)(OH)CH(OH)(OO [•]) → CHOC(OH)(OH)C(OH)(OH)CO(O ⁻) + HO ₂ [•]	R(756)	1.9 10 ²			17
Oxidation of 2,3,4-trioxobutanoic acid					76
Pathway 1: CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(OH) + HO• \rightarrow CH(OH)(O•)C(OH)(OH)C(OH)(OH)CO(OH) + H ₂ O		4.3 10 ⁸			BR: 39% - 77
СН(ОН)(О•)С(ОН)(ОН)СО(ОН)→ СНО(ОН) + СО(ОН)С(ОН)(ОН)С•(ОН)(ОН)					4 - 5
$CO(OH)C(OH)(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CO(OH)C(OH)(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(OH) + HO [•] → CH(OH)(OH)C(OH)(O [•])C(OH)(OH)CO(OH) + H ₂ O		4.0 10 ⁸			BR: 36% - 77
$CH(OH)(OH)C(OH)(O^{\bullet})C(OH)(OH)CO(OH) \rightarrow CH(OH)(OH)CO(OH) + CO(OH)C^{\bullet}(OH)(OH)$		2.0.100			4 - 5
$CO(OH)C^{*}(OH)(OH) + O_{2} \rightarrow CO(OH)C(OH)(OH)(OH)(OH) + UO^{*} \rightarrow CU(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		$2.0\ 10^{\circ}$			3
$Patimay 3: Ch(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh) + ho \rightarrow Ch(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh) + h_2O(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh)(Oh$		2.7 10-			BR: 25% - 77
CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH		2 0 10 ⁹			3
$CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + HO^{\bullet} \rightarrow 0.39 CHO(OH) + 0.39 CO(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) + 0.000 CHO(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(O$	R(757)	1.1 10 ⁹			12
		111 10			
0.50 CH(OH)(OH)(OH) + 0.50 CO(OH)(OH)(OH)(OH)(OH) + 0.25 CO(OH)(OH) + 0.25 CO(OH)(OH) + 0.25 CO(OH)(OH) + 0.25 CO(OH)(OH) + 0.25 CO(OH)(
$CH(OH)(OH)(OH)(OH)(OU) + H_2O - O_2$		4 5 1 0 8			
Patnway 1: $CH(OH)(OH)(OH)(OH)(OCO(O) + HO) \rightarrow CH(OH)(O)(OH)(OH)(OCO(O) + H_2O)$		4.5 10 ³			BR: 54% - 78
$CO(O_1COC^{\bullet}(OH)(OH) + O_2 \rightarrow CO(O_1COC(OH)(OH)(OH)(OH)$		2 0 10 ⁹			4-5
Pathway 2: $CH(OH)(OH)(OH)(OCO(O(2) + HO) \rightarrow CH(OH)(OH)(OH)(O(2) + H_2O)$		3.8 10 ⁸			BR: 46% - 78
$CH(OH)(OH)(O)(O)(O) \rightarrow CH(OH)(OH)(OO) \rightarrow CO(O(O)) \rightarrow CO($					4 - 5
$CO(O^{-})C^{\bullet}O + O_2 \rightarrow CO(O^{-})CO(OO^{\bullet})$		2.0 10 ⁹			3
CH(OH)(OH)C(OH)(OH)COCO(O ⁻) + HO [•] → 0.54 CHO(OH) + 0.54 CO(O ⁻)COC(OH)(OH)(OO [•]) + 0.46	R(758)	8.3 10 ⁸			12
CH(OH)(OH)(OH) + 0.46 CO(O-)CO(OO•) + H2O - O2					
Pathway 1: $CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(O) + HO^{+} CH(OH)(OH)C(OH)(OH)C(OH)(O^{+})CO(O) + H_{2}O(O) + H_{2}O($		4.7 10 ⁸			BR: 36% - 79
CH(OH)(OH)C(OH)(O+)CO(O ⁻) → CH(OH)(OH)C [•] (OH)(OH) + CO(OH)CO(O ⁻)					4 - 5
$CH(OH)(OH)C^{\bullet}(OH)(OH) + O_2 \rightarrow CH(OH)(OH)(OH)(OO^{\bullet})$		2.0 10 ⁹			3
Pathway 2: CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(O ⁻) + HO [•] → CH(OH)(O [•])C(OH)(OH)C(OH)(OH)CO(O ⁻) + H ₂ O		4.3 10 ⁸			BR: 33% - 79
CH(OH)(O+)C(OH)(OH)C(OH)(OH)CO(O ⁻) → CHO(OH) + CO(O ⁻)C(OH)(OH)C•(OH)(OH)					4 - 5
CO(0 ⁻)C(OH)(OH)C [•] (OH)(OH) + O ₂ → CO(0 ⁻)C(OH)(OH)C(OH)(OH)(OO [•])		2.0 10 ⁹			3
Pathway 3: CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(O') + HO' \rightarrow CH(OH)(OH)C(OH)(O')C(OH)(OH)CO(O') + H ₂ O		4.0 10°			BR: 31% - 79
CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH		2 0 109			4 - 5
CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH	R(759)	2.0 10 1 3 10 ⁹			10
Cn[On](On](On](On](On](On)(On)(On)(On)(On)(On)(On)(On)(On)(On)	N(755)	1.5 10			12
0.33 CHO(OH) + 0.33 CO(O) (OH)(OH)(OH)(OH)(OO) + 0.31 CH(OH)(OH)(OH)+0.31 CO(O)					
$)C(OH)(OH)(OO^{\bullet}) + H_2O - O_2$					
Hydrolysis of Methacrylic Acid Epoxide (MAE)					80
CH ₃ C1(CO(OH))-O-C1H ₂ + H ⁺ → CH ₂ (OH)C(OH)(CH ₃)CO(OH) - H ₂ O + H ⁺	R(760)	5.9 10 ⁻⁵		Birdsall et al.,	
				2014	
Hydrolysis of Hydroxymethyl-methyl-α-lactone (HMML)					81
CH ₃ C1(CH ₂ (OH))-O-C1O → CH ₂ (OH)C(OH)(CH ₃)CO(OH) - H ₂ O	R(761)	1.0 106			82
Oxidation of 2- Methylglyceric Acid (2-MG)					83
Pathway 1: $CH_2(OH)C(OH)(CH_3)CO(OH) + HO^{\bullet} \rightarrow C^{\bullet}H(OH)C(OH)(CH_3)CO(OH) + H_2O(OH) + H_2O(OH)$		6.1 10 ⁸			BR: 80% - 84
$C^{\bullet}H(OH)C(OH)(CH_{3})CO(OH) + O_{2} \rightarrow CH(OH)(OO^{\bullet})C(OH)(CH_{3})CO(OH)$		2.0 10 ⁹			3
Pathway 2: CH ₂ (OH)C(OH)(CH ₃)CO(OH) + HO $^{\bullet} \rightarrow$ CH ₂ (OH)C(OH)(C $^{\bullet}$ H ₂)CO(OH) + H ₂ O		1.5 10 ⁸			BK: 20% - 84

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CH_2(OH)C(OH)(C^{\bullet}H_2)CO(OH) + O_2 \rightarrow CH_2(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
CH₂(OH)C(OH)(CH₃)CO(OH) + HO• → 0.80 CH(OH)(OO•)C(OH)(CH₃)CO(OH) + 0.20	R(762)	7.6 10 ⁸			12
$CH_2(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH) + H_2O - O_2$					
Pathway 1: CH ₂ (OH)C(OH)(CH ₃)CO(OH) + NO ₃ • → C•H(OH)C(OH)(CH ₃)CO(OH) + NO ₃ • + H ⁺		8.0 10 ⁵			BR: 80%
C [•] H(OH)C(OH)(CH ₃)CO(OH) + O ₂ → CH(OH)(OO [•])C(OH)(CH ₃)CO(OH)		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)C(OH)(CH_3)CO(OH) + NO_3^{\bullet} \rightarrow CH_2(OH)C(OH)(C^{\bullet}H_2)CO(OH) + NO_3^{-} + H^+$		2.0 10 ⁵			BR:20%
$CH_2(OH)C(OH)(C'H_2)CO(OH)+O_2 \rightarrow CH_2(OH)C(OH)(CH_2(OO'))CO(OH)$		2.0 10 ⁹			3
CH ₂ (OH)C(OH)(CH ₃)CO(OH) + NO ₃ ⁺ → 0.80 CH(OH)(OO ⁺)C(OH)(CH ₃)CO(OH) + 0.20	R(763)	1.0 108			= K(CH(OH)(OH)CH(OH)(OH)
$CH_2(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH) + NO_3^{-} + H^+ - O_2$					+ NO ₃ •) - 13
Pathway 1: CH ₂ (OH)C(OH)(CH ₃)CO(O ⁻) + HO [•] \rightarrow C [•] H(OH)C(OH)(CH ₃)CO(O ⁻) + H ₂ O		1.1 10 ⁹			BR: 81% - 85
$C^{\bullet}H(OH)C(OH)(CH_3)CO(O^{\circ}) + O_2 \rightarrow CH(OH)(OO^{\bullet})C(OH)(CH_3)CO(O^{\circ})$		2.0 10 ⁹			3
Pathway 2: $CH_2(OH)(CH_3)CO(O') + HO' \rightarrow CH_2(OH)(C'H_2)CO(O') + H_2O$		3.0 10°			BR: 19% - 85
$CH_2(OH)C(OH)(CH_2(OU))($	P(764)	2.0 10-			3 10
$CH_2(OH)(CH_3)CO(O) + HO \rightarrow 0.81 CH(OH)(OO) C(OH)(CH_3)CO(O) + 0.19$	N(704)	1.4 10			12
$CH_2(OH)(CH)(CH_2(OO^2))(CO(O^2) + H_2O - O_2$		0.4.4.05			
Pathway 1: $CH_2(OH)(C(H)(CH_3)(CO(C) + NO_3^* \rightarrow C^*H(OH)(CH_3)(CO(C) + NO_3^* + H^*$		8.1 10°			BR: 81%
$C^{+}H(OH)C(OH)(CH_{3})CO(O^{-}) + O_{2} \rightarrow CH(OH)(CO^{-})C(OH)(CH_{3})CO(O^{-}) + NO_{2} + H^{+}$		2.0 10 ⁵			3 PP+10%
$Pattiway 2. Ch_2(Oh)C(Oh)(Ch_3)CO(O) + NO_3 \rightarrow Ch_2(Oh)C(Oh)(Ch_2)CO(O) + NO_3 + h$ $CH_2(Oh)(C(Oh)(C^*H_3)CO(O^*) + O_3 \rightarrow CH_2(Oh)(C(Oh)(Ch_2)CO(O^*))$		$1.9\ 10$ 2 0 10 ⁹			3 3
$CH_2(OH)(CH_2(CO(O^2) + MO_2^{\circ} \rightarrow 0.81 CH(OH)(OO^{\circ})C(OH)(CH_2)CO(O^{\circ}) + 0.19$		1 0 106			= k(CH(OH)(OH)CH(OH)(OH)
$CH_2(OH)C(OH)(CH_3(CO(0^2) + NO_3^2 + 0.51 CH(OH)(CO(0C(0))(CH3(CO(0^2) + 0.15)))))$		1.0 10			+ NO ₂ •) - 13
$CH_2(OH)(CH)(CH)(CH)(OU) + NU_3 + H = O_2$		4.0.109			1103 / 15
$CH(OH)(OU)C(OH)(CH_3)CO(OH) + OH \rightarrow CH(O)(OU)C(OH)(CH_3)CO(OH) + H_2O$		4.0 105			16
	R(765)	4 O 10 ⁹			$= k(CH_{2}CH(OH)(OO^{\bullet}) + OH^{-})$
CH(OH)(OO)(CH3)(CH3)(CH)(CH3)(CH)(CH3)(CH)(CH3)(CH3	R(765)	$4.0\ 10$			17
$CH(OH)(OU)(CH_3)CO(OH) \rightarrow CHOC(OH)(CH_3)CO(OH) + HO_2$	N(700)	1.9 10-			17
$CH(OH)(OO^{*})C(OH)(CH_{3})CO(O^{*}) + OH^{*} \rightarrow CH(O^{*})(OO^{*})C(OH)(CH_{3})CO(O^{*}) + H_{2}O$		4.0 10 ³			16
$CH(OH)(OO^{\bullet})C(OH)(CH)CO(O^{\bullet}) + OH^{\bullet} + OH$	P(767)	4 0 109			$= k(CH^{-}CH(OH)(OO^{\bullet}) + OH^{-})$
$CH(OH)(OO) C(OH)(CH3)CO(O) + OH \rightarrow CHOC(OH)(CH3)CO(O) + O_2 + H_2O$	D(700)	$4.0\ 10^{2}$			17
$CH(OH)(OO^{-})C(OH)(CH_{3})CO(O^{-}) \rightarrow CHOC(OH)(CH_{3})CO(O^{-}) + HO_{2}^{-}$	K(768)	1.9 102			17
Pathway 1: 2 CH ₂ (OH)C(OH)(CH ₂ (OO'))CO(OH) \rightarrow 2 CHOC(OH)(CH ₂ (OH))CO(OH) + H ₂ O ₂		5.0 107			BR: 50%
$Pathway 2:2 CH_2(OH)C(OH)(CH_2(OO^*))CO(OH) \rightarrow CHOC(OH)(CH_2(OH))CO(OH) + CH_2(OH)C(OH)(CH_2(OH))CO(OH) + O_2$ $Pathway 2:2 CH_2(OH)C(OH)(CH_2(OO^*))CO(OH) \rightarrow CHOC(OH)(CH_2(OH))CO(OH) + CH_2(OH)CO(OH) + O_2$		$3.3 \ 10^{7}$			BR: 33%
$Pattiway 3. 2 Ch_2(Oh)C(Oh)(Ch_2(Ob)) \rightarrow Ch_2(Oh)C(Oh)(Ch_2(Ob)(Ch_2(Ob)) + O_2$ $CH_2(Oh)(Ch_2(Oh)(Ch_2(Oh))(Ch_2(Oh)) \rightarrow CH_2(Oh)(Ch_2(Oh)) + CH_2(Oh)(Ch_2(Oh)) + O_2$		1.7 10			4 - 5
$CH_2(OH)CO(OH) + O_2 \rightarrow CH_2(OH)C(OH)(OO^*)CO(OH)$		2.0 10 ⁹			3
$2 \text{ CH}_2(\Omega H)(C(\Omega H)(CH_2(\Omega \Omega^{\bullet}))(C\Omega(\Omega H)) \rightarrow 1.33 \text{ CH}\Omega(\Omega H)(CH_2(\Omega H))(C\Omega(\Omega H) + 0.33)$	R(769)	1.0 108			$= k(2 CH_2(OH)CH_2(OO^{\bullet})) - 6$
$CH_2(OH)C(OH)(CH_2(OH))CO(OH) + 0.34 CH_2(OH)C(OH)(CO(OH) + 0.34 CH_2O + 0.50 H_2O_2 + 0.16 O_2$	()				
Pathway 1: 2 CH ₂ (OH)/C(OH)/CH ₂ (OO [*])/CO(O [*]) \rightarrow 2 CHOC(OH)/CH ₂ (OH)/CO(O [*]) + H ₂ O ₂		$5.0.10^{7}$			BB: 50%
Pathway 2:2 CH ₂ (OH)C(OH)(CH ₂ (OO [*])) \rightarrow CHOC(OH)(CH ₂ (OH))CO(O [*]) + CH ₂ (OH)C(OH)(CH ₂ (OH))CO(O [*]) + O ₂		3.3 10 ⁷			BR: 33%
Pathway 3: 2 CH ₂ (OH)C(OH)(CH ₂ (OO [•]))CO(O [•]) \rightarrow 2 CH ₂ (OH)C(OH)(CH ₂ (O [•]))CO(O [•]) + O ₂		1.7 10 ⁷			BR: 17%
$CH_2(OH)C(OH)(CH_2(O^{\bullet}))CO(O^{-}) \rightarrow CH_2(OH)CO(O^{-}) + CH_2O$					4 - 5
$CH_2(OH)C^{\bullet}(OH)CO(O^{-}) + O_2 \rightarrow CH_2(OH)C(OH)(OO^{\bullet})CO(O^{-})$		2.0 10 ⁹			3
2 CH ₂ (OH)C(OH)(CH ₂ (OO [•]))CO(O [−]) → 1.33 CHOC(OH)(CH ₂ (OH))CO(O [−]) + 0.33 CH ₂ (OH)C(OH)(CH ₂ (OH))CO(O [−]) +	R(770)	1.0 10 ⁸			= k(2 CH ₂ (OH)CH ₂ (OO•)) - 6
0.34 CH ₂ (OH)C(OH)(OO [•])CO(O ⁻) + 0.34 CH ₂ O + 0.50 H ₂ O ₂ + 0.16 O ₂					
2-hydroxy,3-oxomethylpropanoic acid					86
Pathway 1: CH(OH)(OH)C(OH)(CH ₃)CO(OH) + HO [•] → CH(OH)(O [•])C(OH)(CH ₃)CO(OH) + H ₂ O		4.7 10 ⁸			BR: 61% - 87
$CH(OH)(O^{\bullet})C(OH)(CH_{3})CO(OH) \rightarrow CHO(OH) + CH_{3}C^{\bullet}(OH)CO(OH)$					4 - 5

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CH_3C^{\bullet}(OH)CO(OH) + O_2 \rightarrow CH_3C(OH)(OO^{\bullet})CO(OH)$		2.0 10 ⁹	()		3
Pathway 2: CH(OH)(OH)C(OH)(CH ₃)CO(OH) + HO [•] \rightarrow C [•] (OH)(OH)C(OH)(CH ₃)CO(OH) + H ₂ O		3.0 10 ⁸			BR: 39% - 87
$C^{\bullet}(OH)(OH)C(OH)(CH_{3})CO(OH) + O_{2} \rightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH_{3})CO(OH)$		2.0 10 ⁹			3
CH(OH)(OH)C(OH)(CH₃)CO(OH) + HO• → 0.61 CHO(OH) + 0.61 CH₃C(OH)(OO•)CO(OH) + 0.39	R(771)	7.7 10 ⁸			12
$C(OH)(OH)(OO^{\bullet})C(OH)(CH_3)CO(OH) + H_2O - O_2$					
Pathway 1: CH(OH)(OH)C(OH)(CH ₃)CO(OH) + NO ₃ • \rightarrow C•(OH)(OH)C(OH)(CH ₃)CO(OH) + NO ₃ • + H ⁺		1.0 10 ⁶			BR: 100%
$C^{\bullet}(OH)(OH)C(OH)(CH_3)CO(OH)+O_2 \rightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH_3)CO(OH)$		2.0 10 ⁹			3
CH(OH)(OH)C(OH)(CH ₃)CO(OH) + NO ₃ • → C(OH)(OH)(OO•)C(OH)(CH ₃)CO(OH) + NO ₃ • + H ⁺ - O ₂	R(772)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
					+ NO ₃ •) - 13
Pathway 1: CH(OH)(OH)C(OH)(CH ₃)CO(O ⁻) + HO [•] \rightarrow C [•] (OH)(OH)C(OH)(CH ₃)CO(O ⁻) + H ₂ O		4.9 10 ⁸			BR: 41% - 88
C•(OH)(OH)C(OH)(CH ₃)CO(O ⁻) + O ₂ → C(OH)(OH)(OO•)C(OH)(CH ₃)CO(O ⁻)		2.0 10 ⁹			3
Pathway 2: CH(OH)(OH)C(OH)(CH ₃)CO(O ⁻) + HO [•] \rightarrow CH(OH)(O [•])C(OH)(CH ₃)CO(O ⁻) + H ₂ O		4.6 10 ⁸			BR: 38% - 88
$CH(OH)(O^{*})C(OH)(CH_{3})CO(O^{*}) \rightarrow CHO(OH) + CH_{3}C^{*}(OH)CO(O^{*})$		2.0.109			4 - 5
$CH_3C'(0H)CO(0) + O_2 \rightarrow CH_3C(0H)(0O')CO(0)$		2.0 10 ³			3
Pathway 5. Ch(Oh)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Oh)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(C		2.3 10 2.0 10 ⁹			BN. 21/0 - 00 3
$CH(OH)(OH)(CH_{2})CO(O^{-}) + HO^{\bullet} \rightarrow 0.41 C(OH)(OH)(OO^{\bullet})C(OH)(CH_{2})CO(O^{-}) + 0.38 CHO(OH) + 0.38$	B(773)	1 2 10 ⁹			12
	N(775)	1.2 10			12
$CH_{3}C(OH)(OU)(OU)(OU)(OU)(OU)(OH)(CH)(OH)(CH)(OU)(OU)(OU)(OU)(OU)(OU)(OU)(OU)(OU)(OU$		C 7 105			DD: C70/
$Patriway 1: CH(OH)(OH)(CH_3)CO(O_1 + NO_3 \rightarrow C(OH)(OH)(OH_3)CO(O_1) + NO_3 + H^2$		$6.7 \pm 10^{\circ}$			BR: 07%
Pathway 2 CH(OH)(CH)(CH)(CH)(CH)(CH)(CH)(OH)(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C		2.0 10 ⁻ 3 3 10 ⁵			5 BB: 33%
$CH(OH)(OH)(C(OH)(C) + O^{2} \rightarrow CH(OH)(OH)(C(OH)(CH)(CO))(CO)$		2.0 10 ⁹			3
$CH(OH)(CH)(CH_2)CO(O^2) + NO_2^{\bullet} \rightarrow 0.67 C(OH)(OH)(OH)(CH_2)CO(O^2) + 0.33$	R(774)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
$CH(OH)(OH)(CH_{2}(OO^{\bullet}))(O(O^{-}) + NO_{2}^{-} + H^{+} = O_{2}^{-}$		110 10			+ NO ₃ •) - 13
C(OH)(OH)(COH)(CH)(CH)(CH)(CH)(OH)(CH)(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C		4.0.109			
$C(OH)(O^{*})C(OH)(CH_{2})CO(OH) \rightarrow CO(OH)(C(OH)(CH_{2})CO(OH) + O_{2}^{*}$		4.0 10			16
$C(OH)(OH)(OO^{\bullet})C(OH)(CH_{2})CO(OH) + OH^{-} \rightarrow CO(OH)(CH_{2})CO(OH) + O_{2}^{\bullet^{-}} + H_{2}O$	R(775)	4.0 10 ⁹			$= k(CH_{2}CH(OH)(OO^{\bullet}) + OH^{-})$
$C(OH)(OH)(OO) C(OH)(CH_3)CO(OH) \rightarrow CO(OH)(C(OH)(CH_3)CO(OH) + UO_2^{\bullet}$	R(776)	1 0 106			27
C(OH)(OH)(OH)(CH)(CH)(CH)(CH)(OH)(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C	Π(770)	1.0 10			27
$C(OH)(O_{1})(O(O_{1})C(OH)(CH_{3})CO(O_{1}) \rightarrow CO(OH)(C(OH)(CH_{3})CO(O_{1}) + O_{2}$		4.0 10			16
$C(OH)(OH)(OH)(CH_3)CO(OT) + OH \rightarrow CO(OH)(CH_3)CO(OT) + O_2^{\bullet-} + H_2O$	R(777)	4 0 10 ⁹			$= k(CH_{2}CH(OH)(OO^{\bullet}) + OH^{-})$
	R(778)	1 0 106			27
C(OH)(OH)(OH)(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C	N(778)	1.0 10 E 0 10 ⁷			
Pathway 1: 2 CH(OH)(OH)(CH)(CH)(CH)(OH) \rightarrow CH(OH)(OH)C(OH)(CHO)CO(OH) + H2O2 Pathway 2:2 CH(OH)(OH)(CH-(OO*))CO(OH) \rightarrow CH(OH)(OH)C(OH)(CHO)CO(OH) + CH(OH)(OH)(CH-(OH)(CH-(OH))CO(OH) + O-		$5.0 \ 10^7$			BR: 30%
Pathway 3: 2 CH(OH)(OH)(CH ₂ (OO'))CO(OH) \rightarrow 2 CH(OH)(OH)(CH ₂ (OH)(CH ₂ (OH))CO(OH) + O ₂		$1.7 \ 10^7$			BR: 17%
$CH(OH)(OH)(OH)(CH_{3}(O^{*}))CO(OH) \rightarrow CH(OH)(OH)C^{*}(OH)(CO(OH) + CH_{2}O)$		10 10			4 - 5
$CH(OH)(OH)C^{\bullet}(OH)CO(OH) + O_2 \rightarrow CH(OH)(OH)C(OH)(OO^{\bullet})CO(OH)$		2.0·10 ⁹			3
2 CH(OH)(OH)C(OH)(CH ₂ (OO [•]))CO(OH) → 1.33 CH(OH)(OH)C(OH)(CHO)CO(OH) + 0.33	R(779)	1.0 10 ⁸			= k(2 CH ₂ (OH)CH ₂ (OO•)) - 6
CH(OH)(OH)(CH)(CH)(CH)(OH))CO(OH) + 0.34 CH(OH)(OH)(CO)(OH) + 0.34 CH ₂ O + 0.50 H ₂ O ₂ + 0.16 O ₂					
Pathway 1: 2 CH(OH)(OH)(CH)(OC)(OC) \rightarrow 2 CH(OH)(OH)(CHO)(CO(O) + H ₂ O ₂		5.0 10 ⁷			BR: 50%
Pathway 2:2 CH(OH)(OH)C(OH)(CH ₂ (OO•))CO(O·) \rightarrow CH(OH)(OH)C(OH)(CHO)CO(O·) + CH(OH)(OH)C(OH)(CH ₂ (OH))CO(O·) + O ₂		3.3 10 ⁷			BR: 33%
Pathway 3: 2 CH(OH)(OH)(CH ₂ (OO [•]))CO(O [•]) \rightarrow 2 CH(OH)(OH)C(OH)(CH ₂ (O [•]))CO(O [•]) + O ₂		1.7 10 ⁷			BR: 17%
$CH(OH)(OH)C(OH)(CH_2(O^{\bullet}))CO(O^{-}) \rightarrow CH(OH)(OH)C^{\bullet}(OH)CO(O^{-}) + CH_2O$					4 - 5
$CH(OH)(OH)C^{\bullet}(OH)CO(O^{-}) + O_{2} \rightarrow CH(OH)(OH)C(OH)(OO^{\bullet})CO(O^{-})$		2.0·10 ⁹			3
2 CH(OH)(OH)C(OH)(CH ₂ (OO [•]))CO(O [−]) \rightarrow 1.33 CH(OH)(OH)C(OH)(CHO)CO(O [−]) + 0.33	R(780)	1.0 10 ⁸			= k(2 CH ₂ (OH)CH ₂ (OO•)) - 6
CH(OH)(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + 0.34 CH(OH)(OH)C(OH)(OO [•])CO(O ⁻) + 0.34 CH ₂ O + 0.50 H ₂ O ₂ + 0.16 O ₂					

Reactions		k ₂₉₈	Ea/R	References	Notes
2-hydroxy-2-(hydroxymethyl)-3-oxopropanoic acid			(K)		89
Pathway 1: CH(OH)(OH)C(OH)(CH ₂ (OH))CO(OH) + HO [•] → CH(OH)(OH)C(OH)(C [•] H(OH))CO(OH) + H ₂ O		5.3 10 ⁸			BR: 43% - 90
CH(OH)(OH)C(OH)(C $^{+}$ H(OH))CO(OH) + O ₂ → CH(OH)(OH)C(OH)(CH(OH)(OO $^{-}$))CO(OH)		2.0 10 ⁹			3
Pathway 2: CH(OH)(OH)C(OH)(CH ₂ (OH))CO(OH) + HO [•] \rightarrow CH(OH)(O [•])C(OH)(CH ₂ (OH))CO(OH) + H ₂ O		4.2 10 ⁸			BR: 35% - 90
$CH(OH)(O^{\bullet})C(OH)(CH_2(OH))CO(OH) \rightarrow CHO(OH) + CH_2(OH)CO(OH)$		2.0.109			4 - 5
$CH_2(OH)C^{1}(OH)CO(OH) + O_2 \rightarrow CH_2(OH)C(OH)(OO^{-1}CO(OH))$ $Pathway 2: CH(OH)(OH)(CH)(OH)(CH)(OH)(CO(OH) + HO^{-1} + O^{-1} $		$2.0\ 10^{9}$ 2.5.10 ⁸			3 RP: 22% 00
$C^{\bullet}(OH)(OH)(CH)(CH)(CH)(CH)(CH)(OH)(CH)(OH)(OH)(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C$		2.0 10 ⁹			3
CH(OH)(OH)C(OH)(CH ₂ (OH))CO(OH) + HO [•] → 0.43 CH(OH)(OH)C(OH)(CH(OH)(OO [•]))CO(OH) + 0.35 CHO(OH) +	R(781)	1.2 10 ⁹			12
0.35 CH ₂ (OH)C(OH)(OO [•])CO(OH) + 0.22 C(OH)(OH)(OO [•])C(OH)(CH ₂ (OH))CO(OH) + H ₂ O - O ₂					
Pathway 1: CH(OH)(OH)C(OH)(CH ₂ (OH))CO(OH) + NO ₃ • → CH(OH)(OH)C(OH)(C•H(OH))CO(OH) + NO ₃ • + H ⁺		6.7 10 ⁵			BR: 67%
$CH(OH)(OH)C(OH)(C^{\bullet}H(OH))CO(OH) + O_2 \rightarrow CH(OH)(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
Pathway 2: CH(OH)(OH)C(OH)(CH ₂ (OH))CO(OH) + NO ₃ • \rightarrow C•(OH)(OH)C(OH)(CH ₂ (OH))CO(OH) + NO ₃ • + H ⁺		3.3 10 ⁵			BR: 33%
$C^{\bullet}(OH)(OH)(CH_{2}(OH))CO(OH) + O_{2} \rightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(OH)$	D(700)	2.0 10 ⁹			3
$CH(OH)(OH)(CH)(CH_2(OH))(CO(OH) + NO_3^{\bullet} \rightarrow 0.67 CH(OH)(OH)(CH(OH)(OO^{\bullet}))(CO(OH) + 0.33)$	R(782)	1.0 10°			= K(CH(OH)(OH)CH(OH)(OH) + NO ₂ •) - 13
C(On)(On)(On)(CO)(Cn)(Cn)(Cn)(Cn)(Cn) + NO3 + n - O2		0.2.108			PD: E1% 01
Pathway 1. Ch(Oh)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(Ch)(C		$9.2 \ 10^{9}$			3
Pathway 2: CH(OH)(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(OH)(CH)(CH)(CH)(COH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C		4.5 10 ⁸			BR: 25% - 91
$C^{\bullet}(OH)(OH)C(OH)(CH_{2}(OH))CO(O^{-}) + O_{2} \rightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-})$		2.0 10 ⁹			3
Pathway 3: CH(OH)(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] \rightarrow CH(OH)(O [•])C(OH)(CH ₂ (OH))CO(O ⁻) + H ₂ O		4.3 10 ⁸			BR: 24% - 91
$CH(OH)(O^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-}) \rightarrow CHO(OH) + CH_{2}(OH)C^{\bullet}(OH)CO(O^{-})$					4 -5
$CH_2(OH)C^{\bullet}(OH)CO(O^{-}) + O_2 \rightarrow CH_2(OH)C(OH)(OO^{\bullet})CO(O^{-})$	- ()	2.0 10 ⁹			3
CH(OH)(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] → 0.51 CH(OH)(OH)C(OH)(CH(OH)(OO [•]))CO(O ⁻) + 0.25	R(783)	1.8 10 ⁹			12
C(OH)(OH)(OO [•])C(OH)(CH ₂ (OH))CO(O ⁻) + 0.24 CHO(OH) + 0.24 CH ₂ (OH)C(OH)(OO [•])CO(O ⁻) + H ₂ O - O ₂					
Pathway 1: CH(OH)(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + NO ₃ [•] \rightarrow CH(OH)(OH)C(OH)(C [•] H(OH))CO(O ⁻) + NO ₃ ⁻ + H ⁺		6.7 10 ⁵			BR: 67%
$CH(OH)(OH)C(OH)(C^{+}H(OH))CO(O^{-}) + O_{2} \rightarrow CH(OH)(OH)C(OH)(CH(OH)(CO^{-}))CO(O^{-})$		2.0 10 ⁹			3
$Palinway 2: CH(OH)(OH)(CH)(CH)(CH)(OH)(CO) + NO_3 \rightarrow C(OH)(OH)(OH)(CH)(CH)(CH)(OH)(CO) + NO_3 + H'$		$3.3 \ 10^{9}$			BK: 33%
$CH(OH)(CH)(CH)(CH_2(OH))(CO(O^2) + 0)_2 \rightarrow 0.67 CH(OH)(CH)(OH)(CH(OH)(OO^2))(CO(O^2) + 0.33)$	R(784)	1 0 106			= k(CH(OH)(OH)CH(OH)(OH)
$C(OH)(OH)(COH)(CH_2(OH))(CO(O^2) + NO_3^2 + U^+ = O_3^2$		110 10			+ NO ₃ •) - 13
$CH(OH)(OH)(CH(OH)(OH)(CH(OH))(OH) + OH \rightarrow CH(OH)(OH)(CH(O+)(CH(O+))(CO(OH) + H-O)$		4 O 10 ⁹			
$CH(OH)(OH)C(OH)(CH(O-)(OO+))CO(OH) \rightarrow CH(OH)(OH)C(OH)(CHO)CO(OH) + O2*$		4.0 10			16
CH(OH)(OH)C(OH)(CH(OH)(OO•))CO(OH) + OH ⁻ → CH(OH)(OH)C(OH)(CHO)CO(OH) + $O_2^{\bullet-}$ + H_2O	R(785)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CH(OH)(OH)C(OH)(CH(OH)(OO $^{\circ}$))CO(OH) → CH(OH)(OH)C(OH)(CHO)CO(OH) + HO ₂ $^{\circ}$	R(786)	1.9 10 ²			17
CH(OH)(OH)C(OH)(CH(OH)(OO [•]))CO(O [−]) + OH [−] → CH(OH)(OH)C(OH)(CH(O [−])(OO [•]))CO(O [−]) + H ₂ O		4.0 10 ⁹			
CH(OH)(OH)C(OH)(CH(O ⁻)(OO [•]))CO(O ⁻) → CH(OH)(OH)C(OH)(CHO)CO(O ⁻) + $O_2^{\bullet-}$					16
CH(OH)(OH)C(OH)(CH(OH)(OO [•]))CO(O [−]) + OH [−] \rightarrow CH(OH)(OH)C(OH)(CHO)CO(O [−]) + O ₂ ^{•−} + H ₂ O	R(787)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CH(OH)(OH)C(OH)(CH(OH)(OO [•]))CO(O [−]) \rightarrow CH(OH)(OH)C(OH)(CHO)CO(O [−]) + HO ₂ •	R(788)	1.9 10 ²			17
$C(OH)(OH)(OO^{\bullet})C(OH)(CH_2(OH))CO(OH) + OH^{-} \rightarrow C(OH)(O^{\bullet})C(OH)(CH_2(OH))CO(OH) + H_2O$		4.0 10 ⁹			
C(OH)(O ⁻)(OO ⁺)C(OH)(CH ₂ (OH))CO(OH) → CO(OH)C(OH)(CH ₂ (OH))CO(OH) + O ₂ ⁺⁻					16
C(OH)(OH)(OO [•])C(OH)(CH ₂ (OH))CO(OH) + OH ⁻ → CO(OH)C(OH)(CH ₂ (OH))CO(OH) + O ₂ ^{•-} + H ₂ O	R(789)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
C(OH)(OH)(OO [•])C(OH)(CH ₂ (OH))CO(OH) → CO(OH)C(OH)(CH ₂ (OH))CO(OH) + HO ₂ •	R(790)	1.0 10 ⁶			27
$C(OH)(OH)(OO^{\bullet})C(OH)(CH_2(OH))CO(O^{-}) + OH^{-} \rightarrow C(OH)(O^{-})(OO^{\bullet})C(OH)(CH_2(OH))CO(O^{-}) + H_2O$		4.0 10 ⁹			
$C(OH)(O^{-})(OO^{+})C(OH)(CH_{2}(OH))CO(O^{-}) \rightarrow CO(OH)C(OH)(CH_{2}(OH))CO(O^{-}) + O_{2}^{\bullet-}$					16
C(OH)(OH)(OO [•])C(OH)(CH ₂ (OH))CO(O [−]) + OH [−] \rightarrow CO(OH)C(OH)(CH ₂ (OH))CO(O [−]) + O ₂ ^{•−} + H ₂ O	R(791)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$C(OH)(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{\bullet}) \rightarrow CO(OH)C(OH)(CH_{2}(OH))CO(O^{\bullet}) + HO_{2}^{\bullet}$	R(792)	1.0 10 ⁶			27
2,3-hydroxy-2-(hydroxymethyl)-propanoic acid					92
Pathway 1: CH ₂ (OH)C(OH)(CH ₂ (OH))CO(OH) + HO [•] \rightarrow C [•] H(OH)C(OH)(CH ₂ (OH))CO(OH) + H ₂ O		1.2 10 ⁹			BR: 100% - 93
$C^{+}H(OH)C(OH)(CH_{2}(OH))CO(OH) + O_{2} \rightarrow CH(OH)(OO^{+})C(OH)(CH_{2}(OH))CO(OH)$	- ()	2.0 10 ⁹			3
$CH_2(OH)C(OH)(CH_2(OH))CO(OH) + HO^{\bullet} \rightarrow CH(OH)(OO^{\bullet})C(OH)(CH_2(OH))CO(OH) + H_2O - O_2$	R(793)	1.2 10 ⁹			12
Pathway 1: $CH_2(OH)(C(H)(CH_2(OH))CO(OH) + NO_3^{\bullet} \rightarrow C^{\bullet}H(OH)(C(OH)(CH_2(OH))CO(OH) + NO_3^{\bullet} + H^{\bullet}$		1.0 10 ⁶			BR: 100%
$CH_{2}(OH)(CH_{2}(OH))(CH_{2}(OH))(CO) + V_{2} \rightarrow CH(OH)(CO)(CH_{2}(OH))(CH_{2}(OH))(CH_{2}(OH))(CH_{2}(OH)) + NO_{2}^{-} + H^{+} = O_{2}^{-}$	R(794)	2.0 10 ⁻ 1 0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
	1(1)	1.0 10			+ NO ₂ •) - 13
Pathway 1: CH ₂ (OH)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] \rightarrow C [•] H(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + H ₂ O		2.0 10 ⁹			BR: 100% - 94
$C^{\bullet}H(OH)C(OH)(CH_{2}(OH))CO(O^{-})+O_{2} \rightarrow CH(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-})$		2.0 10 ⁹			3
CH ₂ (OH)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] → CH(OH)(OO [•])C(OH)(CH ₂ (OH))CO(O ⁻) + H ₂ O - O ₂	R(795)	2.0 10 ⁹			12
Pathway 1: $CH_2(OH)C(OH)(CH_2(OH))CO(O^-) + NO_3^{\bullet} \rightarrow C^{\bullet}H(OH)C(OH)(CH_2(OH))CO(O^-) + NO_3^{-} + H^+$		1.0 10 ⁶			BR: 100%
$C^{\bullet}H(OH)C(OH)(CH_{2}(OH))CO(O^{-}) + O_{2} \rightarrow CH(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-})$		2.0 10 ⁹			3
CH ₂ (OH)C(OH)(CH ₂ (OH))CO(O ⁻) + NO ₃ [•] → CH(OH)(OO [•])C(OH)(CH ₂ (OH))CO(O ⁻) + NO ₃ ⁻ + H ⁺ - O ₂	R(796)	1.0 106			= k(CH(OH)(OH)CH(OH)(OH)
		4 0 1 0 9			+ NO ₃ •) - 13
$CH(O_1)(OO_2)C(OH)(CH_2(OH))CO(OH) \rightarrow CH(O_1(OH)(CH_2(OH))CO(OH) + O_2^{\bullet}$		4.0 10-			16
$(H(OH)(OO^{\bullet})C(OH)(CH_2(OH))CO(OH) + OH^{-} \rightarrow CHOC(OH)(CH_2(OH))CO(OH) + O_2^{\bullet-} + H_2O$	R(797)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CH(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(OH) \rightarrow CHOC(OH)(CH_{2}(OH))CO(OH) + HO_{2}^{\bullet}$	R(798)	1.9 10 ²			17
$CH(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-}) + OH^{-} \rightarrow CH(O^{-})(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-}) + H_{2}O$		4.0 10 ⁹			
$CH(O^{-})(OO^{+})C(OH)(CH_{2}(OH))CO(O^{-}) \rightarrow CHOC(OH)(CH_{2}(OH))CO(O^{-}) + O_{2}^{-}$					16
CH(OH)(OO [•])C(OH)(CH ₂ (OH))CO(O ⁻) + OH ⁻ → CHOC(OH)(CH ₂ (OH))CO(O ⁻) + O ₂ ^{•-} + H ₂ O	R(799)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
CH(OH)(OO [•])C(OH)(CH ₂ (OH))CO(O [−]) \rightarrow CHOC(OH)(CH ₂ (OH))CO(O [−]) + HO ₂ •	R(800)	1.9 10 ²			17
Methyltartronic acid					95
Pathway 1: CO(OH)C(OH)(CH ₃)CO(OH) + HO [•] \rightarrow CO(OH)C(OH)(C [•] H ₂)CO(OH) + H ₂ O		8.0 10 ⁷			BR: 66% - 96
$CO(OH)C(OH)(C^{\bullet}H_2)CO(OH) + O_2 \rightarrow CO(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
Pathway 2: CO(OH)C(OH)(CH_3)CO(OH) + H0° \rightarrow CO(OH)C(O°)(CH_3)CO(OH) + H ₂ O		4.0 107			BR: 34% - 96
$C^{\circ}O(OH) + O_{2} \rightarrow CO(OH)(OO^{\circ})$		2 0 10 ⁹			4 - 5
$CO(OH)C(OH)(CH_3)CO(OH) + HO^{\bullet} \rightarrow 0.66 CO(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH) + 0.34 CH_3COCO(OH) + 0.34$	R(801)	1.2 10 ⁸			12
$CO(OH)(OO^{\bullet}) + H_{2}O - O_{2}$	()				
Pathway 1: CO(OH)C(OH)(CH ₃)CO(OH) + NO ₃ $^{\bullet} \rightarrow$ CO(OH)C(OH)(C [•] H ₂)CO(OH) + NO ₃ $^{-}$ + H ⁺		2.1 10 ⁶			BR: 100%
$CO(OH)C(OH)(C^{\bullet}H_{2})CO(OH) + O_{2} \rightarrow CO(OH)C(OH)(CH_{2}(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
$CO(OH)C(OH)(CH_3)CO(OH) + NO_3^{\bullet} \rightarrow CO(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH) + NO_3^{-} + H^+ - O_2$	R(802)	$2.1 \cdot 10^{6}$	3248		$= k(CH_3CH(OH)CO(OH) +$
					NO ₃ •) - 13
Pathway 1: CO(OH)C(OH)(CH ₃)CO(O ⁻) + HO ⁺ \rightarrow CO(OH)C(OH)(C ⁺ H ₂)CO(O ⁻) + H ₂ O		1.8 10 ⁸			BR: 64% - 97
$CO(OH)C(OH)(C^{+}_{2})CO(O^{+}) + O_{2} \rightarrow CO(OH)C(OH)(CH_{2}(OO^{*}))CO(O^{*}) + HO^{*}_{2}$		$2.0\ 10^9$			3
$CO(OH)C(OH)(CH_3)CO(O^{\bullet}) \rightarrow CH_3(^{\bullet}(OH)CO(OH) + CO_2$		1.0 10			4 - 5
$C^{*}(OH)CO(OH) + O_{2} \rightarrow CH_{3}C(OH)(OO^{*})CO(OH)$		2.0 10 ⁹			3
CO(OH)C(OH)(CH ₃)CO(O ⁻) + HO [•] → 0.64 CO(OH)C(OH)(CH ₂ (OO [•]))CO(O ⁻) + 0.36 CH ₃ C(OH)(OO [•])CO(OH) + 0.36	R(803)	2.8 10 ⁸			12
CO ₂ + 0.36 HO ⁻ + 0.64 H ₂ O - O ₂					
Pathway 1: CO(OH)C(OH)(CH ₃)CO(O ⁻) + NO ₃ • \rightarrow CO(OH)C(OH)(C•H ₂)CO(O ⁻) + NO ₃ • + H ⁺		1.0 10 ⁷			BR: 100%
$CO(OH)C(OH)(C^{\bullet}H_2)CO(O^{-}) + O_2 \rightarrow CO(OH)C(OH)(CH_2(OO^{\bullet}))CO(O^{-})$		2.0 10 ⁹			3

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
$CO(OH)C(OH)(CH_3)CO(O^-) + NO_3^{\bullet} \rightarrow CO(OH)C(OH)(CH_2(OO^{\bullet}))CO(O^-) + NO_3^{-} + H^+ - O_2$	R(804)	1.0·10 ⁷	2646		$= k(CH_3CH(OH)CO(O^-) +$
					NO ₃ •) - 13
Pathway 1: CO(O ⁻)C(OH)(CH ₃)CO(O ⁻) + HO [•] \rightarrow CO(O ⁻)C(OH)(C [•] H ₂)CO(O ⁻) + H ₂ O		2.9 10 ⁸			BR: 47% - 98
$CO(0^{-})C(0H)(C^{\bullet}H_{2})CO(0^{-}) + O_{2} \rightarrow CO(0^{-})C(0H)(CH_{2}(00^{\bullet}))CO(0^{-})$		2.0 10 ⁹			3
Pathway 2: CO(O')C(OH)(CH_3)CO(O') + HO' \rightarrow CO(O')C(OH)(CH_3)CO(O') + HO'		3.3 10°			BR: 53% - 98
$CU(O)C(OH)(CH_3)CO(O) + Ch_2C(OH)(CO(O) + CO_2)$ $CH_2C^*(OH)(CO(O) + O_2 \rightarrow CH_2C(OH)(OO^*)(CO(O))$		2 0 10 ⁹			4 - 5
$CO(O^{*})CO(O^{*}) + 0.53 CO(O^{*})CO(O^{*}) + 0.53 CO(O^{*})CO(O^{*})CO(O^{*}) + 0.53 CO(O^{*})CO(O^{*})CO(O^{*}) + 0.53 CO(O^{*})CO(O^{*})CO(O^{*}) + 0.53 CO(O^{*})CO(O^{$	R(805)	6.2.10 ⁸			12
	1(000)	0.2 10			12
= 0.55110 + 0.471120 - 02 Pathway 1: CO(0.)C(0H)(CH)(CO(0.)+ NO.* -> CO(0.)C(0H)(C*H)(CO(0.) + NO.* + H)		$1.0.10^{7}$			RP: 100%
$CO(0^{-})C(0H)(C^{+}H_{2})CO(0^{-}) + O_{2} \rightarrow CO(0^{-})C(0H)(CH_{2}(OO^{\bullet}))CO(0^{-})$		$2.0 \ 10^9$			3
$CO(O^{-})C(OH)(CH_{2})CO(O^{-}) + NO_{2}^{\bullet} \rightarrow CO(O^{-})C(OH)(CH_{2}(OO^{\bullet}))CO(O^{-}) + NO_{2}^{-} + H^{+} - O_{2}$	R(806)	1.0·10 ⁷	2646		= k(CH₃CH(OH)CO(O⁻) +
					NO ₃ •) - 13
Pathway 1: 2 CO(OH)C(OH)(CH ₂ (OO $^{\bullet}$))CO(OH) \rightarrow 2 CO(OH)C(OH)(CHO)CO(OH) + H ₂ O ₂		5.0 10 ⁷			BR: 50%
Pathway 2:2 CO(OH)C(OH)(CH ₂ (OO [•]))CO(OH) \rightarrow CO(OH)C(OH)(CHO)CO(OH) + CO(OH)C(OH)(CH ₂ (OH))CO(OH) + O ₂		3.3 10 ⁷			BR: 33%
Pathway 3: 2 CO(OH)C(OH)(CH ₂ (OO [•]))CO(OH) \rightarrow 2 CO(OH)C(OH)(CH ₂ (O [•]))CO(OH) + O ₂		1.7 10 ⁷			BR: 17%
$CO(OH)C(OH)(CH_2(O^{\bullet}))CO(OH) \rightarrow CO(OH)C^{\bullet}(OH)CO(OH) + CH_2O$					4 - 5
$CO(OH)C^{\bullet}(OH)CO(OH) + O_2 \rightarrow CO(OH)C(OH)(OO^{\bullet})CO(OH)$		2.0·10 ⁹			3
2 CO(OH)C(OH)(CH ₂ (OO•))CO(OH) → 1.33 CO(OH)C(OH)(CHO)CO(OH) + 0.33 CO(OH)C(OH)(CH ₂ (OH))CO(OH)	R(807)	1.0 108			= k(2 CH ₂ (OH)CH ₂ (OO•)) - 6
+ 0.34 CO(OH)C(OH)(OO•)CO(OH) + 0.34 CH ₂ O + 0.50 H ₂ O ₂ + 0.16 O ₂					
Pathway 1: 2 CO(OH)C(OH)(CH ₂ (OO [•]))CO(O ⁻) \rightarrow 2 CO(OH)C(OH)(CHO)CO(O ⁻) + H ₂ O ₂		5.0 10 ⁷			BR: 50%
Pathway 2:2 CO(OH)C(OH)(CH ₂ (OO [•]))CO(O [•]) \rightarrow CO(OH)C(OH)(CHO)CO(O [•]) + CO(OH)C(OH)(CH ₂ (OH))CO(O [•]) + O ₂		3.3 10'			BR: 33%
$Patnway 3: 2 CO(OH)C(OH)(CH_2(OU^{-}))CO(O) \rightarrow 2 CO(OH)C(OH)(CH_2(O^{-}))CO(O) + O_2$		1.7 10'			BR: 17%
$CO(OH)C(OH)(CH_2(O)) = CO(OH)C(OH)(OO^*)CO(O^*)$		2 0⋅10 ⁹			4-5
$2 CO(OH)C(OH)(CH_2(OH)(CH_2(OH))(CH_2(OH))(CHO)(CHO)(CHO)(CHO)(CHO)(CHO)(CHO)$	R(808)	$1.0\ 10^8$			$= k(2 CH_2(OH)CH_2(OO^{\bullet})) - 6$
2 = 0 (0 + 1) (0 + 1	(000)	110 10			
$Pathway 1: 2 CO[0]/C(0H)(CH_{0}(0)) \rightarrow 2 CO[0]/C(0H)(CH_{0}(C)) \rightarrow H_{0}.$		5 0 107			BB: 50%
Pathway 2:2 CO(O ⁻)C(OH)(CH ₂ (OO ⁻))CO(O ⁻) \rightarrow CO(O ⁻)C(OH)(CHO)CO(O ⁻) + CO(O ⁻)C(OH)(CH ₂ (OH))CO(O ⁻) + O ₂		3.3 10 ⁷			BR: 33%
Pathway 3: 2 CO(O ⁻)C(OH)(CH ₂ (OO ⁻))CO(O ⁻) \rightarrow 2 CO(O ⁻)C(OH)(CH ₂ (O ⁻))CO(O ⁻) + O ₂		1.7 10 ⁷			BR: 17%
$CO(O^{-})C(OH)(CH_{2}(O^{+}))CO(O^{-}) \rightarrow CO(O^{-})C^{\bullet}(OH)CO(O^{-}) + CH_{2}O$					4 - 5
$CO(O^{-})C^{\bullet}(OH)CO(O^{-}) + O_{2} \rightarrow CO(O^{-})C(OH)(OO^{\bullet})CO(O^{-})$		2.0·10 ⁹			3
2 CO(O ⁻)C(OH)(CH ₂ (OO [•]))CO(O ⁻) → 1.33 CO(O ⁻)C(OH)(CHO)CO(O ⁻) + 0.33 CO(O ⁻)C(OH)(CH ₂ (OH))CO(O ⁻) + 0.34	R(809)	1.0 10 ⁸			= k(2 CH ₂ (OH)CH ₂ (OO•)) - 6
CO(O ⁻)C(OH)(OO [•])CO(O ⁻) + 0.34 CH ₂ O + 0.50 H ₂ O ₂ + 0.16 O ₂					
2- hydroxy-2-(oxomethyl)-3-oxopropanoic acid					99
Pathway 1: CH(OH)(OH)C(OH)(CH(OH)(OH))CO(OH) + HO [•] → CH(OH)(O [•])C(OH)(CH(OH)(OH))CO(OH) + H ₂ O		7.7 10 ⁸			BR: 64% - 100
СН(ОН)(О•)С(ОН)(СН(ОН))СО(ОН) → СНО(ОН) + СН(ОН)(ОН)С•(ОН)СО(ОН)					4 - 5
$CH(OH)(OH)C^{\bullet}(OH)CO(OH) + O_2 \rightarrow CH(OH)(OH)C(OH)(OO^{\bullet})CO(OH)$		2.0 10 ⁹			3
Pathway 2: CH(OH)(OH)(CH(OH)(OH))CO(OH) + HO• \rightarrow C•(OH)(OH)(CH(OH)(OH))CO(OH) + H ₂ O		4.3 10 ⁸			BR: 36% - 100
$C^{\bullet}(OH)(OH)(CH)(CH)(OH)(OH)(OH) + O_2 \rightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH)(OH)(OH)(OH)(OH) = 0.54 \text{ cm} + O_2 \rightarrow C(OH)(OH)(OH)(OH)(OH)(OH)(OH) = 0.54 \text{ cm} + O_2 \rightarrow C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$	D(010)	$2.0\ 10^9$			3
$CH(OH)(OH)(C(OH)(CH(OH)(OH))CO(OH) + HO^{\circ} \rightarrow 0.64 CH(OH)(OH)C(OH)(OO^{\circ})CO(OH) + 0.64 CHO(OH) + 0.36$	R(810)	1.2 103			12
C(OH)(OH)(OO•)C(OH)(CH(OH)(OH))CO(OH) + H2O - O2					
Pathway 1: CH(OH)(OH)(CH(OH)(OH))CO(OH) + NO ₃ ⁺ \rightarrow C [•] (OH)(OH)(CH(OH)(OH))CO(OH) + NO ₃ ⁻ + H ⁺		1.0 10 ⁶			BR: 100%
$C_{(OH)(OH)(OH)(OH)(OH)(OH)+O_{2} \rightarrow C(OH)(OH)(OU)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	D(011)	$2.0\ 10^{9}$			
$CH(OH)(OH)(CH(OH)(OH))(O(OH) + NO_3 \rightarrow C(OH)(OH)(OO^{-})C(OH)(CH(OH)(OH))(O(OH) + NO_3^{-} + H^{-})$	к(811)	1.0 10			= K(CH(OH)(OH)CH(OH)(OH)
U ₂					+ INU3 J = 13
Patnway 1: CH(OH)(OH)(CH(OH)(OH))CO(O') + HO' → CH(OH)(O')C(OH)(CH(OH)(OH))CO(O') + H ₂ O		8.0 10°			вк: 50% - 101

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
CH(OH)(O ⁺)C(OH)(CH(OH))CO(O ⁻) → CHO(OH) + CH(OH)(OH)C ⁺ (OH)CO(O ⁻)					4 - 5
$CH(OH)(OH)C^{\bullet}(OH)CO(O^{-}) + O_{2} \rightarrow CH(OH)(OH)C(OH)(OO^{\bullet})CO(O^{-})$		2.0 10 ⁹			3
Pathway 2: $CH(OH)(OH)(CH(OH)(OH)(OH)(OH)(OH)(O) + HO^ \rightarrow C^{\circ}(OH)(OH)(CH(OH)(OH)(OH)(OH)(O) + H_2O$		8.0 10°			BR: 50% - 101
CU(OH)(OH)(CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH	B(812)	2.010 1.610 ⁹			5 12
c(01)(01)(c01)(c1)(c1)(c1)(c01)(c01)(c01	N(OIZ)	1.0 10			12
$C[OT][OT][OT][OT][OT][OT][OT]]CO[O] + n_2O + O_2$ $Pathway 1: CP[OP][OP][OP][OP][OP][OP][OP][OP][OP][OP$		1 0 106			RP: 100%
$C^{\circ}(OH)(OH)(CH)(OH)(OH)(OH)(OH)(OH)(OH)(OO^{\circ})(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$		$2.0 \ 10^9$			3
$CH(OH)(OH)(CH(OH)(OH)(OH))CO(O^{-}) + NO_{3}^{\bullet} \rightarrow C(OH)(OH)(OH)(OH)(CH(OH)(OH))CO(O^{-}) + NO_{3}^{-} + H^{+} - O_{2}^{\bullet}$	R(813)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH)
	(<i>'</i>				+ NO ₃ •) - 13
C(OH)(OH)(OO [•])C(OH)(CH(OH)(OH))CO(OH) + OH ⁻ → C(OH)(O ⁻)(OO [•])C(OH)(CH(OH)(OH))CO(OH) + H ₂ O		4.0 10 ⁹			- /
C(OH)(O ⁻)(OO [•])C(OH)(CH(OH)(OH))CO(OH) → CO(OH)C(OH)(CH(OH)(OH))CO(OH) + $O_2^{\bullet-}$					16
C(OH)(OH)(OO [•])C(OH)(CH(OH)(OH))CO(OH) + OH ⁻ → CO(OH)C(OH)(CH(OH)(OH))CO(OH) + O ₂ ^{•-} + H ₂ O	R(814)	4.0 10 ⁹			= k(CH ₃ CH(OH)(OO•) + OH ⁻)
C(OH)(OH)(OO $^{\circ}$)C(OH)(CH(OH)(OH))CO(OH) → CO(OH)C(OH)(CH(OH)(OH))CO(OH) + HO ₂ $^{\circ}$	R(815)	1.0 10 ⁶			17
C(OH)(OH)(OO*)C(OH)(CH(OH)(OH))CO(O ⁻) + OH ⁻ →C(OH)(O ⁻)C(OH)(CH(OH)(OH))CO(O ⁻) + H ₂ O		4.0 10 ⁹			
$C(OH)(O^{-})(OO^{+})C(OH)(CH(OH)(OH))CO(O^{-}) \rightarrow CO(OH)C(OH)(CH(OH)(OH))CO(O^{-}) + O_{2}^{\bullet-}$					16
C(OH)(OH)(OO [•])C(OH)(CH(OH)(OH))CO(O ⁻) + OH ⁻ → CO(OH)C(OH)(CH(OH)(OH))CO(O ⁻) + O ₂ ^{•-} + H ₂ O	R(816)	4.0 10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
C(OH)(OH)(OO [•])C(OH)(CH(OH)(OH))CO(O ⁻) → CO(OH)C(OH)(CH(OH)(OH))CO(O ⁻) + HO ₂ •	R(817)	1.0 10 ⁶			17
2-(hydroxymethyl)-tartronic acid					102
Pathway 1: CO(OH)C(OH)(CH ₂ (OH))CO(OH) + HO [•] → CO(OH)C(OH)(C [•] H(OH))CO(OH) + H ₂ O		3.2 10 ⁸			BR: 78% - 103
$CO(OH)C(OH)(C^{\bullet}H(OH))CO(OH) + O_2 \rightarrow CO(OH)(CH(OH)(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
Pathway 2: $CO(OH)C(OH)(CH_2(OH))CO(OH) + HO^{-} \rightarrow CO(OH)C(OH)(CH_2(O^{-}))CO(OH) + H_2O(OH)CO(OH)(CH_2(O^{-}))CO(OH) - CO(OH)CO(OH)(CH_2(O^{-}))CO(OH) + H_2O(OH)(CH_2(O^{-}))CO(OH)(CH_2(OH))CO(OH) + H_2O(OH)(CH_2(O^{-}))CO(OH)(CH_2(O^{-}))$		9.0 10'			BR: 22% - 103
$CO(OH)(CH)(CH)(CH) + O_2 \rightarrow CO(OH)(C(OH)(OO^*)(CO(OH))$		2 0 10 ⁹			4 - 5
$CO(OH)C(OH)(CH_2(OH))CO(OH) + HO^{\bullet} \rightarrow 0.78 CO(OH)(COH)(CH(OH)(OO^{\bullet}))CO(OH) + 0.22 CH_2O + 0.22$	R(818)	4.1 10 ⁸			12
$CO(OH)C(OH)(OO^{\circ}CO(OH) + H_{2}O_{2}O_{2})$					
Pathway 1: $CO(OH)C(OH)(CH_2(OH))CO(OH) + NO_3^* \rightarrow CO(OH)C(OH)(C^*H(OH))CO(OH) + NO_3^- + H^+$		2 1 10 ⁶			BB: 100%
$CO(OH)(COH)(C^{\bullet}H(OH))CO(OH) + O_2 \rightarrow CO(OH)(COH)(COH)(OO^{\bullet})CO(OH)$		2.0 10 ⁹			3
$CO(OH)C(OH)(CH_2(OH))CO(OH) + NO_3^{\bullet} \rightarrow CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(OH) + NO_3^{-} + H^+ - O_2$	R(819)	2.1·10 ⁶	3248		= k(CH₃CH(OH)CO(OH) +
					NO ₃ •) - 13
Pathway 1: CO(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] \rightarrow CO(OH)C(OH)(C [•] H(OH))CO(O ⁻) + H ₂ O		6.4 10 ⁸			BR: 86% - 104
$CO(OH)C(OH)(C^{\bullet}H(OH))CO(O^{-}) + O_{2} \rightarrow CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-})$		2.0 10 ⁹			3
Pathway 2: CO(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] \rightarrow CO(OH)C(OH)(CH ₂ (O [•]))CO(O ⁻) + H ₂ O		1.0 10 ⁸			BR: 14% - 104
$CO(OH)C(OH)(CH_2(O)) \rightarrow CH_2O + CO(OH)C(OH)(CO(O))$ $CO(OH)C(OH)(CH_2(O)) + O_2 \rightarrow CO(OH)(CO(H)(CO(O)))$		2 0 10 ⁹			4 - 5
$CO(OH)C(OH)(CH_{2}(OH))CO(O^{-}) + HO^{\bullet} \rightarrow 0.86 CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-}) + 0.14 CH_{2}O + 0.14$	R(820)	7 4 10 ⁸			12
	11(020)	7.4 10			12
$Pathway 1: CO(OH)(COH)(CH_{OH})(CO_{O}) + NO_{O} \rightarrow CO(OH)(COH)(C^{H}(OH))(CO_{O}) + NO_{O} + H^{+}$		1 0 107			BB: 100%
$CO(OH)C(OH)(C^{+}(OH))CO(O^{-}) + O_{2} \rightarrow CO(OH)C(OH)(CH(OH))CO(O^{-})$		2.0 10 ⁹			3
$CO(OH)C(OH)(CH_2(OH))CO(O^-) + NO_3^{\bullet} \rightarrow CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(O^-) + NO_3^{-} + H^+ - O_2$	R(821)	1.0·10 ⁷	2646		= k(CH ₃ CH(OH)CO(O ⁻) +
	()				NO ₃ •) - 13
Pathway 1: CO(O ⁻)C(OH)(CH ₂ (OH))CO(O ⁻) + HO [•] \rightarrow CO(O ⁻)C(OH)(C [•] H(OH))CO(O ⁻) + H ₂ O		1.1 10 ⁹			BR: 79% - 105
$CO(O^{-})C(OH)(C^{\bullet}H(OH))CO(O^{-}) + O_{2} \rightarrow CO(O^{-})C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-})$		2.0 10 ⁹			3
Pathway 2: CO(O ⁻)C(OH)(CH ₂ (OH))CO(O ⁻) + HO ⁺ \rightarrow CO(O ⁻)C(OH)(CH ₂ (OH))CO(O ⁺) + OH ⁻		3.0 10 ⁸			BR: 21% - 105
$CU[U]_{C[UH]}(CH_{2}[UH])CU[U^{*}] \rightarrow CH_{2}[UH]C^{*}(UH]CU[U^{*}] + CU_{2}$ $CH_{2}[OH]C^{*}(OH)C^{*}(OH)C(OH)CO(O^{*})$		2 0 10 ⁹			4 - 5
		2.0 10			<u> </u>

Reactions		k298	Ea/R	References	Notes
		(M ⁻¹¹⁺¹ S ⁻¹)	(K)		10
$CO(O^{-})C(OH)(CH_{2}(OH))CO(O^{-}) + HO^{\bullet} \rightarrow 0.79 CO(O^{-})C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-}) + 0.21$	R(822)	1.4 10 ⁹			12
$CH_2(OH)(CO^+)(CO(O^+) + 0.21 CO_2 + 0.21 OH^+ + 0.79 H_2O - O_2$		_			
Pathway 1: CO(0 ⁻)C(OH)(CH ₂ (OH))CO(0 ⁻) + NO ₃ [•] \rightarrow CO(0 ⁻)C(OH)(C [•] H(OH))CO(0 ⁻) + NO ₃ [•] + H ⁺		1.0 10'			BR: 100%
$CO(0^{2})C(0^{2})(C^{2}H(0^{2}H))CO(0^{2}) + O_{2} \rightarrow CO(0^{2})C(0^{2}H)(CH(0^{2}H)(0^{2}H)(0^{2}H))CO(0^{2})$	D(000)	$2.0\ 10^3$	2646		3
$CO(O^{\circ})C(OH)(CH_2(OH))CO(O^{\circ}) + NO_3^{\circ} \rightarrow CO(O^{\circ})C(OH)(CH(OH)(OO^{\circ}))CO(O^{\circ}) + NO_3^{\circ} + H^{\circ} - O_2$	R(823)	1.0.10,	2646		$= K(CH_3CH(OH)CO(O^2) + NO^{(1)})$
		4 0 1 0 9			NO_3) - 13
$CO(OH)C(OH)(CH(O^{-})(OO^{-})(CO(OH) \rightarrow CO(OH)C(OH)(CH(O)(CO(OH) + 0_{2}))$		4.0 10			16
$CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(OH) + OH^{\bullet} \rightarrow CO(OH)(CHO)(CO(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(CHO)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(OH)(CHO)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(CHO)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(OH)(OH)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(OH)(OH)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(OH)(OH)(OH)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(OH)(OH)(OH)(OH)(OH) + O_{2}^{\bullet^{\bullet}} + H_{2}O(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(824)	4.0 10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
$CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(OH) \rightarrow CO(OH)(CHO)(CH(OH)(CHO)CO(OH) + HO_2^{\bullet}$	R(825)	1 9 102			17
CO[OH]/C[OH]/(CH[OH]/(OO)) + OH - CO[OH]/C[OH]/(CH[O)/(OO)) + OH - CO[OH]/(CH[O)/(OO)) + OH - CO[OH]/(CH[OH)/(OO)) + OH - CO[OH]/(CH[OH)/(OO)) + OH - CO[OH]/(CH[OH)/(OO)) + OH - CO[OH]/(CH[OH)/(CH[OH)/(OO)) + OH - CO[OH]/(CH[OH)/(CH[OH)/(OH)/(OO)) + OH - CO[OH]/(CH[OH)/(OH)/(OH)/(OH)/(OH)/(OH)/(OH)/(OH)/(1(023)	1.0 10 ⁹			17
$CO(OH)C(OH)(CH(O^{*})(OO^{*}))CO(O^{*}) \rightarrow CO(OH)C(OH)(CH(O^{*})(OO^{*}) + O^{**})$		4.0 10			16
$CO(OH)(CO(O+)(CO(O+))(OO^{-}) + OH^{-} \rightarrow CO(OH)(COH)(CO(O+) + O^{-} + H^{0}O)$	R(826)	4.0 10 ⁹			$= k(CH_{3}CH(OH)(OO^{\bullet}) + OH^{-})$
$CO(OH)C(OH)(CH(OH)(OO^{*}) \rightarrow CO(OH)C(OH)(CHO)CO(O^{*}) + H_{2}O^{*}$	R(827)	1 9 10 ²			17
$CO[O_1]C[O_1]C[O_1]CO[O_1]+OU_2 \rightarrow CO[O_1]C[O_1]CO[O_1]+OU_2$	11(027)	1.0 10 ⁹			17
$CO(0^{-})C(0H)(CH(0^{-}))CO(0^{-}) \rightarrow CO(0^{-})C(0H)(CH(0^{-})+0^{2})^{*}$		4.0 10			16
$CO(O^{-})C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-}) + OH^{-} \rightarrow CO(O^{-})C(OH)(CHO)CO(O^{-}) + O_{2}^{\bullet^{-}} + H_{2}O(O^{-})C(OH)(CHO)CO(O^{-}) + O_{2}^{\bullet^{-}} + H_{2}O(O^{-})C(OH)(CHO)CO(O^{-}) + O_{2}^{\bullet^{-}} + O(O^{-})C(OH)(CHO)CO(O^{-}) + O_{2}^{\bullet^{-}} + O(O^{-})C(OH)(CHO)CO(O^{-}) + O_{2}^{\bullet^{-}} + O(O^{-})C(OH)(CHO)CO(O^{-}) + O_{2}^{\bullet^{-}} + O(O^{-})C(OH)(CHO)CO(O^{-}) + O(O^{-})C(OH)(O^{-})$	R(828)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CO(O_{-})C(OH)(CH(OH)(OO_{-}))CO(O_{-}) \rightarrow CO(O_{-})C(OH)(CHO)CO(O_{-}) + HO_{2} \bullet$	R(829)	1.9 10 ²			17
2-(oxomethyl)-tartronic acid					106
Pathway 1: $CO(OH)C(OH)(CH(OH)(OH))CO(OH) + HO^{\bullet} \rightarrow CO(OH)C(OH)(CH(OH)(O^{\bullet}))CO(OH) + H_2O$		3.9 10 ⁸			BR: 72% - 107
СО(ОН)С(ОН)(СН(ОН)(О•))СО(ОН) → СНО(ОН) + СО(ОН)С•(ОН)СО(ОН)					4 - 5
$CO(OH)C^{\bullet}(OH)CO(OH) + O_2 \rightarrow CO(OH)C(OH)(OO^{\bullet})CO(OH)$		2.0 10 ⁹			3
Pathway 2: CO(OH)C(OH)(CH(OH)(OH))CO(OH) + HO $^{\bullet} \rightarrow$ CO(OH)C(OH)(C $^{\bullet}$ (OH)(OH))CO(OH) + H ₂ O		1.5 10 ⁸			BR: 28% - 107
$CO(OH)C(OH)(C^{\bullet}(OH)(OH))CO(OH) + O_2 \rightarrow CO(OH)C(OH)(C(OH)(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
CO(OH)C(OH)(CH(OH)(OH))CO(OH) + HO [•] → 0.72 CO(OH)C(OH)(OO [•])CO(OH) + 0.72 CHO(OH) + 0.28	R(830)	5.4 10 ⁸			12
$CO(OH)C(OH)(C(OH)(OH)(OO^{\bullet}))CO(OH) + H_2O - O_2$					
Pathway 1: CO(OH)C(OH)(CH(OH)(OH))CO(OH) + NO ₃ • → CO(OH)C(OH)(C•(OH)(OH))CO(OH) + NO ₃ • + H ⁺		1.0 10 ⁶			BR: 100%
$CO(OH)C(OH)(C^{\bullet}(OH)(OH))CO(OH) + O_2 \rightarrow CO(OH)C(OH)(C(OH)(OO^{\bullet}))CO(OH)$		2.0 10 ⁹			3
$CO(OH)C(OH)(CH(OH)(OH))CO(OH) + NO_3^{\bullet} \rightarrow CO(OH)C(OH)(C(OH)(OH)(OO^{\bullet}))CO(OH) + NO_3^{-} + H^+ - O_2$	R(831)	1.0 106			= k(CH(OH)(OH)CH(OH)(OH)
					+ NO ₃ •) - 13
Pathway 1: CO(OH)C(OH)(CH(OH)(OH))CO(O') + HO [•] \rightarrow CO(OH)C(OH)(CH(OH)(O [•]))CO(O') + H ₂ O		4.4 10 ⁸			BR: 60% - 108
$CO(OH)C(OH)(CH(OH)(O'))CO(O') \rightarrow CHO(OH) + CO(OH)CO(O')$		2 0 1 0 9			4 - 5
$Pathway 2 \cdot CO(OH)C(OH)(CH)(OH)(COH)(OH)(COH)(COH)(C$		2.0 10 ⁻ 3.0 10 ⁸			5 BB: 40% - 108
$CO(OH)C(OH)(C+(OH)(OH)(OH)(OH)(CO(O) + O_2 \rightarrow CO(OH)C(OH)(O(O+)(OO+)(CO(O))(CO(O)) + O_2 \rightarrow CO(OH)C(OH)(C(OH)(OH)(OO+)(CO(O)) + O_2 \rightarrow CO(OH)C(OH)(CO(O))(CO(O)) + O_2 \rightarrow CO(OH)C(OH)(CO(O)) + O_2 \rightarrow CO(OH)C(OH)(CO(O))(CO(O)) + O_2 \rightarrow CO(OH)C(OH)(CO(O)) + O_2 \rightarrow CO(OH)C(OH)(CO(OH)C(OH)C(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)$		$2.0 \ 10^9$			3
$CO(OH)C(OH)(CH(OH))(OH))CO(O^{-}) + HO^{\bullet} \rightarrow 0 \text{ for }CO(OH)(C(OH)(OO^{\bullet})CO(O^{-}) + 0 \text{ for }CHO(OH) + 0 \text{ for }CO(OH) + 0 \text{ for }CO(OH)(OH)(OH)(OH)(OH) + 0 \text{ for }CO(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$	R(832)	7.4 10 ⁸			12
$CO(OH)C(OH)(C(OH)(OH)(OO^{\bullet}))CO(O^{\bullet}) + H_{0}O_{-}O_{0}$	(002)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
$Pathway 1: CO(OH)(C(OH)(CH)(OH)(CO) + NO.* \rightarrow CO(OH)(C(OH)(C*(OH)(OH))(CO(O*) + NO.* + H*)$		1 0 106			BB: 100%
$CO(OH)C(OH)(C(OH)(OH)(OH)(OH)(CO(O) + No_3 \rightarrow CO(OH)C(OH)(C(OH)(OH)(CO(O) + No_3 + H))$		$2.0.10^9$			3
$CO(OH)(C(OH)(CH(OH))(OH))(CO(O^{-}) + NO_{2}^{\bullet} \rightarrow CO(OH)(C(OH))(C(OH)(OH)(OO^{\bullet}))(CO(O^{-}) + NO_{2}^{\bullet} + H^{+} - O_{2}^{\bullet}$	R(833)	1.0 106			= k(CH(OH)(OH)CH(OH)(OH)
					+ NO ₃ •) - 13
Pathway 1: CO(O ⁻)C(OH)(CH(OH)(OH))CO(O ⁻) + HO [•] → CO(O ⁻)C(OH)(C [•] (OH)(OH))CO(O ⁻) + H ₂ O		4.5 10 ⁸			BR: 41% - 109
$CO(O^{-})C(OH)(C^{\bullet}(OH)(OH))CO(O^{-}) + O_{2} \rightarrow CO(O^{-})C(OH)(C(OH)(OO^{-}))CO(O^{-})$		2.0 10 ⁹			3
Pathway 2: CO(O ⁻)C(OH)(CH(OH)(OH))CO(O ⁻) + HO [•] \rightarrow CO(O ⁻)C(OH)(CH(OH)(O [•]))CO(O ⁻) + H ₂ O		4.0 10 ⁸			BR:36% -109
$CO(O^{-})C(OH)(CH(OH)(O^{*}))CO(O^{-}) \rightarrow CHO(OH) + CO(O^{-})C^{*}(OH)CO(O^{-})$					4 - 5
$CO(0^{-})C^{\bullet}(OH)CO(0^{-}) + O_2 \rightarrow CO(0^{-})C(OH)(OO^{\bullet})CO(0^{-})$		2.0 10 ⁹			3

Reactions		k298	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
Pathway 3: CO(O ⁻)C(OH)(CH(OH)(OH))CO(O ⁻) + HO [•] \rightarrow CO(O ⁻)C(OH)(CH(OH)(OH))CO(O [•]) + HO ⁻		2.5 10 ⁸			BR: 23% -109
$CO(O^{I}(CH(OH)(OH))CO(O^{\bullet}) \to CH(OH)(OH)C^{\bullet}(OH);CO(O^{I}) + CO_{2}$					4 - 5
$CH(OH)(OH)C^{*}(OH)CO(O^{*}) + O_{2} \rightarrow CH(OH)(OH)(CO^{*})(CO(O^{*}))$	D(00 4)	2.0 10 ⁹			3
$CO(O^{-})C(OH)(CH(OH)(OH))CO(O^{-}) + HO^{\bullet} \rightarrow 0.41 CO(O^{-})C(OH)(C(OH)(OH)(OO^{\bullet}))CO(O^{-}) + 0.36 CHO(OH) + 0.36$	R(834)	1.1 109			12
CO(0 ⁻)C(OH)(OO [•])CO(0 ⁻) + 0.23 CH(OH)(OH)C(OH)(OO [•])CO(0 ⁻) + 0.23 CO ₂ + 0.23 HO ⁻ + 0.77 H ₂ O - O ₂					
Pathway 1: CO(O ⁻)C(OH)(CH(OH)(OH))CO(O ⁻) + NO ₃ • → CO(O ⁻)C(OH)(C•(OH)(OH))CO(O ⁻) + NO ₃ ⁻ + H ⁺		1.0 10 ⁶			BR: 100%
$CO(O^{-})C(OH)(C^{\bullet}(OH)(OH))CO(O^{-}) + O_2 \rightarrow CO(O^{-})C(OH)(C(OH)(OH)(OO^{\bullet}))CO(O^{-})$		2.0 10 ⁹			3
$CO(O^{-})C(OH)(CH(OH)(OH))CO(O^{-}) + NO_{3}^{\bullet} \rightarrow CO(O^{-})C(OH)(C(OH)(OH)(OO^{\bullet}))CO(O^{-}) + NO_{3}^{-} + H^{+} - O_{2}$	R(835)	1.0 10 ⁶			= k(CH(OH)(OH)CH(OH)(OH) + NO3•) - 13
CO(OH)C(OH)(C(OH)(OO•))CO(OH) + OH ⁻ → CO(OH)C(OH)(C(OH)(O·)(OO•))CO(OH) + H₂O		4.0 10 ⁹			- /
CO(OH)C(OH)(C(OH)(O`)(OO*))CO(OH) → CO(OH)CO(OH))CO(OH) + O2*					16
CO(OH)C(OH)(C(OH)(OO))CO(OH) + OH ⁻ → CO(OH)C(OH)(CO(OH))CO(OH) + O2 ^{•+} + H ₂ O	R(836)	4.0 10 ⁹			= k(CH ₃ CH(OH)(OO•) + OH [_])
$CO(OH)C(OH)(C(OH)(OH)(OO^{*}))CO(OH) \rightarrow CO(OH)C(OH)(CO(OH))CO(OH) + HO_{2}^{*}$	R(837)	1.9 10 ²			17
$CO(OH)C(OH)(C(OH)(OH)(OO^{*}))CO(O^{*}) + OH^{*} \rightarrow CO(OH)C(OH)(C(OH)(O^{*}))CO(O^{*}) + H^{*}O$. ,	4.0 10 ⁹			
$CO(OH)(C(OH)(O)(OO^{*}))CO(O^{*}) \rightarrow CO(OH)(CO(OH))CO(O^{*}) + O_{2}^{-1}$					16
$CO(OH)C(OH)(C(OH)(OH)(OO^{\bullet}))CO(O^{-}) + OH^{-} \rightarrow CO(OH)C(OH)(CO(OH))CO(O^{-}) + O2^{\bullet-} + H2O$	R(838)	4.0 10 ⁹			$= k(CH_3CH(OH)(OO^{\bullet}) + OH^{-})$
$CO(OH)C(OH)(CO(OH)(OO)) \rightarrow CO(OH)C(OH)(CO(OH))CO(O) + HO_{2}$	R(839)	$1.9 \ 10^2$			17
$C(0,1)(C(0H)(C(0H)(0H)(0G(1)+0H) \rightarrow C(0,1)(C(0H)(0H)(0H)(0H)(0H)(0H)(0H)(0H)(0H)(0H)$		4 0 10 ⁹			
$Co(o)C(OH)(C(OH)(o)(OO)) \rightarrow Co(OH)(C(OH)(C(O))(CO(O)) + O^{*}$		1.0 10			16
$CO(O_1)C(OH)(C(OH)(OH)(OO^*))CO(O_1) + OH_2 \rightarrow CO(O_2)C(OH)(CO(OH))CO(O_1) + O_2^{\bullet_2} + H_2O(O_1)CO(O_1) + O_2^{\bullet_2} + H_2O(O_1)CO(O_1) + O_2^{\bullet_2} + O_1^{\bullet_2} + O_2^{\bullet_2} + O_1^{\bullet_2} + O_2^{\bullet_2} $	R(840)	4.0.10 ⁹			= k(CH₃CH(OH)(OO•) + OH⁻)
$CO[O^{-}]C[OH](COH(OH)(OO^{-}) \rightarrow CO[O^{-}]C[OH](CO[OH)(CO[O^{-}) + HO^{-})$	R(841)	1 9 10 ²			17
		110 10			110
Hydroxymethanetricarboxylic acid		7			110
Pathway 1: $CO(OH)(CO(OH))CO(OH) + HO^{\circ} \rightarrow CO(OH)C(O^{\circ})(CO(OH))CO(OH) + H_2O$		2.4 10'			BR: 100% - 111
$CO(OH)C(O')(CO(OH)) \rightarrow CO(OH) + CO(OH)(COCO(OH))$		2.0.109			4 - 5
	D(040)	$2.0 \ 10^{-2}$			5
$CO(DH)C(OH)(CO(DH))CO(OH) + HO \rightarrow CO(DH)CO(OH) + CO(OH)(OU) + H_2O - O_2$	R(842)	2.4 10'			12
Pathway 1: $CO(OH)(CO(OH))(CO(O) + HO^{-} \rightarrow CO(OH)(CO(OH))(CO(O^{+}) + OH^{-})$		4.5 10'			BR: 52% - 112
$CO(OH)C(OH)(CO(OH)) + 0. CO(OH)C(OH)(OO)(CO(OH)) + CO_2$		2 0 109			4 - 5 2
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$		$2.0 \ 10^{-7}$			5 DD·49% 117
$CO(0)/CO(0)/CO(0)/CO(0) \rightarrow CO(0)/CO(0)/CO(0)$		4.2 10			4 - 5
$C(O(H) + 0) \rightarrow CO(O(H)(O(O))$		2.0 10 ⁹			3
$CO(OH)C(OH)(CO(OH))CO(O^{-}) + HO^{\bullet} \rightarrow 0.52 CO(OH)C(OH)(OO^{\bullet})CO(OH) + 0.52 CO_{2} + 0.48 CO(OH)COCO(O^{-}) + 0.52 CO_{2} + 0.52 CO$	R(843)	8.7 10 ⁷			12
$0.48 \text{ CO(OH)}(OO^{\circ}) + 0.52 \text{ OH}^{\circ} + 0.48 \text{ H}_2\text{O} - \text{O}_2$	()				
Pathway 1: CO(OH)C(OH)(CO(O'))CO(O') + HO* \rightarrow CO(OH)C(OH)(CO(O'))CO(O') + OH-		1.6 10 ⁸			BR: 69% - 113
$CO(OH)C(OH)(CO(O^{-})) > CO(OH)C^{\bullet}(OH)CO(O^{-}) + CO_{2}$					4 - 5
$CO(OH)C^{\bullet}(OH)CO(O^{-}) + O_2 \rightarrow CO(OH)C(OH)(OO^{\bullet})CO(O^{-})$		2.0 10 ⁹			3
Pathway 2: CO(OH)C(OH)(CO(O ⁻))CO(O ⁻) + HO [•] → CO(OH)C(O [•])(CO(O ⁻))CO(O ⁻) + H ₂ O		7.0 10 ⁷			BR: 31% - 113
$CO(OH)C(O^{\bullet})(CO(O^{-})) \rightarrow C^{\bullet}O(O^{-}) + CO(OH)COCO(O^{-})$					4 - 5
$C^{\circ}O(O^{\circ}) + O_2 \rightarrow CO(O^{\circ})(OO^{\circ})$		2.0 10 ⁹			3
$CO(OH)C(OH)(CO(O-))CO(O-) + HO• \rightarrow 0.69 CO(OH)C(OH)(OO•)CO(O-) + 0.69 CO2 + 0.31 CO(OH)COCO(O-) + 0.69 CO2 + 0.69 + 0.69 C$	R(844)	2.3 10 ⁸			12
0.31 CO(O ⁻)(OO [•]) + 0.69 OH ⁻ + 0.31 H ₂ O - O ₂					
Pathway 1: CO(O ⁻)C(OH)(CO(O ⁻))CO(O ⁻) + HO [•] \rightarrow CO(O ⁻)C(OH)(CO(O ⁻))CO(O [•]) + OH ⁻		5.5 10 ⁸			BR: 100% - 114
$CO(O^{-})C(OH)(CO(O^{-})) \rightarrow CO(O^{-})C^{\bullet}(OH)CO(O^{-}) + CO_{2}$					4 - 5
$CO(O^{-})C^{\bullet}(OH)CO(O^{-}) + O_{2} \rightarrow CO(O^{-})C(OH)(OO^{\bullet})CO(O^{-})$		2.0 10 ⁹			3
$CO(O^{-})C(OH)(CO(O^{-}))CO(O^{-}) + HO^{\bullet} \rightarrow CO(O^{-})C(OH)(OO^{\bullet})CO(O^{-}) + CO_{2} + OH^{-} - O_{2}$	R(845)	5.5 10 ⁸			

Reactions		k ₂₉₈	Ea/R	References	Notes
		(M ⁻ⁿ⁺¹ s ⁻¹)	(K)		
Oxidation of Methacrylic Acid					115
Pathway 1: CH ₂ =C(CH ₃)CO(OH) + HO [•] → CH ₂ (OH)C [•] (CH ₃)CO(OH)		9.4 10 ⁹			BR: 100% - 116
$CH_2(OH)C^{\bullet}(CH_3)CO(OH) + O_2 \rightarrow CH_2(OH)C(OO^{\bullet})(CH_3)CO(OH)$		2.0 10 ⁹			3
CH ₂ =C(CH ₃)CO(OH) + HO [•] → CH ₂ (OH)C(OO [•])(CH ₃)CO(OH) - O ₂	R(846)	$1.1 \cdot 10^{10}$	1323	Schöne et al.,	
				2014	
Pathway 1: $CH_2=C(CH_3)CO(O^-) + HO^{\bullet} \rightarrow CH_2(OH)C^{\bullet}(CH_3)CO(O^-)$		9.4 10 ⁹			BR: 100% - 116
$CH_2(OH)C^{\bullet}(CH_3)CO(O^{\circ}) + O_2 \rightarrow CH_2(OH)C(OO^{\bullet})(CH_3)CO(O^{\circ})$		2.0 10 ⁹			3
$CH_2=C(CH_3)CO(O^-) + HO^\bullet \rightarrow CH_2(OH)C(OO^\bullet)(CH_3)CO(O^-) - O_2$	R(847)	$1.1 \cdot 10^{10}$	1924	Schöne et al.,	
				2014	
$2 \operatorname{CH}_2(\operatorname{OH})\operatorname{C}(\operatorname{OO}^{\bullet})(\operatorname{CH}_3)\operatorname{CO}(\operatorname{OH}) \rightarrow 2 \operatorname{CH}_2(\operatorname{OH})\operatorname{C}(\operatorname{O}^{\bullet})(\operatorname{CH}_3)\operatorname{CO}(\operatorname{OH}) + \operatorname{O}_2$		7.5 10 ⁷			BR: 100%
$CH_2(OH)C(O^*)(CH_3)CO(OH) \rightarrow CH_3COCH_2(OH) + C^*O(OH)$					4 - 5
$C^{\circ}O(OH) + O_2 \rightarrow CO(OH)(OO^{\circ})$		2.0 10 ⁹			3
2 CH ₂ (OH)C(OO [•])(CH ₃)CO(OH) → 2 CH ₃ COCH ₂ (OH) + 2 CO(OH)(OO [•]) - O ₂	R(848)	$7.5 \cdot 10^{7}$			= k(2 CH ₂ (OO•)CO(O ⁻)) - 6
2 CH ₂ (OH)C(OO [•])(CH ₃)CO(O [•]) → 2 CH ₂ (OH)C(O [•])(CH ₃)CO(O [•]) + O ₂		7.5 10 ⁷			BR: 100%
$CH_2(OH)C(O^{\bullet})(CH_3)CO(O^{\circ}) \rightarrow CH_3COCH_2(OH) + C^{\bullet}O(O^{\circ})$					4 - 5
$C^{\bullet}O(O^{\cdot}) + O_2 \to CO(O^{\cdot})(OO^{\bullet})$		2.0 10 ⁹			3
2 CH ₂ (OH)C(OO [•])(CH ₃)CO(O ⁻) → 2 CH ₃ COCH ₂ (OH) + 2 CO(O ⁻)(OO [•]) - O ₂	R(849)	7.5 10 ⁷			= k(2 CH ₂ (OO•)CO(O ⁻)) - 6

3 - We assumed a fast rate constant equal to 2.0 10⁹ M⁻¹ s⁻¹ based on values compiled in Neta et al. (1990). This reaction is not a rate-determining step.

4 - Hilborn and Pincock (1991) showed that acyl alkoxyl radical RCO(0[•]) are fragmented with a rate constant around 1.0 10⁹ s⁻¹. We assumed that the alkoxy fragmentation is non limiting.

5 - For alkoxyl radical, we assume an electron transfer reaction. When an oxygenated functional group is in β-position, we assume a fragmentation of the corresponding c-c bond. When there are two oxygenated function in β-position, we assume that the fragmentation occurs in priority on the C-CO(OH) bond.

6 - For self-reaction of peroxy radicals, we follow these similarity criteria:

Peroxyl categories	Model compounds	References
>C(OO•)CO(OH)/>C(OO•)CO(O [_])	CH ₂ (OO•)CO(O ⁻)	Schuchmann et al. (1985)
>C(OH)C(OO•)<	$CH_2(OH)CH_2(OO^{\bullet})$	Piesiak et al. (1984)
>COC(OO•)<	$CH_3COCH_2(OO^{\bullet})$	Zegota et al. (1986)
Others	$CH_3CH_2(OO^{\bullet})$	Monod et al. (2007)

7 - As for MACR, only the non-hydrated form of HMACR is considered.

8 - Two equilibriums are possible for MVK: the hydration of the ketone and the keto-enol tautomerism. Even if the enol form can exist in water because of the resonance with the second double bond, we suppose that its proportion is negligible (Smith and March, 2007). Like MACR, only the non-hydrated form is considered.

9 - As for MVK, only the non-hydrated form is considered.

10 - Hydroxybutandione can hydrate to three distinct forms : CH₃C(OH)(OH)COCH₂(OH), CH₃COC(OH)(OH)CH₂(OH) and CH₃C(OH)(OH)C(OH)(OH)CH₂(OH). The hydration constants are estimated respectively to 2.28, 5.60 and 3.22, giving contributions of 19%, 46% and 27% to the total species. The non hydrated form is not considered as it contributes only to 8% of the total species.

11 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 44% for OH on C(OH)(OH), 38% on CH₂, 8% on CH₃, 10% for OH on CH₂(OH). The first two pathways are considered corresponding to 82% of the total reactivity. They have been scaled to 54/46%.

12 - Rate constant calculated from Doussin and Monod (2013).

^{1 -} MACR is not known to be readily hydrated. Only the non-hydrated form is considered.

^{2 -} For MACR, MVK, HMACR and MVKOH we suppose following Liu et al. (2009) for MACR that the addition on the external double bonded carbon is the main oxidation pathway. The SAR from Minakata et al. (2009) estimates a 97% branching ratio for this external addition on MACR.

13 - The oxidation by the radicals (NO₃•, SO₄•, Cl[•], Cl₂•, CO₃•) is supposed to produce the same R(OO•) as the oxidation by HO• with the same branching ratios. The electron transfer pathways are not considered for these radicals. The H abstraction on an (OH) group by the NO₃• radical is also neglected because this reaction is thermodynamically disfavored.

14 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 45% for OH on C(OH)(OH), 33% on CH₂, 11% on CH₃, 12% for OH on CH₂(OH). The first two pathways are considered corresponding to 78% of the total reactivity. They have been scaled to 58/42%.

15 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 33% for OH on CH₃C(OH)(OH), 31% for (OH) on C(OH)(OH)CH₂(OH), 23% on CH₂(OH), 7% for OH on CH₂(OH), 6% for CH₃. The first three pathways are considered corresponding to 87% of the total reactivity. They have been scaled to 38/36/26%.

16 - Non-limiting reaction following Bothe et al. (1978).

17 - The HO₂• elimination rate constant depends on the substituent attached to the carbon atom bearing the peroxyl function.

Von Sonntag (1987) compiled the following rate constants for :

R	R'	k (s ⁻¹)
Н	Н	<10
Н	CH₃	52
Н	CH ₂ (OH)	190
CH₃	CH_3	665

For secondary carbon atom bearing the peroxyl function, we assumed a rate of 665 s⁻¹.

For primary carbon atom, we assumed a value of 52 s⁻¹. If the neighboring carbon atom is bearing an oxygenated function, we assumed a value of 190 s⁻¹.

18 - 3,4-hydroxybutan-2-one hydration is estimated to K^h = 0.13. The proportion of the hydrate is 12%. Its oxidation is therefore neglected.

19 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 61% on CH₂, 14% on CH, 9% for OH on CH₂(OH). 8% on CH₃ and 8% for OH on CH(OH). The first two pathways are considered corresponding to 75% of the total reactivity. They have been scaled to 81/19%.

20 - 1,4-dihydroxybutanedione has 2 hydrates: the monohydrate $CH_2(OH)COC(OH)(OH)CH_2(OH)$ and the di-hydrate $CH_2(OH)C(OH)(OH)C(OH)(OH)CH_2(OH)$ with hydratation constant estimated respectively to K_h = 20.4 and K_h = 52.5. The mono-hydrate and di-hydrate represent 28% and 70% of the total species. Therefore, only the reactivity of the di-hydrate is considered.

21 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 51% for OH on C(OH), 37% for CH₂ on CH₂(OH), 12% for OH on CH₂(OH). The first two pathways are considered corresponding to 88% of the total reactivity. They have been scaled to 58/42%.

22 - 1,3,4-trihydroxybutanone has one hydrate. The hydration constant leading to CH₂(OH)C(OH)(OH)CH(OH)CH₂(OH) is estimated to K_h = 0.57 and represents 64% of the total species. Only the reactivity of the non-hydrated form is considered.

23 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 47% for CH₂ on CH(OH)CH₂(OH), 24% for CH₂ on COCH₂(OH), 10% for CH on CH(OH), 7% for OH of CH₂(OH) on CH(OH)CH₂(OH), 6% for OH on CH(OH) and 6% for OH on COCH(OH). The three first pathways are considered corresponding to 82% of the total reactivity. They have been scaled to 58/30/12%.

24 - 2,4-dihydroxy-3-oxobutanal has three distinct hydrates. The hydration to $CH_2(OH)COCH(OH)CH(OH)(OH)$, $CH_2(OH)C(OH)(OH)CH(OH$

25 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 32% for OH on CH(OH)(OH), 27% for CH₂ on CH₂(OH), 24% for CH on CH(OH)(OH), 6% for OH on CH₂OH, 6% for OH on CH(OH) and 4% for CH on CH(OH). The three first pathways are considered corresponding to 83% of the total reactivity. They have been scaled to 38/33/29%.

26 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 24% for OH on CH(OH)(OH), 24% for OH on C(OH)(OH), 20% for CH on CH(OH)(OH), 18% for CH₂ on CH₂(OH), 5% for OH on CH₂(OH), 5% for OH on CH(OH)(OH) and 3% for CH on CH(OH). The four first pathways are considered corresponding to 86% of the total reactivity. They have been scaled to 28/28/23/21%.

27- Von Sonntag (1987) et Schuchmann & Von Sonntag (1988) have shown that the HO₂• elimination for RC(OH)(OH)(OO•) species is fast. This is confirmed by McElroy and Waygood (1991) for hydrated formaldehyde. We supposed a kinetic constant equal to 1.0 10⁶ s⁻¹.

 $28 - 2-\text{oxo-3,4-dihidroxybutanal has three distinct hydrates.$ The hydration to CH₂(OH)CH(OH)COCH(OH)(OH), CH₂(OH)CH(OH)C(OH)(OH)CH(OH)C(OH)(OH)CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH) are estimated respectively to K_h = 252.4, K_h = 23.2 and K_h = 2126.6. The first mono-hydrate represents 11% of the total species, the second mono-hydrate 1% and the di-hydrate 88%. Therefore, only the reactivity of the di-hydrate is considered.

29 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 37% for CH₂ on CH₂(OH), 20% for OH on CH(OH)(OH), 20% for OH on C(OH)(OH), 7% for CH on CH(OH)(OH), 6% for CH on CH(OH), 5% for OH on CH₂OH, 5% for OH on CH(OH). The three first pathways are considered corresponding to 77% of the total reactivity. They have been scaled to 48/26/26%.

30 - 2-oxo-3-hidroxybutanedial has seven different hydrates. The tri-hydrated form represents 95% of the total species (K_h = 1.46 10⁶). Therefore, only the reactivity of the tri-hydrate is considered.

31 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 23% for OH of CH(OH)(OH) on CH(OH)(OH), 22% for OH of CH(OH)(OH) on C(OH)(OH), 21% for OH of C(OH)(OH), 19% for CH of CH(OH)(OH) on C(OH)(OH), 8% for CH of CH(OH)(OH) on C(OH)(OH), 5% for OH on CH(OH), 2% for CH on CH(OH). The first four pathways are considered corresponding to 86% of the total reactivity. They have been scaled to 27/26/25/22%.

33 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 36% for OH on CH(OH)(OH), 30% for CH on CH(OH)(OH), 23% for OH on C(OH)(OH), 8% for OH on CH(OH), 3% for CH on CH(OH). The three first pathways are considered corresponding to 89% of the total reactivity. They have been scaled to 41/33/26%.

34 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 45% for OH on CH(OH)(OH), 33% for CH on CH(OH)(OH), 9% for OH on CH(OH), 7% for CH on CH(OH), 6% for for the electron transfer on CO(O⁻). The two first pathways are considered corresponding to 78% of the total reactivity. They have been scaled to 58/42%.

35 - 2,3-dioxobutanal has seven distinct hydrates. The hydration to $CH_3C(OH)(OH)C(OH)(OH)(OH)(OH)$ and $CH_3COC(OH)(OH)(OH)(OH)(OH)$ are estimated respectively to $K_h = 1.97 \ 10^5$ and $K_h = 5.15 \ 10^4$ and represent 77% and 20% of the total species. Therefore, only the reactivity of these two hydrates is considered.

36 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 42% for OH on CH(OH)(OH), 36% for OH on C(OH)(OH), 13% for CH on CH(OH)(OH). 9% on CH₃. The first two pathways are considered corresponding to 78% of the total reactivity. They have been scaled to 54/46%.

37 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 30% for OH on CH₃C(OH)(OH), 28% for OH on CH(OH)(OH), 27% for OH on the other C(OH)(OH), 10% for CH on C(OH)(OH) and 5% on CH₃. The first three pathways are considered corresponding to 85% of the total reactivity. They have been scaled to 35/33/32%.

38 - 2-hydroxy,3-oxobutanal has three distinct hydrates. The hydration to CH₃COCH(OH)(OH) is estimated to $K_h = 3.5 \ 10^1$. This hydrate represents 64% of the total species, therefore only its reactivity is considered. 39 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 44% for OH on CH(OH)(OH), 32% for CH on CH(OH)(OH), 9% CH₃. 8% for OH on CH(OH) and 6% for CH on CH(OH). The first two pathways are considered corresponding to 76% of the total reactivity. They have been scaled to 58/42%.

40 - 2-hydroxy, 3-oxobutanoïc acid hydration is estimated to K_h = 0.53. The hydrate represents 35% of the total species. Therefore the reactivity of both the hydrated and non-hydrated species are considered. 2-hydroxy, 3-oxobutanoate ion is estimated to K_h = 0.07. The hydrate represents 7% of the total species. Therefore only the reactivity of non hydrated ion is considered.

41 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 55% on CH₃, 33% for OH on CH(OH) and 12% for CH on CH(OH). The first two pathways are considered corresponding to 88% of the total reactivity. They have been scaled to 63/37%.

42 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 74% for OH on C(OH)(OH), 13% on CH₃, 10% for OH on CH(OH) and 3% for CH on CH(OH). The first two pathways are considered corresponding to 87% of the total reactivity. They have been scaled to 85/15%.

43 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 29% for the electron transfer on CO(O⁻), 27% for OH on CH(OH), 25% on CH₃ and 19% for CH on CH(OH). The first three pathways are considered corresponding to 81% of the total reactivity. They have been scaled to 36/33/31%.

44 - 2,4-dihidroxy-3-oxobutanoic acid has one hydrate $CH_2(OH)C(OH)(OH)CH(OH)CO(OH)$ with $K_h = 2.36$. The hydrated form represents 70% of the total species. Therefore, only the reactivity of the hydrate is considered. For the monoanion, the hydrated form represents only 24% of the total species ($K_h = 0.31$). Therefore, only the reactivity of the non-hydrated form is considered.

45 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 47% for OH on C(OH)(OH) 34% for CH₂ on CH₂(OH), 10% for OH on CH₂(OH), 7% for OH on CH(OH) and 2% for CH on CH(OH). The two first pathways are considered corresponding to 81% of the total reactivity. They have been scaled to 58/42%.

46 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 50% for CH₂ on CH₂(OH), 15% for the electron transfer on CO(O⁻), 14% for OH on CH(OH), 12% for OH on CH₂(OH), 9% for CH on CH(OH). The three first pathways are considered corresponding to 79% of the total reactivity. They have been scaled to 63/19/18%.

47 - 2-hydroxy, 3,4-dioxobutanoic acid di-hydration is estimated to K_h = 1.5 10⁴. The dihydrate represents 96% of the total species. Therefore only the reactivity of the dihydrate is considered. 2-hydroxy, 3,4-dioxobutanoate ion is estimated to K_h = 9.2 10². The dihydrate and the monohydrate (on the aldehyde function) represent respectively 81% and 18% of the total species. Therefore the reactivity of these two hydrates is considered.

48 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 39% for OH on CH(OH)(OH), 39% for OH on C(OH)(OH), 14% for CH on CH(OH)(OH), 6% for OH on CH(OH) and 2% for CH on CH(OH). The first two pathways are considered corresponding to 78% of the total reactivity. They have been scaled to 50/50%.

49 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 46% for OH on CH(OH)(OH), 21% for CH on CH(OH)(OH), 13% for the electron transfer on CO(O⁻), 12% for OH on CH(OH), 8% for CH on CH(OH). The first three pathways are considered corresponding to 80% of the total reactivity. They have been scaled to 58/26/16%.

50 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 33% for OH on CH(OH)(OH), 33% for OH on C(OH)(OH), 12% CH on CH(OH)(OH), 9% for the electron transfer on CO(O⁻), 9% for OH on CH(OH), 4% for CH on CH(OH). The first three pathways are considered corresponding to 78% of the total reactivity. They have been scaled to 42/42/16%.

51 - 2-oxomalic acid hydration is estimated to $K_h = 80$. The hydrate represents 99% of the total species. Therefore only the reactivity of the hydrate is considered. The first 2-oxomalate monoanion (CO(OH)CH(OH)COCO(O⁻)) hydration is estimated to $K_h = 0.52$. The hydrate represents 34% of the total species. Therefore the reactivity of both hydrated and non hydrated ions is considered. The second 2-oxomalate monoanion (CO(O⁻)CH(OH)COCO(OH)) hydration is estimated to $K_h = 10.8$. The hydrate represents 92% of the total species. Therefore only the reactivity of the hydrate is considered. The 2-oxomalate dianion hydration is estimated to $K_h = 0.7$. The hydrate represents 7% of the total species. Therefore only the non hydrated form is considered.

52 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 79% for OH on C(OH)(OH), 18% for OH on CH(OH), 3% for CH on CH(OH). The first pathway is considered corresponding to 79% of the total reactivity. It has been scaled to 100%.

53 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 42% for the electron transfer on CO(O⁻), 42% for OH on CH(OH), 16% for CH on CH(OH). The first two pathways are considered corresponding to 84% of the total reactivity. They have been scaled to 50/50%.

54 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 79% for OH on C(OH)(OH), 10% for OH on CH(OH), 8% for the electron transfer on CO(O⁻), 3% for CH on CH(OH). The first pathway is considered corresponding to 79% of the total reactivity. It has been scaled to 100%.

55 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 51% for OH on C(OH)(OH), 22% for the electron transfer on CO(O⁻), 20% for OH on CH(OH), 7% for CH on CH(OH). The first three pathways are considered corresponding to 93% of the total reactivity. They have been scaled to 55/24/21%.

56 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 32% for the electron transfer on CO(O⁻)CH(OH), 29% for OH on CH(OH), 22% for CH on CH(OH). 17% for the electron transfer on COCO(O⁻). The first three pathways are considered corresponding to 83% of the total reactivity. They have been scaled to 39/35/26%.

57 - Dioxosuccinic acid di-hydration is estimated to 1.0 10⁶. The dihydrate represents 99% of the total species. Therefore only the reactivity of the dihydrate is considered. Dioxosuccinate monoanion di-hydration is estimated to 1.1 10³. The dihydrate and the monohydrate represent 81% and 17% of the total species. Therefore only the reactivity of the dihydrate and the monohydrate is considered. Dioxosuccinate dianion hydration is estimated to 3.3. The monohydrate and the non-hydrated form represent 58% and 23% of the total species respectively. Therefore only the reactivity of the monohydrate and the non-hydrated form is considered.

58 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 100% for OH on C(OH)(OH).

59 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 82% for OH on C(OH)(OH), 18% for the electron transfer on CO(O⁻). The first pathway is considered corresponding to 82% of the total reactivity. It has been scaled to 100%.

60 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 60% for OH on C(OH)(OH)(OH)CO(O⁻), 34% for OH on CO(OH)C(OH)(OH), 6% for the electron transfer on CO(O⁻). The first two pathways are considered corresponding to 94% of the total reactivity. They have been scaled to 64/36%

61 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 100% for the electron transfer on CO(O⁻).

62 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 82% for OH on C(OH)(OH), 10% for the electron transfer on COCO(O⁻), 8% for the electron transfer on C(OH)(OH)CO(O⁻). The first pathway is considered corresponding to 82% of the total reactivity. It has been scaled to 100%.

63 - 2,3-dioxobutanedial tri-hydration is estimated to 2.58 10¹¹. The dihydrate represents 98% of the total species. Therefore only the reactivity of the trihydrate is considered.

64 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 44% for OH on CH(OH)(OH), 41% for OH C(OH)(OH), 15% for H on CH(OH)(OH). The two first pathways are considered corresponding to 85% of the total reactivity. It has been scaled to 52/48%.

65 - 2,3-dioxobutanoic acid di-hydration is estimated to 1.1 10³. The dihydrate represents 82% of the total species. Therefore only the reactivity of the dihydrate is considered. For the first mono-hydrate CH₃C(OH)(OH)COCO(O-), K_h = 1.25 and for the second mono-hydrate, K_h = 1.25. For the di-hydrate, K_h = 0.78. The two hydrates represent 29% and 29% of the total species. The di-hydrate represents only 18% of the total species. Therefore the reactivity of the two mono-hydrates and the non-hydrated form is considered.

66 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 56% for OH of C(OH)(OH) on CH₃C(OH)(OH), 34% for OH of C(OH)(OH) on C(OH)(OH), 10% for CH₃. The two first pathways are considered corresponding to 90% of the total reactivity. It has been scaled to 62/38%.

67 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 63% for CH₃, 37% for the electron transfer on COCO(O⁻). The two pathways are considered corresponding to 100% of the total reactivity.

68 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 76% for OH on C(OH)(OH), 14% for CH₃ and 10% for the electron transfer on COCO(O⁻). The first pathway is considered corresponding to 76% of the total reactivity. It has been scaled to 100%.

69 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 76% for OH on C(OH)(OH), 16% for CH₃ and 10% for the electron transfer on COCO(O⁻). The first pathway is considered corresponding to 76% of the total reactivity. It has been scaled to 100%.

70 - 2,3-dioxo-4-hydroxybutanal tri-hydration is estimated to 2.0 10⁶. The tri-hydrate represents 93% of the total species. Therefore only the reactivity of the trihydrate is considered.

71 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 24% for OH on CH(OH)(OH), 24% for OH of C(OH)(OH) on CH₂(OH)C(OH)(OH), 22% for OH of C(OH)(OH) on C(OH)(OH)CH(OH)(OH), 17% for CH₂, 8% for CH on CH(OH)(OH), 5% for OH on CH₂(OH). The 4 first pathways are considered corresponding to 87% of the total reactivity. It has been scaled to 28/27/25/20%.

72 - 2,3-dioxo-4-hydroxybutanoic acid dihydration is estimated to 7.3 10^3 . The dihydrate represents 95% of the total species. Therefore only the reactivity of the dihydrate is considered. The K_h for the monohydrates CH₂(OH)C(OH)(OH)COC(O⁻) and CH₂(OH)COC(O⁻) and CH₂(OH)COC(O⁻) and of the di-hydrate is considered. The K_h = 6.4. Therefore, only the reactivity of CH₂(OH)C(OH)(OH)COC(O⁻) and of the di-hydrate is considered.

73 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 38% for OH of C(OH)(OH) on CH₂(OH)C(OH)(OH), 28% for CH₂, 24% for OH of C(OH)(OH) on C(OH)(OH), 9% for OH on CH₂(OH). The three first pathways are considered corresponding to 90% of the total reactivity. It has been scaled to 42/31/27%.

74 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) :48% for OH on C(OH)(OH), 34% for CH₂, 12% for OH on CH₂(OH), 7% for the electron transfer on CO(O⁻). The two first pathways are considered corresponding to 82% of the total reactivity. It has been scaled to 58/42%.

75 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 35% for OH of C(OH)(OH) on C(OH)(OH)CO(O⁻), 31% for OH of C(OH)(OH) on CH₂(OH)C(OH)(OH), 23% for CH2, 7% for OH on CH₂(OH), 3% for the electron transfer on CO(O⁻). The three first pathways are considered corresponding to 89% of the total reactivity. It has been scaled to 39/35/26%.

76 - 2,3,4-trioxobutanoic acid tri-hydration is estimated to 5.08 10⁸. The trihydrate represents 99% of the total species. Therefore only the reactivity of the trihydrate is considered. The monoanion tri-hydration is estimated to 1.97 10⁵. The trihydrate and the dihydrate CH(OH)(OH)(OH)(OH)(OOCO(O⁻)) represent 76% and 20% of the total species. Therefore only the reactivity of the trihydrate and this dihydrate is considered.

77 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 34% for OH on CH(OH)(OH), 32% for OH of C(OH)(OH) on CH(OH)(OH), 22% for OH on C(OH)(OH) on C(OH)(OH), 12% for OH on CH(OH)(OH), 12% for OH on CH(OH)(OH). The three first pathways are considered corresponding to 88% of the total reactivity. It has been scaled to 39/36/25%.

78 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 44% for OH on CH(OH)(OH), 37% for OH on C(OH)(OH), 13% for CH on CH(OH)(OH), 6% for the electron transfer on CO(O⁻). The two first pathways are considered corresponding to 81% of the total reactivity. It has been scaled to 54/46%.

79 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 32% for OH of C(OH)(OH) on C(OH)(OH)CO(O-), 29% for OH on CH(OH)(OH), 27% for OH of C(OH)(OH) on CH(OH)(OH)C(OH)(OH), 10% for CH of CH(OH)(OH), 3% for for the electron transfer on CO(O⁻). The three first pathways are considered corresponding to 88% of the total reactivity. It has been scaled to 36/33/31%.

80 - Methacrylic acid epoxide is supposed to be quickly hydrolysed. The pH dependence of this hydrolysis has been studied by Birdsall et al. (2014) and is considered for this species.

81 - Hydroxymethyl-methyl-α-lactone is supposed to be quickly hydrolysed like methacrylic acid. The same hypothesis can be found in Kjaergaard et al. (2012). We do not consider here the potential reactions with nitric acid proposed by Kjaergaard et al. (2012).

82 - The hydrolysis kinetics for HMML is unknown. An arbitrarily fast value ($k = 10^6 \text{ s}^{-1}$) is therefore applied here.

83 - 2-Methylglyceric acid can be protonated. The acidic form and the anionic form are considered.

84 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 65% for CH₂(OH), 16% for CH₃, 11% for OH on CH₂(OH) and 8% for OH on C(OH). The first two pathways are considered corresponding to 81% of the total reactivity. They have been scaled to 80/20%.

85 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 62% for CH₂(OH), 15% for CH₃, 9% for the electron transfer, 8% for OH on C(OH) and 6% for OH on CH₂(OH). The first two pathways are considered corresponding to 77% of the total reactivity. They have been scaled to 81/19%.

86 - 2-hydroxy,3-(oxomethyl)-propanoic acid hydration is estimated to 46. The hydrate represents 98% of the total species. Therefore only the reactivity of the hydrate is considered. 2-hydroxy,3-(oxomethyl)-propanoate anion hydration is estimated to 6.1. The monohydrate represents 86% of the total species. Therefore only the reactivity the hydrate is considered.

87 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 47% for OH on CH(OH)(OH), 30% for CH(OH)(OH), 15% for CH₃ and 8% for OH on C(OH). The first two pathways are considered corresponding to 77% of the total reactivity. They have been scaled to 61/39%.

88 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 34% for CH(OH)(OH), 31% for OH on CH(OH)(OH), 17% for CH₃, 9% for the electron transfer and 9% for OH on C(OH). The first three pathways are considered corresponding to 82% of the total reactivity. They have been scaled to 41/38/21%.

89 - 2-hydroxy-2-(hydroxymethyl)-3-oxopropanoic acid hydration is estimated to 84. The hydrate represents 99% of the total species. Therefore only the reactivity of the hydrate is considered. 2-hydroxy-2-(hydroxymethyl)-3-oxopropanoate anion hydration is estimated to 11. The monohydrate represents 92% of the total species. Therefore only the reactivity the hydrate is considered.

90 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 38% for CH₂(OH), 31% for OH on CH(OH)(OH), 19% for CH on CH(OH)(OH), 7% for OH on CH₂(OH) and 5% for OH on C(OH). The first three pathways are considered corresponding to 88% of the total reactivity. They have been scaled to 43/35/22%.

91 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 43% for CH₂(OH), 21% for CH(OH)(OH), 20% for OH on CH(OH)(OH), 6% for the electron transfer, 5% for OH on C(OH) and 5% forOH on CH₂(OH). The first three pathways are considered corresponding to 84% of the total reactivity. They have been scaled to 51/25/24%.

92 - 2,3-hydroxy-2-(hydroxymethyl)-propanoic acid can be protonated. The acidic form and the anionic form are considered.

93 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 80% for CH₂(OH), 15% for OH on CH₂(OH), 5% forOH on C(OH). The first pathway is considered corresponding to 80% of the total reactivity. It has been scaled to 100%.

94 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 81% for CH₂(OH), 8% for OH on CH₂(OH), 6% for the electron transfer and 5% forOH on C(OH). The first pathway is considered corresponding to 81% of the total reactivity. It has been scaled to 100%.

95 - Methyltartronic acid can be protonated two times. The acidic form and the two anionic forms are considered.

96 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 66% for CH₃ and 34% for OH on C(OH). The first two pathways are considered corresponding to 100% of the total reactivity.

97 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 48% for CH₃, 27% for electron transfer, and 25% forOH on C(OH). The first two pathways are considered corresponding to 75% of the total reactivity. They have been scaled to 64/36%.

98 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 43% for electron transfer, 38% for CH₃, and 19% forOH on C(OH). The first two pathways are considered corresponding to 80% of the total reactivity. They have been scaled to 53/47%.

99 - 2-hydroxy-2-(oxomethyl)-3-oxopropanoic acid hydration is estimated to 1.1 10⁵. The dihydrate represents 99% of the total species. Therefore only the reactivity of the dihydrate is considered. 2-hydroxy-2-(oxomethyl)-3-oxopropanoic anion hydration is estimated to 2 10³. The dihydrate represents 95% of the total species. Therefore only the reactivity of the dihydrate is considered. 100 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 61% for OH on CH(OH)(OH), 35% for CH(OH)(OH), and 4% forOH on C(OH). The first two pathways are considered corresponding to 96% of the total reactivity. They have been scaled to 64/36%.

101 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 44% for CH on CH(OH)(OH), 44% for OH on CH(OH)(OH), 6% for the electron transfer and 6% forOH on C(OH). The first two pathways are considered corresponding to 88% of the total reactivity. They have been scaled to 50/50%.

102 -2-(hydroxymethyl)-tartronic acid can be protonated two times. The acidic form and the two anionic forms are considered.

103 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 71% for CH₂(OH), 20% for OH on CH₂(OH), 9% for the electron transfer and 9% forOH on C(OH). The first two pathways are considered corresponding to 91% of the total reactivity. They have been scaled to 78/22%.

104 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 70% for CH₂(OH), 11% for OH on CH₂(OH), 10% for the electron transfer and 9% forOH on C(OH). The first two pathways are considered corresponding to 81% of the total reactivity. They have been scaled to 86/14%.

105 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 67% for CH₂(OH), 18% for the electron transfer, 9% forOH on C(OH) and 6% for OH on CH₂(OH). The first two pathways are considered corresponding to 85% of the total reactivity. They have been scaled to 79/21%.

106 - 2-(oxomethyl)-tartronic acid hydration is estimated to 343. The hydrate represents 99.7% of the total species. Therefore only the reactivity of the hydrate is considered. 2-(oxomethyl)-tartronate monoanion hydration is estimated to 46. The hydrate represents 98% of the total species. Therefore only the reactivity of the hydrate is considered. 2-(oxomethyl)-tartronate dianion hydration is estimated to 6.1. The hydrate represents 86% of the total species. Therefore only the reactivity of the hydrate is considered. 2-(oxomethyl)-tartronate dianion hydration is estimated to 6.1. The hydrate represents 86% of the total species. Therefore only the reactivity of the hydrate is considered.

107 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 68% for OH on CH(OH)(OH), 26% for CH on CH(OH)(OH) and 6% fo OH on C(OH). The first two pathways are considered corresponding to 94% of the total reactivity. They have been scaled to 72/28%.

108 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 49% for OH on CH(OH)(OH), 33% for CH on CH(OH)(OH), 9% for the electron transfer and 9% fo OH on C(OH). The first two pathways are considered corresponding to 82% of the total reactivity. They have been scaled to 60/40%.

109 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 37% for CH on CH(OH)(OH), 32% for OH on CH(OH)(OH), 21% for the electron transfer and 10% fo OH on C(OH). The first three pathways are considered corresponding to 90% of the total reactivity. They have been scaled to 41/36/23%.

110 - Hydroxymethanetricarboxylic acid can be protonated three times. The acidic form and the three anionic forms are considered.

111 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 100% for OH on C(OH).

112 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 52% for the electron transfer, 48% for OH on C(OH). Both pathways are considered corresponding to 100% of the total reactivity.

113 - Branching ratios are calculated by the SAR from Doussin and Monod (2013): 69% for the electron transfer, 31% for OH on C(OH). Both pathways are considered corresponding to 100% of the total reactivity.

114 - Branching ratios are calculated by the SAR from Doussin and Monod (2013) : 77% for the electron transfer, 23% for OH on C(OH). The first pathway is considered corresponding to 77% of the total reactivity. It has been scaled to 100%.

115 - Methacrylic acid can be protonated. The acidic form and the anionic form are considered.

116 - For Methacrylic acid and Methacrylate, we suppose that the addition on the external double bonded carbon is the main oxidation pathway. This is corroborated by RPE measurements carried out by J.-L. Clément (pers. comm.).

References:

Birdsall, A. W., Miner, C. R., Mael, L. E., Elrod, M. J.: Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide, Atmos. Chem. Phys., 14, 12951-12964, doi:10.5194/acp-14-12951-2014, 2014.

Bothe, E., Schuchmann, M. N., Schulte-Frohlinde, D., and Von Sonntag, C.: HO₂ Elimination from α-hydroxyalkylperoxyl radicals in aqueous solution, Photochem. Photobiol., 28, 639-643, 1978.

Doussin, J. F., and Monod, A.: Structure–activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase, Atmos. Chem. Phys., 13, 11625-11641, 2013.

Hilborn, J. W., and Pincock, J. A.: Rates of decarboxylation of acyloxy radicals formed in the photocleavage of substituted 1-naphthylmethyl alkanoates, J. Am. Chem. Soc., 113, 2683-2686, 1991.

Kjaergaard, H. G., Knap, H. C., Ornso, K. B., Jorgensen, S., Crounse, J. D., Paulot, F., and Wennberg, P. O.: Atmospheric fate of methacrolein. 2. Formation of lactone and implications for organic aerosol production, J. Phys. Chem. A, 116, 5763-5768, 10.1021/jp210853h, 2012.

McElroy, W. J., and Waygood, S. J.: Oxidation of formaldehyde by the hydroxyl radical in aqueous solution, J. Chem. Soc. Far. Trans., 87, 1513-1521, 1991.

Minakata, D., Li, K., Westerhoff, P., and Crittenden, J.: Development of a group contribution method to predict aqueous phase hydroxyl radical (HO*) reaction rate constants, Environ. Sci. Tech., 43, 6220-6227, 10.1021/es900956c, 2009.

Monod, A., Chevallier, E., Durand Jolibois, R., Doussin, J. F., Picquet-Varrault, B., and Carlier, P.: Photooxidation of methylhydroperoxide and ethylhydroperoxide in the aqueous phase under simulated cloud droplet conditions, Atmos. Environ., 41, 2412-2426, 2007.

Neta, P., Huie, R., and Ross, A.: Rate constants for reactions of peroxyl radicals in fluid solutions, J. Phys. Chem. Ref. Data, 19, 413, 1990.

Piesiak, A., Schuchmann, M. N., Zegota, H., and von Sonntag, C.: β -Hydroxyethylperoxyl radicals: A study of the y-radiolysis and pulse radiolysis of ethylene in oxygenated aqueous solutions, Z. Naturforsch., 39b, 1262-1267, 1984.

Schuchmann, M. N., and Von Sonntag, C.: The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution, J. Am. Chem. Soc., 110, 5698-5701, 1988.

Schuchmann, M. N., Zegota, H., and Von Sonntag, C.: Acetate peroxyl radicals ·O₂CH₂CO₂⁻: A study on the γ-radiolysis and pulse radiolysis of acetate in oxygenated aqueous solutions, Z. Naturforsch., 40b, 215-221, 1985. Von Sonntag, C.: The chemical basis of radiation biology, Taylor & Francis, 1987.

Yao, L., El Haddad, I., Scarfogliero, M., Nieto-Gligorovski, L., Temime-Roussel, B., Quivet, E., Marchand, N., Picquet-Varrault, B., and Monod, A.: In-cloud processes of methacrolein under simulated conditions – Part 1: Aqueous phase photooxidation, Atmos. Chem. Phys., 9, 5093-5105, 10.5194/acp-9-5093-2009, 2009.

Zegota, H., Schuchmann, M. N., and Von Sonntag, C.: Elucidation of the mechanism of peroxyl radical reactions in aqueous solutions using the pulse radiolysis technique, J. Radioanal. Nucl. Chem., 101, 199-207, 1986.

Equilibria

Species		K_a or K_h	-ΔΗ/R (K)	References	Notes
C4 compounds			()		
Hydroxybutanedione CH ₃ COCOCH ₂ (OH) + H ₂ O \leftrightarrow CH ₃ C(OH)(OH)COCH ₂ (OH)	T(163)	2.3		Estimated	
$CH_3COCOCH_2(OH) + H_2O \leftrightarrow CH_3COC(OH)(OH)CH_2(OH)$	T(164)	5.6		Estimated with GROMHE	
$CH_{3}COCOCH_{2}(OH) + 2 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)C(OH)(OH)CH_{2}(OH)$	T(165)	6.4		Estimated with GROMHE	
$CH_3COCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH_3C(OH)(OH)COCH(OH)(OO^{\bullet})$	T(166)	2.3			$1 = K_{\rm P}(CH_{\rm P}(OCOCH_{\rm P}(OH)/CH_{\rm P}(OH)(OH)COCH_{\rm P}(OH))$
$CH_{3}COCOCH(OH)(OO^{\bullet}) + H_{2}O \leftrightarrow CH_{3}COC(OH)(OH)CH(OH)(OO^{\bullet})$	T(167)	5.6			$1 = K_{\rm h}(CH_{\rm s}COCOCH_{\rm s}(OH)/CH_{\rm s}COC(OH)(OH)CH_{\rm s}(OH))$
$CH_{3}COCOCH(OH)(OO^{\bullet}) + 2 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(168)	6.4			$1 = K_{h}(CH_{2}COCOCH_{2}(OH)/CH_{3}C(OH)(OH)C(OH)(OH)(OH)(OH))$
3,4-dihydroxybutan-2-one CH₂(OH)CH(OH)COCH₃+ H₂O ↔ CH₂(OH)CH(OH)C(OH)(OH)CH₃	T(169)	1.3 10-1		Estimated	
$CH(OH)(OO^{\bullet})CH(OH)COCH_{3}+H_{2}O \leftrightarrow CH(OH)(OO^{\bullet})CH(OH)C(OH)(OH)CH_{3}$	T(170)	1.3 10-1		with GROMHE	$\frac{1}{1}$
$CH_2(OH)C(OH)(OO^{\bullet})COCH_3+ H_2O \leftrightarrow CH_2(OH)C(OH)(OO^{\bullet})C(OH)(OH)CH_3$	T(171)	1.3 10-1			$= K_{h}(CH_{2}(OH)CH(OH)COCH_{3}/CH_{2}(OH)CH(OH)C(OH)(OH)CH_{3})$ $= K_{h}(CH_{2}(OH)CH(OH)COCH_{3}/CH_{2}(OH)CH(OH)C(OH)(OH)CH_{3})$
1,4-dihydroxybutanedione CH ₂ (OH)COCOCH ₂ (OH) + H ₂ O \leftrightarrow CH ₂ (OH)C(OH)(OH)COCH ₂ (OH)	T(172)	2.0 10 ¹		Estimated	
$CH_2(OH)COCOCH_2(OH) + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CH_2(OH)$	T(173)	5.3 10 ¹		Estimated	
$CH_2(OH)COCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COCH(OH)(OO^{\bullet})$	T(174)	2.0 10 ¹			$\frac{1}{(CH_{2}(OH)(COCOCH_{2}(OH)/CH_{2}(OH)(OH)(OH)(OH)(OH))}$
$CH_2(OH)COCOCH(OH)(OO^{\bullet}) + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(175)	5.3 10 ¹			$= K_{h}(CH_{2}(OH)COCOCH_{2}(OH)/CH_{2}(OH)C(OH)(OH)COH)(OH)(OH)CH_{2}(OH))$ $= K_{h}(CH_{2}(OH)COCOCH_{2}(OH)/CH_{2}(OH)(OH)(OH)(OH)(OH)(OH)(OH))$
1,3,4-trihydroxybutanone CH ₂ (OH)COCH(OH)CH ₂ (OH) + H ₂ O \leftrightarrow CH ₂ (OH)C(OH)(OH)CH(OH)CH ₂ (OH)	T(176)	5.7 10 ⁻¹		Estimated	
$CH_2(OH)COCH(OH)CH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)CH(OH)CH(OH)(OO^{\bullet})$	T(177)	5.7 10 ⁻¹		with GROMHE	
$CH_2(OH)CH(OH)COCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)CH(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(178)	5.7 10 ⁻¹			$=\kappa_{h}(CH_{2}(OH)COCH(OH)CH_{2}(OH)/CH_{2}(OH)C(OH)(OH)CH(OH)CH_{2}(OH)$ $=$
$CH_2(OH)COC(OH)(OO^{\bullet})CH_2(OH) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OO^{\bullet})CH_2(OH)$	T(179)	5.7 10 ⁻¹			К _h (CH ₂ (OH)COCH(OH)CH ₂ (OH)/CH ₂ (OH)C(OH)(OH)CH(OH)CH ₂ (OH) 1

Species		K_a or K_h	-ΔH/R (K)	References	Notes
					= K _h (CH ₂ (OH)COCH(OH)CH ₂ (OH)/CH ₂ (OH)C(OH)(OH)CH(OH)CH ₂ (OH)
2,4-dihydroxy-3-oxobutanal CH ₂ (OH)COCH(OH)CHO + H ₂ O \leftrightarrow CH ₂ (OH)COCH(OH)CH(OH)(OH)	T(180)	4.5 10 ¹		Estimated	
$CH_2(OH)COCH(OH)CHO + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)CH(OH)CHO$	T(181)	2.5		with GROMHE Estimated with GROMHE	
$CH_2(OH)COCH(OH)CHO + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)CH(OH)CH(OH)(OH)$	T(182)	1.1 10 ²		Estimated with GROMHE	
$CHOCH(OH)COCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)CH(OH)COCH(OH)(OO^{\bullet})$	T(183)	4.5 10 ¹			1 = K _h (CH ₂ (OH)COCH(OH)CHO/CH ₂ (OH)COCH(OH)CH(OH)(OH)
$CHOCH(OH)COCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CHOCH(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(184)	2.5			1 = K _h (CH ₂ (OH)COCH(OH)CHO/CH ₂ (OH)C(OH)(OH)CH(OH)CHO)
CHOCH(OH)COCH(OH)(OO•) + 2 H₂O ↔ CH(OH)(OH)CH(OH)(OH)CH(OH)(OO•)	T(185)	1.1 10 ²			1 = K (CH (OH)COCH(OH)CHO(CH (OH)COH)(OH)(CH(OH)(OH)(OH))
$CH_2(OH)COCH(OH)CO(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)COCH(OH)C(OH)(OH)(OO^{\bullet})$ $CH_2(OH)COCH(OH)CO(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)CH(OH)CO(OO^{\bullet})$	T(186) T(187)	1.0 10 ⁻³ 2.5			2 1
$CH_2(OH)COCH(OH)CO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)CH(OH)C(OH)(OH)(OO^{\bullet})$	T(188)	1.1 10 ²			= $K_h(CH_2(OH)COCH(OH)CHO/CH_2(OH)C(OH)(OH)CH(OH)CHO)$ 1 =
2-ovo-2 4-dihydroxyhutanal					K _h (CH ₂ (OH)COCH(OH)CHO/CH ₂ (OH)C(OH)(OH)CH(OH)CH(OH)(OH))
$CH_2(OH)CH(OH)COCHO + H_2O \leftrightarrow CH_2(OH)CH(OH)COCH(OH)(OH)$	T(189)	2.5 10 ²		Estimated with GROMHE	
$CH_2(OH)CH(OH)COCHO + H_2O \leftrightarrow CH_2(OH)CH(OH)C(OH)(OH)CHO$	T(190)	2.3 10 ¹		Estimated with GROMHE	
$CH_2(OH)CH(OH)COCHO + 2 H_2O \leftrightarrow CH_2(OH)CH(OH)C(OH)(OH)CH(OH)(OH)$	T(191)	2.1 10 ³		Estimated with GROMHE	
$CHOCOCH(OH)CH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)COCH(OH)CH(OH)(OO^{\bullet})$	T(192)	2.5 10 ²			1 = К _h (CH ₂ (OH)CH(OH)COCHO/CH ₂ (OH)CH(OH)COCH(OH)(OH))
$CHOCOCH(OH)CH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CHOC(OH)(OH)CH(OH)CH(OH)(OO^{\bullet})$	T(193)	2.3 10 ¹			1 = К _h (CH ₂ (OH)CH(OH)COCHO/CH ₂ (OH)CH(OH)C(OH)(OH)CHO)
CHOCOCH(OH)CH(OH)(OO•) + 2 H₂O ↔ CH(OH)(OH)C(OH)(CH(OH)CH(OH)(OO•)	T(194)	2.1 10 ³			
2-oxo-3-hydroxybutanedial					
$CHOCH(OH)COCHO + H_2O \leftrightarrow CH(OH)(OH)CH(OH)COCHO$	T(195)	8.1 10 ¹		Estimated with GROMHE	
$CHOCH(OH)COCHO + H_2O \leftrightarrow CHOCH(OH)COCH(OH)(OH)$	T(196)	4.6 10 ²		Estimated with GROMHE	

Species		Ka or Kh	-ΔH/R	References	Notes
			(K)		
CHOCH(OH)COCHO + H ₂ O $↔$ CHOCH(OH)C(OH)(OH)CHO	T(197)	1.0 10 ²		Estimated	
	T(108)	5 2 104		WITH GROMHE	
	1(150)	5.2 10		with GROMHE	
CHOCH(OH)COCHO + 2 H ₂ O $↔$ CH(OH)(OH)CH(OH)C(OH)(OH)CHO	T(199)	8.2 10 ³		Estimated	
				with GROMHE	
$CHOCH(OH)COCHO + 2 H_2O \leftrightarrow CHOCH(OH)C(OH)(OH)CH(OH)(OH)$	T(200)	1.7 10 ⁴		Estimated	
	T(201)	1 / 106		WITH GROWIE	
	1(201)	1.4 10		with GROMHE	
$CHOCOCH(OH)CO(OO^{\bullet}) + H_2O \leftrightarrow CHOCOCH(OH)C(OH)(OH)(OO^{\bullet})$	T(202)	1.0 10-3			2
$CHOCOCH(OH)CO(OO^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)COCH(OH)CO(OO^{\bullet})$	T(203)	4.6 10 ²			1
		_			= K _h (CHOCH(OH)COCHO/CHOCH(OH)COCH(OH)(OH))
$CHOCOCH(OH)CO(OO^{\bullet}) + H_2O \leftrightarrow CHOC(OH)(OH)CH(OH)CO(OO^{\bullet})$	T(204)	1.0 10 ²			
$CHOCOCH(OH)(CO(OO^{\bullet}) + 2 H_{2}O \leftarrow CH(OH)(OH)(COCH(OH)(OH)(OH)(OO^{\bullet})$	T(205)	5 2 10 ⁴			$= K_h(CHOCH(OH)COCHO/CHOCH(OH)C(OH)(OH)CHO)$
	1(200)	5.2 10			= $K_h(CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)COCH(OH)(OH))$
$CHOCOCH(OH)CO(OO^{\bullet}) + 2 H_2O \leftrightarrow CHOC(OH)(OH)CH(OH)C(OH)(OH)(OO^{\bullet})$	T(206)	8.2 10 ³			1
					= K _h (CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)C(OH)(OH)CHO)
$CHOCOCH(OH)CO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH(OH)(OH)C(OH)(OH)CH(OH)CO(OO^{\bullet})$	T(207)	1.7 104			
	T(208)	1 / 106			= Kh(CHOCH(OH)COCHO/CHOCH(OH)C(OH)(OH)CH(OH)(OH)) 1
	1(200)	1.4 10			=
					К _h (CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)C(OH)(OH)CH(OH)(OH))
$CHOCH(OH)COCO(OO^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)CH(OH)COCO(OO^{\bullet})$	T(209)	8.1 10 ¹			1
	T (24.0)	4 0 4 0 3			= K _h (CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)COCHO)
$CHOCH(OH)COCO(OO^{*}) + H_{2}O \leftrightarrow CHOCH(OH)COC(OH)(OH)(OO^{*})$	T(210)	$1.0\ 10^{-3}$			2
$CHOCH(OH)COCO(OO) + H_2O \leftrightarrow CHOCH(OH)C(OH)CO(OO)$	1(211)	1.0 10-			= K*(CHOCH(OH)COCHO/CHOCH(OH)C(OH)(OH)CHO) T
CHOCH(OH)COCO(OO•) + 2 H ₂ O $↔$ CH(OH)(OH)CH(OH)COC(OH)(OH)(OO•)	T(212)	5.2 10 ⁴			1
					= K _h (CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)COCH(OH)(OH))
$CHOCH(OH)COCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH(OH)(OH)CH(OH)C(OH)(OH)CO(OO^{\bullet})$	T(213)	8.2 10 ³			1
	T(214)	1 7 104			$= K_{h}(CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)C(OH)(OH)CHO)$
$CHOCH(OH)COCO(OO) + 2 H_2 O \leftrightarrow CHOCH(OH)C(OH)(OH)(OH)(OH)(OO)$	1(214)	1.7 10			$= K_{\rm P}({\rm CHOCH}({\rm OH}){\rm COCHO}/{\rm CHOCH}({\rm OH}){\rm C}({\rm OH})({\rm OH}){\rm OH}))$
$CHOCH(OH)COCO(OO^{\bullet}) + 3 H_2O \leftrightarrow CH(OH)(OH)CH(OH)C(OH)(OH)C(OH)(OH)(OO^{\bullet})$	T(215)	1.4 10 ⁶			1
					=
					К _h (CHOCH(OH)COCHO/CH(OH)(OH)CH(OH)C(OH)(OH)CH(OH)(OH))
	T(216)	4 1 10-3			
$CO(OH)COCH(OH)CHO + H^{O} CO(OH)COCH(OH)CHO + H_{COCH(OH)CHO}$	T(217)	4.1 10 ° 7 9 101		Estimated	$= w_{3}(c_{13}c_{0}c_{0}(0))/(c_{13}c_{0}c_{0}(0)))$
$CO(OT)COCT(OT)CTO + T2O \leftrightarrow CO(OT)COCT(OT)CT(OT)(OT)$	1(217)	1.5 10		Lounateu	

with GROMHE

Species		Ka or Kh	-ΔΗ/R	References	Notes
$CO(OH)COCH(OH)CHO + H_2O \leftrightarrow CO(OH)C(OH)(OH)CH(OH)CHO$	T(218)	8.6 10 ¹	(K)	Estimated	
CO(OH)COCH(OH)CHO + 2 H₂O ↔ CO(OH)C(OH)(OH)CH(OH)CH(OH)(OH)	T(219)	6.7 10 ³		with GROMHE Estimated	
$CO(O^{-})COCH(OH)CHO + H_2O \leftrightarrow CO(O^{-})COCH(OH)CH(OH)(OH)$	T(220)	3.5 10 ¹		with GROMHE Estimated	
$CO(O^{-})COCH(OH)CHO + H_2O \leftrightarrow CO(O^{-})C(OH)(OH)CH(OH)CHO$	T(221)	5.6 10 ⁻¹		with GROMHE Estimated	
$CO(O^{-})COCH(OH)CHO + 2 H_2O \leftrightarrow CO(O^{-})C(OH)(OH)CH(OH)CH(OH)(OH)$	T(222)	19.7		Estimated	
$CO(OO^{\bullet})CH(OH)COCO(OH) \leftrightarrow CO(OO^{\bullet})CH(OH)COCO(O^{-}) + H^{+}$	T(223)	4.1 10-3		WITH GROWIE	3
CO(OO•)CH(OH)COCO(OH) + H ₂ O ↔ C(OH)(OH)(OO•)CH(OH)COCO(OH)	T(224)	1.0 10-3			$= K_a(CO(OH)COCH(OH)CHO/CO(O^{-})COCH(OH)CHO)$ 2
$CO(OO^{\bullet})CH(OH)COCO(OH) + H_2O \leftrightarrow CO(OO^{\bullet})CH(OH)C(OH)(OH)CO(OH)$	T(225)	8.6 10 ¹			1 = K_(CO(OH)COCH(OH)CHO/CO(OH)C(OH)(OH)CH(OH)CHO)
$CO(OO^{\bullet})CH(OH)COCO(OH) + 2 H_2O \leftrightarrow C(OH)(OH)(OO^{\bullet})CH(OH)C(OH)(OH)CO(OH)$	T(226)	6.7 10 ³			1 = k (CO(OH)(CO(OH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(C
$CO(OO^{\bullet})CH(OH)COCO(O^{-}) + H_2O \leftrightarrow C(OH)(OH)(OO^{\bullet})CH(OH)COCO(O^{-})$	T(227)	1.0 10-3			2
$CO(OO^{\bullet})CH(OH)COCO(O^{-}) + H_2O \leftrightarrow CO(OO^{\bullet})CH(OH)C(OH)(OH)CO(O^{-})$	T(228)	5.6 10 ⁻¹			$1 = K_{*}(CO(O)(COCH(OH)(CHO/CO(O)(C(OH)(OH)(CHO)))$
$CO(OO^{\bullet})CH(OH)COCO(O^{-}) + 2 \operatorname{H}_2O \longleftrightarrow C(OH)(OH)(OO^{\bullet})CH(OH)C(OH)(OH)CO(O^{-})$	T(229)	19.7			$\frac{1}{2} \times (CO(0-)CO(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)(CH)$
2,3-dioxobutanal					$= \kappa_{h}(colo)(con(cn)cno(colo)(con)(cn)(cn)(cn)(cn))$
$CH_3COCOCHO + H_2O \leftrightarrow CH_3COCOCH(OH)(OH)$	T(230)	6.3 10 ²		Estimated with GROMHE	
$CH_3COCOCHO + H_2O \leftrightarrow CH_3C(OH)(OH)COCHO$	T(231)	1.0 10 ¹		Estimated	
CH₃COCOCHO + H₂O ↔ CH₃COC(OH)(OH)CHO	T(232)	2.3 10 ²		with GROMHE Estimated	
	T(222)	2 1 103		with GROMHE	
$CH_{3}COCOCHO + 2 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)COCH(OH)(OH)$	1(233)	3.1 10°		Estimated with GROMHE	
CH ₃ COCOCHO + 2 H ₂ O \leftrightarrow CH ₃ COC(OH)(OH)CH(OH)(OH)	T(234)	2.4 10 ⁴		Estimated	
CH ₃ COCOCHO + 2 H ₂ O $↔$ CH ₃ C(OH)(OH)C(OH)(OH)CHO	T(235)	5.7 10 ²		Estimated	
$CH_3COCOCHO + 3 H_2O \leftrightarrow CH_3C(OH)(OH)C(OH)(OH)CH(OH)(OH)$	T(236)	2.9 10 ⁴		Estimated	
$CH_3COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CH_3COCOC(OH)(OH)(OO^{\bullet})$	T(237)	1.0 10-3			2
$CH_{3}COCOCO(OO^{\bullet}) + H_{2}O \leftrightarrow CH_{3}C(OH)(OH)COCO(OO^{\bullet})$	T(238)	1.0 10 ¹			1
$CH_3COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CH_3COC(OH)(OH)CO(OO^{\bullet})$	T(239)	2.3 10 ²			= $K_h(CH_3COCOCHO/CH_3C(OH)(OH)COCHO)$ 1 = $K_h(CH_3COCOCHO/CH_3COC(OH)(OH)CHO)$

Species		K_{a} or K_{h}	-ΔΗ/R (K)	References	Notes
$CH_3COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH_3C(OH)(OH)COC(OH)(OH)(OO^{\bullet})$	T(240)	3.1 10 ³	(**)		
CH ₃ COCOCO(OO [•]) + 2 H ₂ O $↔$ CH ₃ COC(OH)(OH)(OH)(OH)(OO [•])	T(241)	2.4 10 ⁴			$= K_{h}(CH_{3}COCOCHO/CH_{3}C(OH)(OH)COCH(OH)(OH))$ 1 $= K_{h}(CH_{3}COCOCHO/CH_{3}COC(OH)(OH)(OH)(OH)(OH))$
$CH_{3}COCOCO(OO^{\bullet}) + 2 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)C(OH)(OH)CO(OO^{\bullet})$	T(242)	5.7 10 ²			$= K_{h}(CH_{3}COCOCHO/CH_{3}C(OH)(OH)(OH)(OH)(OH)(OH))$ $= K_{h}(CH_{3}COCOCHO/CH_{3}C(OH)(OH)(OH)(OH)(OH)(OH)(OH))$
$CH_{3}COCOCO(OO^{\bullet}) + 3 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)C(OH)(OH)(OH)(OO^{\bullet})$	T(243)	2.9 10 ⁴			$1 = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left($
$CH_2(OO^{\bullet})COCOCHO + H_2O \leftrightarrow CH_2(OO^{\bullet})COCOCH(OH)(OH)$	T(244)	6.3 10 ²			$= K_{h}(CH_{2}COCOCHO/CH_{3}COCOCH(OH)(OH)(OH)(OH)(OH))$ $= K_{h}(CH_{2}COCOCHO/CH_{2}COCOCH(OH)(OH))$
$CH_2(OO^{\bullet})COCOCHO + H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)COCHO$	T(245)	1.0 10 ¹			1 - K (CH SOCOCHO/CH S(OLI)(OLI)(OLI))
$CH_2(OO^{\bullet})COCOCHO + H_2O \leftrightarrow CH_2(OO^{\bullet})COC(OH)(OH)CHO$	T(246)	2.3 10 ²			$= K_h(CH_3COCOCHO)(CH_3C(OH)(OH)(OH)(OH))$
$CH_2(OO^{\bullet})COCOCHO + 2 H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)COCH(OH)(OH)$	T(247)	3.1 10 ³			$= K_{h}(CH_{3}COCOCHO/CH_{3}COC(OH)(OH)CHO)$ 1 $K_{h}(CH_{3}COCOCHO/CH_{3}COC(OH)(OH)(OH)(OH))$
$CH_2(OO^{\bullet})COCOCHO + 2 H_2O \leftrightarrow CH_2(OO^{\bullet})COC(OH)(OH)CH(OH)(OH)$	T(248)	2.4 10 ⁴			$= K_{h}(CH_{3}COCOCHO/CH_{3}C(OH)(OH)COCH(OH)(OH))$ 1 $K_{h}(CH_{3}COCOCHO/CH_{3}C(OH)(OH)(OH)(OH))$
$CH_2(OO^{\bullet})COCOCHO + 2 H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)C(OH)(OH)CHO$	T(249)	5.7 10 ²			$= K_{h}(CH_{3}COCCOCHO/CH_{3}COC(OH)(OH)(OH)(OH)(OH))$ 1 $= K_{h}(CH_{3}COCCOCHO/CH_{3}COC(OH)(OH)(OH)(OH)(OH))$
$CH_2(OO^{\bullet})COCOCHO + 3 H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)C(OH)(OH)CH(OH)(OH)$	T(250)	2.9 10 ⁴			$= K_{h}(cH_{3}COCCCHO/cH_{3}C(OH)(OH)C(OH)(OH)(OH)(OH))$ $= K_{h}(cH_{3}COCCCHO/cH_{3}C(OH)(OH)(OH)(OH)(OH)(OH)(OH))$
2-hydroxy, 3-oxobutanal					
$CH_3COCH(OH)CHO + H_2O \leftrightarrow CH_3COCH(OH)CH(OH)(OH)$	T(251)	3.5 10 ¹		Estimated	
$CH_{3}COCH(OH)CHO + H_{2}O \leftrightarrow CH_{3}C(OH)(OH)CH(OH)CHO$	T(252)	5.6 10 ⁻¹		Estimated with GROMHE	
$CH_{3}COCH(OH)CHO + 2 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)CH(OH)CH(OH)(OH)$	T(253)	9.7		Estimated with GROMHE	
$CH_{3}COCH(OH)CO(OO^{\bullet}) + H_{2}O \leftrightarrow CH_{3}COCH(OH)C(OH)(OH)(OO^{\bullet})$	T(254)	10-3			2
$CH_{3}COCH(OH)CO(OO^{\bullet}) + H_{2}O \leftrightarrow CH_{3}C(OH)(OH)CH(OH)CO(OO^{\bullet})$	T(255)	5.6 10-1			
$CH_{3}COCH(OH)CO(OO^{\bullet}) + 2 H_{2}O \leftrightarrow CH_{3}C(OH)(OH)CH(OH)C(OH)(OH)(OO^{\bullet})$	T(256)	9.7			$= K_h(CH_3COCH(OH)CHO/CH_3C(OH)(OH)CH(OH)CHO)$ $= K_h(CH_3COCH(OH)CHO/CH_3C(OH)(OH)(OH)(OH)(OH)(OH))$
$CH_2(OO^{\bullet})COCH(OH)CHO + H_2O \leftrightarrow CH_2(OO^{\bullet})COCH(OH)CH(OH)(OH)$	T(257)	3.5 10 ¹			1 x (c) cocu(c) c) c) c (c) cocu(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)
$CH_2(OO^{\bullet})COCH(OH)CHO + H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)CH(OH)CHO$	T(258)	5.6 10 ⁻¹			$= \kappa_h(CH_3COCH(OH)(CH_3COCH(OH)(CH)(OH))$ 1
CH ₂ (OO•)COCH(OH)CHO + 2 H ₂ O ↔ CH ₂ (OO•)C(OH)(OH)CH(OH)CH(OH)(OH)	T(259)	9.7			$= \kappa_{h}(CH_{3}COCH(OH)CHO/CH_{3}C(OH)(OH)CH(OH)CHO)$ 1 $\kappa_{h}(CH_{3}COCH(OH)CHO/CH_{3}C(OH)(OH)CH(OH)CHO)$
2-hydroxy, 3-oxobutanoïc acid					= κ _h (cH ₃ cOcH(OH)cHO/CH ₃ c(OH)(OH)CH(OH)CH(OH)(OH))
$CH_{3}COCH(OH)CO(OH) \leftrightarrow CH_{3}COCH(OH)CO(O^{-}) + H^{+}$	T(260)	3.0 10-4			= $K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^-))$

Species		Ka or Kh	-ΔH/R	References	Notes
			(K)		
$CH_3COCH(OH)CO(OH) + H_2O \leftrightarrow CH_3C(OH)(OH)CH(OH)CO(OH)$	T(261)	5.3 10 ⁻¹		Estimated	
	T(262)	7 0 10-2		WITH GROMHE	
$CH_3COCH(OH)CO(O) + H_2O \leftrightarrow CH_3C(OH)(OH)CH(OH)CO(O)$	1(202)	7.0 10		with GROMHE	
$CO(OH)CH(OH)COCH_2(OO^{\bullet}) \leftrightarrow CO(O^{-})CH(OH)COCH_2(OO^{\bullet}) + H^{+}$	T(263)	3.0 10-4			3
					$= K_a(CH_3COCH(OH)CO(OH)/CH_3COCH(OH)CO(O^-))$
$CO(OH)CH(OH)COCH_2(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CH_2(OO^{\bullet})$	T(264)	5.3 10 ⁻¹			1
		7010-2			$= K_{h}(CH_{3}COCH(OH)CO(OH)/CH_{3}C(OH)(OH)CH(OH)CO(OH))$
$CO(O^{\circ})CH(OH)COCH_{2}(OO^{\circ}) + H_{2}O \leftrightarrow CO(O^{\circ})CH(OH)C(OH)(OH)CH_{2}(OO^{\circ})$	1(265)	7.0 10-2			
$CH^{2}COC(OH)(OO_{\bullet})CO(OH) \leftrightarrow CH^{2}COC(OH)(OO_{\bullet})CO(O_{\bullet}) + H_{\bullet}$	T(266)	3.0 10-4			$= K_{h}(CH_{3}(OH)CH(OH)CO(OH)/CH_{3}(OH)CH(OH)CO(OF))$ $= K_{3}(CH_{3}(OH)CH(OH)CO(OH)/CH_{3}(OH)CH(OH)CO(OF))$
$CH_{3}COC(OH)(OO^{\bullet})CO(OH) + H_{2}O \leftrightarrow CH_{3}C(OH)(OH)(OH)(OO^{\bullet})CO(OH)$	T(267)	5.3 10 ⁻¹		Estimated	$(-1)^{-1} (-1)$
	()			with GROMHE	
$CH_{3}COC(OH)(OO^{\bullet})CO(O^{-}) + H_{2}O \leftrightarrow CH_{3}C(OH)(OH)C(OH)(OO^{\bullet})CO(O^{-})$	T(268)	7.0 10-2		Estimated	
				with GROMHE	
2,4-dihydroxy, 3-oxobutanoic acid					
$CO(OH)CH(OH)COCH_2(OH) \leftrightarrow CO(O^{-})CH(OH)COCH_2(OH) + H^{+}$	T(269)	3.0 10-4			$= K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^-))$
$CO(OH)CH(OH)COCH_2(OH) + H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CH_2(OH)$	T(270)	2.4		Estimated	
	T(271)	2 2 10-1		With GROMHE	
$CO(O)CH(OH)COCH_2(OH) + H_2O \leftrightarrow CO(O)CH(OH)C(OH)(OH)CH_2(OH)$	1(2/1)	3.2 10 -		with GROMHE	
$CO(OH)CH(OH)COCH(OH)(OO^{\bullet}) \leftrightarrow CO(O^{\bullet})CH(OH)COCH(OH)(OO^{\bullet}) + H^{+}$	T(272)	3.0 10-4			3
	(2,2)	010 10			= $K_a(CO(OH)CH(OH)COCH_2(OH)/CO(O^-)CH(OH)COCH_2(OH))$
$CO(OH)CH(OH)COCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(273)	2.4			1
					$= K_{h}(CO(OH)CH(OH)COCH_{2}(OH)/CO(OH)CH(OH)C(OH)(OH)CH_{2}(OH))$
$CO(O^{-})CH(OH)COCH(OH)(OO^{\bullet}) + H_{2}O \leftrightarrow CO(O^{-})CH(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(274)	3.2 10 ⁻¹			1
					$= K_{h}(CO(O^{-})CH(OH)COCH_{2}(OH)/CO(O^{-})CH(OH)C(OH)(OH)CH_{2}(OH))$
	T(27E)	2 0 10-4			
$CO(OH)CH(OH)COCHO \leftrightarrow CO(O)CH(OH)COCHO + H$	T(275)	5.0 10 ⁻⁷		Estimated	$-\kappa_a(Cn_2(On)Cn(On)CO(On)/Cn_2(On)Cn(On)CO(O))$
$CO(OH)CH(OH)COCHO + H_2O \leftrightarrow CO(OH)CH(OH)COCH(OH)(OH)$	1(276)	4.4 10-		with GROMHE	
$CO(OH)CH(OH)COCHO + H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CHO$	T(277)	9.5 10 ¹		Estimated	
	()			with GROMHE	
CO(OH)CH(OH)COCHO + 2 H ₂ O $↔$ CO(OH)CH(OH)C(OH)(OH)CH(OH)(OH)	T(278)	7.1 10 ³		Estimated	
				with GROMHE	
$CO(O^{-})CH(OH)COCHO + H_{2}O \leftrightarrow CO(O^{-})CH(OH)COCH(OH)(OH)$	T(279)	2.0 10 ²		Estimated	
	T(200)	1 2 101		With GROMHE	
$CO(O)CH(OH)COCHO + H_{2}O \leftrightarrow CO(O)CH(OH)C(OH)(OH)CHO$	1(280)	1.3 10+		esumated with GROMHE	
$CO(O^{-})CH(OH)COCHO + 2 H_{2}O \leftrightarrow CO(O^{-})CH(OH)C(OH)(OH)CH(OH)(OH)$	T(281)	4.2 10 ²		Estimated	
	.(_01)	10		with GROMHE	
$CO(OH)CH(OH)COCO(OO^{\bullet}) \leftrightarrow CO(O^{-})CH(OH)COCO(OO^{\bullet}) + H^{+}$	T(282)	3.0 10-4			3

Species		$K_{\text{a}} \text{ or } K_{\text{h}}$	-ΔΗ/R (K)	References	Notes
			(K)		= K _a (CO(OH)CH(OH)COCHO/CO(O ⁻)CH(OH)COCHO)
$CO(OH)CH(OH)COCO(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)CH(OH)COC(OH)(OH)(OO^{\bullet})$	T(283)	1.0 10-3			2
$CO(OH)CH(OH)COCO(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CO(OO^{\bullet})$	T(284)	9.5 10 ¹			1
					= K _h (CO(OH)CH(OH)COCHO/CO(OH)CH(OH)C(OH)(OH)CHO)
$CO(OH)CH(OH)COCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)C(OH)(OH)(OO^{\bullet})$	T(285)	7.1 10 ³			1
	T (200)	10103			$= K_{h}(CO(OH)CH(OH)COCHO/CO(OH)CH(OH)C(OH)(OH)(OH)(OH))$
$CO(O^{\circ})CH(OH)COCO(OO^{\circ}) + H_2O \leftrightarrow CO(O^{\circ})CH(OH)COC(OH)(OH)(OO^{\circ})$	T(286)	1.0 10-3			2
$CO(O^{\circ})CH(OH)COCO(OO^{\circ}) + H_2O \leftrightarrow CO(O^{\circ})CH(OH)C(OH)(OH)CO(OO^{\circ})$	1(287)	1.3 101			
	T(288)	1 2 10 ²			$= K_{h}(CO(O)CH(OH)COCHO/CO(O)CH(OH)C(OH)(OH)CHO)$
$CO[O]CH[OH]COCO[OO] + 2 H_2O \leftrightarrow CO[O]CH[OH]COHCOH[OH](OO])$	1(200)	4.2 10			$= K^{(CO(O))CH(OH)COCHO(CO(O)CH(OH)C(OH)(OH)(OH)(OH))}$
CO(OH)C(OH)(OO•)COCHO↔ CO(O⁻)C(OH)(OO•)COCHO + H+	T(289)	3.0 10-4			3
	, ,				= K _a (CO(OH)CH(OH)COCHO/CO(O ⁻)CH(OH)COCHO)
$CO(OH)C(OH)(OO^{\bullet})COCHO + H_{2}O \leftrightarrow CO(OH)C(OH)(OO^{\bullet})COCH(OH)(OH)$	T(290)	4.4 10 ²			1
					= K _h (CO(OH)CH(OH)COCHO/CO(OH)CH(OH)COCH(OH)(OH))
$CO(OH)C(OH)(OO^{\bullet})COCHO + H_{2}O \leftrightarrow CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)CHO$	T(291)	9.5 10 ¹			1
	T (202)	74402			$= K_{h}(CO(OH)CH(OH)COCHO/CO(OH)CH(OH)C(OH)(OH)CHO)$
$CO(OH)C(OH)(OO^{\bullet})COCHO + 2 H_2O \leftrightarrow CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)CH(OH)(OH)$	1(292)	7.1 10°			
	T(203)	$2 \cap 10^{2}$			$= \kappa_{h}(CO(OH)CH(OH)COCHO/CO(OH)CH(OH)C(OH)(OH)(OH)(OH)(OH))$
$co(o)c(o))(oo)cocho + h_2 o \leftrightarrow co(o)c(o))(oo)coch(o))(on)$	1(255)	2.0 10			= K [▶] (CO(O·)CH(OH)COCHO\CO(O·)CH(OH)COCH(OH)(OH)) T
$CO(O^{-})C(OH)(OO^{\bullet})COCHO + H_{2}O \leftrightarrow CO(O^{-})C(OH)(OO^{\bullet})C(OH)(OH)CHO$	T(294)	1.3 10 ¹			1
	()				= K _h (CO(O ⁻)CH(OH)COCHO/CO(O ⁻)CH(OH)C(OH)(OH)CHO)
$CO(O^{-})C(OH)(OO^{\bullet})COCHO + 2 H_2O \leftrightarrow CO(O^{-})C(OH)(OO^{\bullet})C(OH)(OH)CH(OH)(OH)$	T(295)	4.2 10 ²			1
					$= K_{h}(CO(O^{-})CH(OH)COCHO/CO(O^{-})CH(OH)C(OH)(OH)(OH)(OH))$
2-oxomalic acid					
CO(OH)CH(OH)COCO(OH) ↔ CO(OH)CH(OH)COCO(O $^{-}$) + H $^{+}$	T(296)	3.2 10 ⁻³			$= K_a(CO(OH)COCO(OH)/CO(OH)COCO(O^{-}))$
CO(OH)CH(OH)COCO(OH) ↔ CO(O ⁻)CH(OH)COCO(OH) + H $^+$	T(297)	3.8 10 ⁻³			$= K_a(CO(OH)CH(OH)CO(OH)/CO(OH)CH(OH)CO(O-))$
$CO(OH)CH(OH)COCO(O^{-}) \leftrightarrow CO(O^{-})CH(OH)COCO(O^{-}) + H^{+}$	T(298)	1.3 10-4			$= K_a(CO(OH)COCO(O^{-})/CO(O^{-})COCO(O^{-}))$
$CO(OH)CH(OH)COCO(OH) + H_2O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CO(OH)$	T(299)	8.0 10 ¹		Estimated	
	T(200)	Г 2 10-1		With GROMHE	
$CO(OH)CH(OH)CO(O(O) + H_{2}O \leftrightarrow CO(OH)CH(OH)C(OH)(OH)CO(O)$	1(300)	5.3 10 -		Estimated with GROMHE	
	T(301)	1 1 10 ¹		Estimated	
	1(301)	1.1 10		with GROMHE	
$CO(O^{-})CH(OH)COCO(O^{-}) + H_{2}O \leftrightarrow CO(O^{-})CH(OH)C(OH)(OH)CO(O^{-})$	T(302)	7.0 10-2		Estimated	
				with GROMHE	
$CO(OH)C(OH)(OO^{\bullet})COCO(OH) \leftrightarrow CO(OH)C(OH)(OO^{\bullet})COCO(O^{-}) + H^{+}$	T(303)	3.2 10 ⁻³			3
		_			= K _a (CO(OH)CH(OH)COCO(OH)/CO(OH)CH(OH)COCO(O ⁻))
$CO(OH)C(OH)(OO^{\bullet})COCO(OH) \leftrightarrow CO(O^{-})C(OH)(OO^{\bullet})COCO(OH) + H^{+}$	T(304)	3.8 10 ⁻³			3
		1 2 10-4			$= K_a(UU(UH)UH(UH)UUU(UH)/UU(U^-)UH(UH)UUUU(UH))$
$CO(OH)C(OH)(OO^{-})COC(O^{-}) \longleftrightarrow CO(O^{-})C(OH)(OO^{-})COCO(O^{-}) + H^{+}$	1(305)	1.3 IU-4			3

Species		Ka or Kh	-∆H/R	References	Notes
			(K)		K (COLOU)(CULOU)(COCOLO) (COLO)(CULOU)(COCOLO))
$CO(OH)C(OH)(OO^{\bullet})COCO(OH) + H_{2}O \leftarrow CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)(OH)CO(OH)$	T(306)	8 0 10 ¹			$= \kappa_a(CO(OH)CH(OH)COCO(O)/CO(O)CH(OH)COCO(O))$
$c_0(0))c_0(0)(0) c_0(0)) + 120 < c_0(0))c_0(0)(0) c_0(0)(0))c_0(0)$	1(500)	0.0 10			= $K_h(CO(OH)CH(OH)COCO(OH)/CO(OH)CH(OH)C(OH)(OH)CO(OH))$
$CO(OH)C(OH)(OO^{\bullet})COCO(O^{-}) + H_2O \leftrightarrow CO(OH)C(OH)(OO^{\bullet})C(OH)(OH)CO(O^{-})$	T(307)	5.3 10 ⁻¹			1
					$= K_h(CO(OH)CH(OH)COCO(O^-)/CO(OH)CH(OH)C(OH)(OH)CO(O^-))$
$CO(O^{-})C(OH)(OO^{\bullet})COCO(OH) + H_{2}O \leftrightarrow CO(O^{-})C(OH)(OO^{\bullet})C(OH)(OH)CO(OH)$	T(308)	1.1 10 ¹			1
	T (0.00)	7 6 4 6 3			$= K_{h}(CO(O^{-})CH(OH)COCO(OH)/CO(O^{-})CH(OH)C(OH)(OH)CO(OH))$
$CO(O^{-})C(OH)(OO^{\bullet})COCO(O^{-}) + H_{2}O \leftrightarrow CO(O^{-})C(OH)(OO^{\bullet})C(OH)(OH)CO(O^{-})$	1(309)	7.0 10-2			
					$= \kappa_{h}(CO(O))CO(O))CO(O)/CO(O)CO(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)$
$CO(OH)COCOCO(OH) \leftrightarrow CO(OH)COCOCO(O^{-}) + H^{+}$	T(310)	3.2 10 ⁻³			$= K_{2}(CO(OH)COCO(OH)/CO(OH)COCO(O^{-}))$
$CO(OH)COCOCO(O^{-}) \leftrightarrow CO(O^{-})COCOCO(O^{-}) + H^{+}$	T(311)	1.3 10-4			$= K_2(CO(OH)COCO(O^2)/CO(O^2)COCO(O^2))$
$CO(OH)COCOCO(OH) + H_{2}O \leftrightarrow CO(OH)COC(OH)(OH)CO(OH)$	T(312)	2.9 10 ³		Estimated	
	()			with GROMHE	
$CO(OH)COCOCO(OH) + 2 H_2O \leftrightarrow CO(OH)C(OH)(OH)C(OH)(OH)CO(OH)$	T(313)	1.0 10 ⁶		Estimated	
				with GROMHE	
$CO(OH)COCOCO(O^{-}) + H_2O \leftrightarrow CO(OH)C(OH)(OH)COCO(O^{-})$	T(314)	1.9 10 ²		Estimated	
	T(215)	Q /		WITH GROWIE	
$CO(OH)COCO(O) + H_2O \leftrightarrow CO(OH)COC(OH)(OH)CO(O)$	1(313)	9.4		with GROMHE	
$CO(OH)COCOCO(O^{-}) + 2 H_{2}O \leftrightarrow CO(OH)C(OH)(OH)C(OH)(OH)CO(O^{-})$	T(316)	4.5 10 ²		Estimated	
	· · · ·			with GROMHE	
$CO(O^{-})COCOCO(O^{-}) + H_2O \leftrightarrow CO(O^{-})COC(OH)(OH)CO(O^{-})$	T(317)	2.5		Estimated	
				with GROMHE	
$CO(O^{-})COCOCO(O^{-}) + 2 H_2O \leftrightarrow CO(O^{-})C(OH)(OH)C(OH)(OH)CO(O^{-})$	T(318)	8.0 10-1		Estimated	
2.2 diovohutanadial				WITH GROWIE	
	T(319)	2 9 10 ³		Estimated	
	1(313)	2.5 10		with GROMHE	
CHOCOCOCHO + H ₂ O ↔ CHOC(OH)(OH)COCHO	T(320)	3.6 10 ³		Estimated	
				with GROMHE	
CHOCOCOCHO + 2 H ₂ O $↔$ CH(OH)(OH)COCOCH(OH)(OH)	T(321)	2.9 10 ⁶		Estimated	
	T(222)	0 7 1 05		with GROMHE	
$CHOCOCCHO + 2 \operatorname{H_{2}O} \longleftrightarrow CH(OH)(OH)(OH)(OH)(OCHO$	1(322)	8.7 105		Estimated	
	T(323)	2.6 10 ⁶		Estimated	
	. ()			with GROMHE	
CHOCOCOCHO + 2 H ₂ O $↔$ CHOC(OH)(OH)C(OH)(OH)CHO	T(324)	1.7 10 ⁶		Estimated	
				with GROMHE	
$CHOCOCOCHO + 3 \operatorname{H}_2 O \longleftrightarrow CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)$	T(325)	5.5 10 ⁸		Estimated	
				with GROMHE	

Species		K_a or K_h	-ΔH/R (K)	References	Notes
CHOCOCOCHO + 3 H₂O ↔ CH(OH)(OH)C(OH)(OH)C(OH)(OH)CHO	T(326)	2.5 10 ⁸		Estimated with GROMHE	
$CHOCOCOCHO + 4 \operatorname{H_2O} \longleftrightarrow CH(OH)(OH)C(OH)(OH)C(OH)(OH)(OH)(OH)$	T(327)	2.0 1010		Estimated	
$CHOCOCOCO(OO^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)COCOCO(OO^{\bullet})$	T(328)	2.9 10 ³			1
$CHOCOCOCO(OO^{\bullet}) + H_2O \leftrightarrow CHOC(OH)(OH)COCO(OO^{\bullet})$	T(329)	3.6 10 ³			$= \kappa_{h}(CHOCOCOCHO/CH(OH)(OH)(OCOCOCHO)$ 1
$CHOCOCOCO(OO^{\bullet)} + 2 \operatorname{H_2O} \longleftrightarrow CH(OH)(OH)COCOC(OH)(OH)(OO^{\bullet)}$	T(330)	2.9 10 ⁶			$= K_{h}(CHOCOCOCHO/CHOC(OH)(OH)COCHO)$ 1
CHOCOCOCO(OO•) + 2 H₂O ↔ CH(OH)(OH)C(OH)(OH)COCO(OO•)	T(331)	8.7 10 ⁵			= K _h (CHOCOCOCHO/CH(OH)(OH)COCOCH(OH)(OH)) 1
$CHOCOCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH(OH)(OH)COC(OH)(OH)CO(OO^{\bullet})$	T(332)	2.6 10 ⁶			= Kh(CHOCOCOCHO/CH(OH)(OH)C(OH)(OH)COCHO) 1
$CHOCOCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CHOC(OH)(OH)C(OH)(OH)CO(OO^{\bullet})$	T(333)	1.7 10 ⁶			$= K_{h}(CHOCOCOCHO/CH(OH)(OH)COC(OH)(OH)CHO)$ 1 $= K_{h}(CHOCOCOCHO/CHOC(OH)(OH)C(OH)(OH)CHO)$
$CHOCOCOCO(OO^{\bullet}) + 3 H_2O \leftrightarrow CH(OH)(OH)C(OH)(OH)(OH)(OH)(OO^{\bullet})$	T(334)	5.5 10 ⁸			- Kh(chocococho/choc(oh)(oh)(ch)(ch)(ch)
$CHOCOCOCO(OO^{\bullet}) + 3 H_2O \longleftrightarrow CH(OH)(OH)C(OH)(OH)(OH)CO(OO^{\bullet})$	T(335)	2.5 10 ⁸			$= \kappa_{h}(CHOCOCOCHO/CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH))$ 1 $= \kappa_{h}(CHOCOCOCHO/CH(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH)(OH$
CHOCOCOCO(OO $^{\bullet}$) + 4 H ₂ O \leftrightarrow CH(OH)(OH)C(OH)(OH)C(OH)(OH)(OH)(OO $^{\bullet}$)	T(336)	2.0 10 ¹⁰			$= K_{h}(CHOCOCOCHO/CH(OH)(OH)C(OH)(OH)C(OH)(OH)CHO)$ $= K_{h}(CHOCOCOCHO/CH(OH)(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH)(OH))$
$CH_3COCOCO(OH) \leftrightarrow CH_3COCOCO(O^-) + H^+$	T(337)	4.1 10-3			$= K_a(CH_3COCO(OH)/CH_3COCO(O^-))$
$CH_3COCOCO(OH) + H_2O \leftrightarrow CH_3C(OH)(OH)COCO(OH)$	T(338)	9.4		Estimated	
$CH_3COCOCO(OH) + H_2O \leftrightarrow CH_3COC(OH)(OH)CO(OH)$	T(339)	1.9 10 ²		Estimated	
$CH_3COCOCO(OH) + 2 H_2O \leftrightarrow CH_3C(OH)(OH)C(OH)(OH)CO(OH)$	T(340)	4.5 10 ²		Estimated	
$CH_3COCOCO(O^-) + H_2O \leftrightarrow CH_3C(OH)(OH)COCO(O^-)$	T(341)	1.3		Estimated	
$CH_3COCOCO(O^-) + H_2O \iff CH_3COC(OH)(OH)CO(O^-)$	T(342)	1.3		Estimated	
$CH_3COCOCO(O^-) + 2 H_2O \leftrightarrow CH_3C(OH)(OH)C(OH)(OH)CO(O^-)$	T(343)	3.9 10 ⁻¹		with GROMHE Estimated with GROMHE	
$CH_2(OO^{\bullet})COCOCO(OH) \leftrightarrow CH_2(OO^{\bullet})COCOCO(O^{-}) + H^+$	T(344)	4.1 10-3			$= K_a(CH_3COCOCO(OH)/CH_3COCOCO(O^{-}))$
$CH_2(OO^{\bullet})COCOCO(OH) + H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)COCO(OH)$	T(345)	9.4			
$CH_2(OO^{\bullet})COCOCO(OH) + H_2O \leftrightarrow CH_2(OO^{\bullet})COC(OH)(OH)CO(OH)$	T(346)	1.9 10 ²			$= K_{h}(CH_{3}COCOCO(OH)/CH_{3}COC(OH)(OH)CO(OH))$ $= K_{h}(CH_{3}COCOCO(OH)/CH_{3}COC(OH)(OH)CO(OH))$
$CH_2(OO^{\bullet})COCOCO(OH) + 2 H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)C(OH)(OH)CO(OH)$	T(347)	4.5 10 ²			1

Species		$K_a \ or \ K_h$	-ΔΗ/R (K)	References	Notes
$CH_2(OO^{\bullet})COCOCO(O^{-}) + H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)COCO(O^{-})$	T(348)	1.3			$= K_{h}(CH_{3}COCOCO(OH)/CH_{3}C(OH)(OH)C(OH)(OH)CO(OH))$ 1 $= K_{n}(CH_{n}COCOCO(O))(CH_{n}C(OH)(OH)COCO(O))$
$CH_2(OO^{\bullet})COCOCO(O^{-}) + H_2O \leftrightarrow CH_2(OO^{\bullet})COC(OH)(OH)CO(O^{-})$	T(349)	1.3			$= \kappa_{h}(CH_{3}COCOCO(0))/CH_{3}C(OH)(OH)(COCO(0)))$ $= \kappa_{h}(CH_{3}COCOCO(0))/(CH_{3}C(OH)(OH)(CO(0)))$
$CH_2(OO^{\bullet})COCOCO(O^{-}) + 2 H_2O \leftrightarrow CH_2(OO^{\bullet})C(OH)(OH)C(OH)(OH)CO(O^{-})$	T(350)	3.9 10-1			$= \kappa_{h}(CH_{3}COCOCO(0))/CH_{3}COC(0H)(OH)(CO(0)))$ $= \kappa_{h}(CH_{3}COCOCO(0))/CH_{3}COC(0H)(OH)(CO(0)))$
2,3-dioxo-4-hydroxybutanal CH ₂ (OH)COCOCHO + H ₂ O \leftrightarrow CH ₂ (OH)COCOCH(OH)(OH)	T(351)	8.0 10 ²		Estimated with GROMHE	
$CH_2(OH)COCOCHO + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COCHO$	T(352)	4.5 10 ¹		Estimated	
$CH_2(OH)COCOCHO + H_2O \leftrightarrow CH_2(OH)COC(OH)(OH)CHO$	T(353)	4.1 10 ²		Estimated	
$CH_2(OH)COCOCHO + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COCH(OH)(OH)$	T(354)	1.7 10 ⁴		Estimated	
$CH_2(OH)COCOCHO + 2 H_2O \leftrightarrow CH_2(OH)COC(OH)(OH)CH(OH)(OH)$	T(355)	5.5 10 ⁴		Estimated	
$CH_2(OH)COCOCHO + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CHO$	T(356)	4.7 10 ³		Estimated	
$CH_2(OH)COCOCHO + 3 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH)$	T(357)	3.0 10 ⁵		Estimated	
$CHOCOCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)COCOCH(OH)(OO^{\bullet})$	T(358)	8.0 10 ²		WITH GROWINE	
$CHOCOCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CHOCOC(OH)(OH)CH(OH)(OO^{\bullet})$	T(359)	4.5 10 ¹			$= \kappa_{h}(CH_{2}(OH)(COCOCHO/CH_{2}(OH)(COCOCH(OH)(OH)))$ 1 $\kappa_{h}(CH_{2}(OH)(COCOCHO/CH_{2}(OH)(OH)(COCOCH(OH)))$
$CHOCOCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CHOC(OH)(OH)COCH(OH)(OO^{\bullet})$	T(360)	4.1 10 ²			$= \kappa_{h}(CH_{2}(OH)COCOCHO/CH_{2}(OH)C(OH)(OH)COCHO)$ 1 $\kappa_{h}(CH_{2}(OH)COCOCHO/CH_{2}(OH)COCHO)$
$CHOCOCOCH(OH)(OO^{\bullet}) + 2 H_2O \leftrightarrow CH(OH)(OH)COC(OH)(OH)CH(OH)(OO^{\bullet})$	T(361)	1.7 10 ⁴			$= K_{h}(CH_{2}(OH)COCOCHO/CH_{2}(OH)COC(OH)(OH)CHO)$ 1 $(a_{1}, b_{2}, b_{3}, b_{4}, b_{3}, b_{4}, b_{3}, b_{4}, b_{4},$
$CHOCOCOCH(OH)(OO^{\bullet}) + 2 H_2O \leftrightarrow CH(OH)(OH)C(OH)(OH)COCH(OH)(OO^{\bullet})$	T(362)	5.5 10 ⁴			= K _h (CH ₂ (OH)COCOCHO/CH ₂ (OH)C(OH)(OH)COCH(OH)(OH)) 1
$CHOCOCOCH(OH)(OO^{\bullet}) + 2 \operatorname{H}_2O \leftrightarrow CHOC(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(363)	4.7 10 ³			$= K_{h}(CH_{2}(OH)COCOCHO/CH_{2}(OH)COC(OH)(OH)CH(OH)(OH))$ 1
CHOCOCOCH(OH)(OO•) + 3 H₂O ↔ CH(OH)(OH)C(OH)(OH)C(OH)(OH)(OO•)	T(364)	3.0 10 ⁵			= $K_h(CH_2(OH)COCOCHO/CH_2(OH)C(OH)(OH)C(OH)(OH)CHO)$ 1 = $K_h(CH_2(OH)COCOCHO/CH_2(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH))$
$CH_2(OH)COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)COCOC(OH)(OH)(OO^{\bullet})$	T(365)	1.0 10-3			2
$CH_2(OH)COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COCO(OO^{\bullet})$	T(366)	4.5 10 ¹			$= K_{*}(CH_{2}(OH)COCOCHO/CH_{2}(OH)C(OH)(OH)COCHO)$
$CH_2(OH)COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CH_2(OH)COC(OH)(OH)CO(OO^{\bullet})$	T(367)	4.1 10 ²			$1 = K_h(CH_2(OH)COCOCHO/CH_2(OH)COC(OH)(OH)CHO)$
$CH_2(OH)COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COC(OH)(OH)(OO^{\bullet})$	T(368)	1.7 104			1

Species		K_a or K_h	-ΔΗ/R	References	Notes
			(N)		$= K_{P}(CH^{3}(OH)COCOCHO/CH^{3}(OH)C(OH)(OH)COCH(OH)(OH))$
$CH_2(OH)COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH_2(OH)COC(OH)(OH)(OH)(OH)(OO^{\bullet})$	T(369)	5.5 10 ⁴			1 K (CL (CL))CCCCCCL (CL)(CL)(CL)(CL)(CL)(CL)
$CH_2(OH)COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CO(OO^{\bullet})$	T(370)	4.7 10 ³			$= \kappa_{h}(CH_{2}(OH)COCOCHO/CH_{2}(OH)COC(OH)(OH)CH(OH)(OH))$ 1
$CH_2(OH)COCOCO(OO^{\bullet}) + 3 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)C(OH)(OH)(OO^{\bullet})$	T(371)	3.0 10 ⁵			= K _h (CH ₂ (OH)COCOCHO/CH ₂ (OH)C(OH)(OH)C(OH)(OH)CHO) 1
2.2 diava 4 huduana hutana is said					$= K_{h}(CH_{2}(OH)COCOCHO/CH_{2}(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OH))$
	T(372)	4 1 10 ⁻³			
$CH_2(OH)COCOCO(OH) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COCO(OH)$	T(373)	4.2 10 ¹		Estimated	
	. (= . =)			with GROMHE	
$CH_2(OH)COCOCO(OH) + H_2O \leftrightarrow CH_2(OH)COC(OH)(OH)CO(OH)$	T(374)	3.5 10 ²		Estimated with GROMHE	
$CH_2(OH)COCOCO(OH) + 2 H_2O \leftrightarrow CH_2(OH)C(OH)(OH)C(OH)(OH)CO(OH)$	T(375)	3.7 10 ³		Estimated	
$CH_2(OH)COCOCO(O^-) + H_2O \leftrightarrow CH_2(OH)C(OH)(OH)COCO(O^-)$	T(376)	5.6		with GROMHE Estimated	
				with GROMHE	
$CH_2(OH)COCOCO(O^-) + H_2O \leftrightarrow CH_2(OH)COC(OH)(OH)CO(O^-)$	T(377)	2.3		Estimated with GROMHE	
$CH_2(OH)COCOCO(O^-) + 2 H_2O \iff CH_2(OH)C(OH)(OH)C(OH)(OH)CO(O^-)$	T(378)	3.2		Estimated	
$CO(OH)COCOCH(OH)(OO^{\bullet}) \leftrightarrow CO(O^{-})COCOCH(OH)(OO^{\bullet}) + H^{+}$	T(379)	4.1 10 ⁻³			= K _a (CH ₂ (OH)COCOCO(OH)/CH ₂ (OH)COCOCO(O ⁻))
$CO(OH)COCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)COC(OH)(OH)CH(OH)(OO^{\bullet})$	T(380)	4.2 10 ¹			1
$CO(OH)COCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)C(OH)(OH)COCH(OH)(OO^{\bullet})$	T(381)	3.5 10 ²			= $K_h(CH_2(OH)COCOCO(OH)/CH_2(OH)C(OH)(OH)COCO(OH))$ 1
					= $K_h(CH_2(OH)COCOCO(OH)/CH_2(OH)COC(OH)(OH)CO(OH))$
$CO(OH)COCOCH(OH)(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(OH)C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(382)	3.7 10 ³			
$CO(O^{-})COCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CO(O^{-})COC(OH)(OH)CH(OH)(OO^{\bullet})$	T(383)	5.6			1
					$= K_{h}(CH_{2}(OH)COCOCO(O^{-})/CH_{2}(OH)C(OH)(OH)COCO(O^{-}))$
$CO(O^{-})COCOCH(OH)(OO^{\bullet}) + H_2O \leftrightarrow CO(O^{-})C(OH)(OH)COCH(OH)(OO^{\bullet})$	T(384)	2.3			$1 = K_{*}(CH_{*}(OH)COCOCO(O^{*})/CH_{*}(OH)COC(OH)(OH)CO(O^{*}))$
$CO(O^{-})COCOCH(OH)(OO^{\bullet}) + 2 H_{2}O \leftrightarrow CO(O^{-})C(OH)(OH)C(OH)(OH)CH(OH)(OO^{\bullet})$	T(385)	3.2			1 1
2.2.4 triovohutopolo osid					$= K_{h}(CH_{2}(OH)COCOCO(O^{-})/CH_{2}(OH)C(OH)(OH)C(OH)(OH)CO(O^{-}))$
	T(386)	4 1 10 ⁻³			$= K_{-}(CH_{2}COCO(OH)/CH_{2}COCO(O^{-}))$
$CHOCOCOCO(OH) + H_2O \leftrightarrow CH(OH)(OH)COCOCO(OH)$	T(387)	1.4 10 ³		Estimated	
	()	-		with GROMHE	
$CHOCOCOCO(OH) + H_2O \longleftrightarrow CHOCOC(OH)(OH)CO(OH)$	T(388)	1.5 10 ³		Estimated	
	T(200)	1 7 103		with GROMHE	
$CHUCUCU(UH) + H_2U \longleftrightarrow CHUC(UH)(UH)CUCU(UH)$	1(389)	1.7 105		estimated with GROMHE	

Species		K_a or K_h	-ΔΗ/R (K)	References	Notes
$CHOCOCOCO(OH) +2 H_2O \leftrightarrow CH(OH)(OH)C(OH)(OH)COCO(OH)$	T(390)	4.0 10 ⁵	(1)	Estimated	
$CHOCOCOCO(OH) + 2 \operatorname{H_2O} \longleftrightarrow CH(OH)(OH)COC(OH)(OH)CO(OH)$	T(391)	1.0 10 ⁶		with GROMHE Estimated	
$CHOCOCOCO(OH) + 2 \operatorname{H_2O} \longleftrightarrow CHOC(OH)(OH)CO(OH)(OH)CO(OH)$	T(392)	6.5 10 ⁵		Estimated	
$CHOCOCOCO(OH) + 3 \operatorname{H_2O} \longleftrightarrow CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(OH)$	T(393)	7.5 10 ⁷		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + H_2O \leftrightarrow CH(OH)(OH)COCOCO(O^{-})$	T(157)	6.3 10 ²		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + H_2O \leftrightarrow CHOCOC(OH)(OH)CO(O^{-})$	T(158)	1.0 10 ¹		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + H_2O \leftrightarrow CHOC(OH)(OH)COCO(O^{-})$	T(159)	2.3 10 ²		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + 2 H_2O \leftrightarrow CH(OH)(OH)C(OH)(OH)COCO(O^{-})$	T(160)	2.4 10 ⁴		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + 2 H_2O \leftrightarrow CH(OH)(OH)COC(OH)(OH)CO(O^{-})$	T(161)	3.0 10 ³		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + 2 H_2O \leftrightarrow CHOC(OH)(OH)C(OH)(OH)CO(O^{-})$	T(162)	5.7 10 ²		Estimated with GROMHE	
$CHOCOCOCO(O^{-}) + 3 H_2O \leftrightarrow CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(O^{-})$	T(163)	2.9 10 ⁴		Estimated with GROMHE	
$CO(OH)COCOCO(OO^{\bullet}) \leftrightarrow CO(O^{-})COCOCO(OO^{\bullet}) + H^{+}$	T(394)	4.1 10-3			$= K_a(CHOCOCOCO(OH)/CHOCOCOCO(O^-))$
$CO(OH)COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)COCOC(OH)(OH)(OO^{\bullet})$	T(395)	1.0 10-3			2
$CO(OH)COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)C(OH)(OH)COCO(OO^{\bullet})$	T(396)	1.5 10 ³			1
$CO(OH)COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CO(OH)COC(OH)(OH)CO(OO^{\bullet})$	T(397)	1.7 10 ³			= K _h (CHOCOCOCO(OH)/CHOCOC(OH)(OH)CO(OH)) 1 - K _h (CHOCOCOCO(OH)/CHOC(OH)(OH)COCO(OH))
$CO(OH)COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(OH)COC(OH)(OH)C(OH)(OH)(OO^{\bullet})$	T(398)	4.0 10 ⁵			$= K_{h}(CHOCOCOCO(OH)/CH(OH)(OH)C(OH)(OH)COCO(OH))$ $= K_{h}(CHOCOCOCO(OH)/CH(OH)(OH)C(OH)(OH)COCO(OH))$
$CO(OH)COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(OH)C(OH)(OH)COC(OH)(OH)(OO^{\bullet})$	T(399)	1.0 10 ⁶			$1 = K_{h}(CHOCOCOCO(OH)/CH(OH)(OH)(OH)(OH)(OH)(OH)(OH))$
$CO(OH)COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(OH)C(OH)(OH)C(OH)(OH)CO(OO^{\bullet})$	T(400)	6.5 10 ⁵			1 = K _h (CHOCOCOCO(OH)/CHOC(OH)(OH)C(OH)(OH)CO(OH))
$CO(OH)COCOCO(OO^{\bullet}) + 3 H_2O \leftrightarrow CO(OH)C(OH)(OH)C(OH)(OH)C(OH)(OH)(OO^{\bullet})$	T(401)	7.5 10 ⁷			1 = K _h (CHOCOCOCO(OH)/CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(OH))
$CO(O^{-})COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CO(O^{-})COCOC(OH)(OH)(OO^{\bullet})$	T(402)	1.0 10-3			2
$CO(O^{-})COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CO(O^{-})C(OH)(OH)COCO(OO^{\bullet})$	T(403)	1.0 10 ¹			1 = K _h (CHOCOCOCO(O ⁻)/CHOCOC(OH)(OH)CO(O ⁻))
$CO(O^{-})COCOCO(OO^{\bullet}) + H_2O \leftrightarrow CO(O^{-})COC(OH)(OH)CO(OO^{\bullet})$	T(404)	2.3 10 ²			1 = K _h (CHOCOCOCO(O ⁻)/CHOC(OH)(OH)COCO(O ⁻))
$CO(O^{-})COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(O^{-})COC(OH)(OH)(OH)(OH)(OO^{\bullet})$	T(405)	2.4 10 ⁴			1

Species		Ka or Kh	-∆H/R	References	Notes
			(K)		
CO(0)COCOCO(00)	T(406)	2 0 103			= K _h (CHOCOCOCO(O ⁻)/CH(OH)(OH)C(OH)(OH)COCO(O ⁻))
$CO(O)COCOCO(OO) + 2 H_2O \leftrightarrow CO(O)C(OH)(OH)(OH)(OH)(OO)$	1(400)	3.0 10			т = К _h (СНОСОСОСО(О ⁻)/СН(ОН)(ОН)СОС(ОН)(ОН)СО(О ⁻))
$CO(O^{-})COCOCO(OO^{\bullet}) + 2 H_2O \leftrightarrow CO(O^{-})C(OH)(OH)C(OH)(OH)CO(OO^{\bullet})$	T(407)	5.7 10 ²			1
	T(400)	2.0.104			$= K_{h}(CHOCOCOCO(O^{-})/CHOC(OH)(OH)C(OH)(OH)CO(O^{-}))$
$CO(O^{\circ})COCOCO(OO^{\circ}) + 3 H_2O \leftrightarrow CO(O^{\circ})C(OH)(\mathsf$	1(408)	2.9 104			= K*(CHOCOCOCO(O-)/CH(OH)(OH)C(OH)(OH)C(OH)(OH)CO(O-)) T
2- Methylglyceric Acid (2-MG)					
$CH_2(OH)(CH_3)CO(OH) \leftrightarrow CH_2(OH)C(OH)(CH_3)CO(O^-) + H^+$	T(409)	3.0 10-4			$= K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^{-}))$
$CH(OH)(OO^{\bullet})C(OH)(CH_{3})CO(OH) \longleftrightarrow CH(OH)(OO^{\bullet})C(OH)(CH_{3})CO(O^{-}) + H^{+}$	T(410)	3.0 10-4			3
	T(111)	2 0 10-4			$= K_{a}(CH_{2}(OH)C(OH)(CH_{3})CO(OH)/CH_{2}(OH)C(OH)(CH_{3})CO(O^{-})$
$CH_2(OH)C(OH)(CH_2(OO))(CO(OH) \leftrightarrow CH_2(OH)C(OH)(CH_2(OO))(CO(O)) + H$	1(411)	3.0 10			
2-hydroxy,3-oxomethylpropanoic acid					
$CHOC(OH)(CH_3)CO(OH)\longleftrightarrowCHOC(OH)(CH_3)CO(O^{-})+H^+$	T(412)	3.0 10-4			$= K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^{-}))$
$CHOC(OH)(CH_3)CO(OH) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CH_3)CO(OH)$	T(413)	4.6 10 ¹		Estimated	
	T(414)	61		WITH GROWIHE	
	1(+1+)	0.1		with GROMHE	
$CO(OO^{\bullet})C(OH)(CH_3)CO(OH) \leftrightarrow CO(OO^{\bullet})C(OH)(CH_3)CO(O^{-}) + H^+$	T(415)	3.0 10-4			3
	T(41C)	1 0 10-3			$= K_{a}(CHOC(OH)(CH_{3})CO(OH)/CHOC(OH)(CH_{3})CO(O^{-}))$
$CO(OO^{\circ})C(OH)(CH_3)CO(OH) + H_2O \leftrightarrow C(OH)(OH)(OO^{\circ})C(OH)(CH_3)CO(OH)$	I(416) T(417)	1.0 10-3			2
$CU(OU)(CH_3)CU(U) + H_2U \leftrightarrow C(OH)(OH)(OU)(CH_3)CU(U)$ $CU(OH)(CH_3)CU(U) \leftrightarrow CUOC(OH)(CH_3)CU(U) + H^+$	T(417) T(418)	1.0 10 ⁻⁹ 3 0 10 ⁻⁴			2
	1(410)	5.0 10			= $K_a(CHOC(OH)(CH_3)CO(OH)/CHOC(OH)(CH_3)CO(O^{-}))$
$CHOC(OH)(CH_2(OO^{\bullet}))CO(OH) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CH_2(OO^{\bullet}))CO(OH)$	T(419)	4.6 10 ¹			1
	7(100)				$= K_{h}(CHOC(OH)(CH_{3})CO(OH)/CH(OH)(OH)C(OH)(CH_{3})CO(OH))$
$CHOC(OH)(CH_2(OO^{\bullet}))CO(O^{\bullet}) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CH_2(OO^{\bullet}))CO(O^{\bullet})$	1(420)	6.1			= K [*] (CHOC(OH)(CH [*])CO(O-)(CH(OH)(OH)C(OH)(CH [*])CO(O-)) T
2-hydroxy-2-(hydroxymethyl)-3-oxopropanoic acid					
$CHOC(OH)(CH_2(OH))CO(OH) \leftrightarrow CHOC(OH)(CH_2(OH))CO(O^-) + H^+$	T(421)	3.0 10-4			$= K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^-))$
$CHOC(OH)(CH_{2}(OH))CO(OH) + H_{2}O \leftrightarrow CH(OH)(OH)C(OH)(CH_{2}(OH))CO(OH)$	T(422)	8.4 10 ¹		Estimated	
	T(400)	1 1 101		with GROMHE	
$CHOC(OH)(CH_2(OH))CO(O^*) + H_2O \longleftrightarrow CH(OH)(OH)C(OH)(CH_2(OH))CO(O^*)$	1(423)	1.1 101		Estimated with GROMHE	
CHOC(OH)(CH(OH)(OO•))CO(OH) ↔ CHOC(OH)(CH(OH)(OO•))CO(O ⁻) + H ⁺	T(424)	3.0 10-4			3
					$= K_a(CHOC(OH)(CH_2(OH))CO(OH)/CHOC(OH)(CH_2(OH))CO(O^{-}))$
$CHOC(OH)(CH(OH)(OO^{\bullet}))CO(OH) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(OH)$	T(425)	8.4 10 ¹			1
					K [™] (CHUC(UH)(CH ³ (UH))CU(UH)(CHU(UH)(UH)(CH)(CH ³ (UH))CU(UH) =
)
$CHOC(OH)(CH(OH)(OO^{\bullet}))CO(O^{-}) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-})$	T(426)	$1.1 \ 10^{1}$			1
					44

Species		$K_a \ or \ K_h$	-∆H/R	References	Notes
			(K)		
					$= K_{h}(CHOC(OH)(CH_{2}(OH))CO(O^{-})/CH(OH)(OH)C(OH)(CH_{2}(OH))CO(O^{-})$
	T(407)	2 0 10-4))
$CO(OO)C(OH)(CH_2(OH))CO(OH) \leftrightarrow CO(OO)C(OH)(CH_2(OH))CO(O) + H^{2}(OH)(CH_2(OH))CO(O) + H^{2}(OH)(CH_2(OH))CO(O)) + H^{2}(OH)(OH)(CH_2(OH))CO(O)) + H^{2}(OH)(CH_2(OH))CO(O)) + H^{2}(OH)(CH_2(OH))CO(OH)) + H^{2}(OH)(CH)(CH_2(OH))CO(OH)) + H^{2}(OH)(CH)(CH)(CH)(CH))CO(OH)) + H^{2}(OH)(CH)(CH)) + H^{2$	1(427)	5.0 10			= K°(CHOC(OH)(CH²(OH))CO(OH)/CHOC(OH)(CH²(OH))CO(O-)) 2
$CO(OO^{\bullet})C(OH)(CH_{2}(OH))CO(OH) + H_{2}O \leftrightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(OH)$	T(428)	1.0 10-3			2
$CO(OO^{\bullet})C(OH)(CH_2(OH))CO(O^{-}) + H_2O \leftrightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CH_2(OH))CO(O^{-})$	T(429)	1.0 10-3			2
2,3-hydroxy-2-(hydroxymethyl)propanoic acid					
$CH_2(OH)C(OH)(CH_2(OH))CO(OH) \leftrightarrow CH_2(OH)C(OH)(CH_2(OH))CO(O^-) + H^+$	T(430)	3.0 10-4			$= K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^-))$
$CH(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(OH) \leftrightarrow CH(OH)(OO^{\bullet})C(OH)(CH_{2}(OH))CO(O^{-}) + H^{+}$	T(431)	3.0 10-4			3
					$= K_{a}(CH_{2}(OH)C(OH)(CH_{2}(OH))CO(OH)/CH_{2}(OH)C(OH)(CH_{2}(OH))CO(O^{-1})$
))
	T(422)	2 9 10-3			
$CO(OH)C(OH)(CH_3)CO(OH) \leftrightarrow CO(OH)C(OH)(CH_3)CO(O+) + H$	T(432)	3.8 10 - 2 9 10-5			$= K_{a}(CO(OH)CH(OH)CO(OH)/CO(OH)/CO(OH)/CO(OH)/CO(OH))$
$CO(OH)C(OH)(CH_3)CO(OH) \leftrightarrow CO(OH)C(OH)(CH_3)CO(O^*))CO(O^*) + H^+$	T(433)	2.5 10 3 8 10 ⁻³			- Ka(CO(OH)CH(OH)CO(O)/ CO(O)CH(OH)CO(O))
$co(on)c(on)(cn_2(oo))(co(on) < > co(on)c(on)(cn_2(oo))(co(o)) + n$	1(+3+)	5.0 10			$= K_{2}(CO(OH)C(OH)(CH_{3})CO(OH)/CO(OH)C(OH)(CH_{3})CO(O^{-}))$
$CO(OH)C(OH)(CH_2(OO^{\bullet}))CO(O^{-}) \leftrightarrow CO(O^{-})C(OH)(CH_2(OO^{\bullet}))CO(O^{-}) + H^+$	T(435)	2.9 10 ⁻⁵			3
					$= K_a(CO(OH)C(OH)(CH_3)CO(O^{-})/CO(O^{-})C(OH)(CH_3)CO(O^{-}))$
2- hydroxyl-2-(oxomethyl)-3-oxopropanoic acid					
$CHOC(OH)(CHO)CO(OH) \leftrightarrow CHOC(OH)(CHO)CO(O^{-}) + H^{+}$	T(436)	3.0 10-4			$= K_a(CH_2(OH)CH(OH)CO(OH)/CH_2(OH)CH(OH)CO(O^-))$
$CHOC(OH)(CHO)CO(OH) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CHO)CO(OH)$	T(437)	7.3 10 ²		Estimated	
	T(438)	1 1 10 ⁵		Fstimated	
$Choc(Oh)(Cho)(Oh) + 2 h_2 O \leftrightarrow Ch(Oh)(Oh)(Oh)(Ch(Oh)(Oh))(Oh))(Oh)$	1(450)	1.1 10		with GROMHE	
$CHOC(OH)(CHO)CO(O^{-}) + H_2O \leftrightarrow CH(OH)(OH)C(OH)(CHO)CO(O^{-})$	T(439)	9.8 10 ¹		Estimated	
				with GROMHE	
$CHOC(OH)(CHO)CO(O^{-}) + 2 H_2O \leftrightarrow CH(OH)(OH)C(OH)(CH(OH)(OH))CO(O^{-})$	T(440)	2.0 10 ³		Estimated	
	T(111)	2 0 10-4		with GROMHE	2
$CO(OO)C(OH)(CHO)CO(OH) \leftrightarrow CO(OO)C(OH)(CHO)CO(O) + H^{\circ}$	1(441)	5.0 10			= K°(CHUC(UH)(CHU)CU(UH)(CHUC(UH)(CHU)CU(U-)) 2
$CO(OO^{\bullet})C(OH)(CHO)CO(OH) + H_{2}O \leftrightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CHO)CO(OH)$	T(442)	1.0 10-3			2
$CO(OO^{\bullet})C(OH)(CHO)CO(OH) + H_2O \leftrightarrow CO(OO^{\bullet})C(OH)(CH(OH)(OH))CO(OH)$	T(443)	7.3 10 ²			1
					$= K_h(CHOC(OH)(CHO)CO(OH)/CH(OH)(OH)C(OH)(CHO)CO(OH))$
$CO(OO^{\bullet})C(OH)(CHO)CO(OH) + 2 H_2O \leftrightarrow$	T(444)	1.1 105			1
С(ОН)(ОН)(ОО•)С(ОН)(СН(ОН)(ОН))СО(ОН)					=
					к _h (снос(он)(сно)со(он)/сн(он)(он)с(он)(сн(он)(он))СО(он) \
$CO(OO^{\bullet})C(OH)(CHO)CO(O^{-}) + H_2O \leftrightarrow C(OH)(OH)(OO^{\bullet})C(OH)(CHO)CO(O^{-})$	T(445)	1.0 10-3			2
$CO(OO^{\bullet})C(OH)(CHO)CO(O^{-}) + H_{2}O \leftrightarrow CO(OO^{\bullet})C(OH)(CH(OH)(OH))CO(O^{-})$	T(446)	9.8 10 ¹			1
					= K _h (CHOC(OH)(CHO)CO(O ⁻)/CH(OH)(OH)C(OH)(CHO)CO(O ⁻))

Species		$K_{\text{a}} \text{or} K_{\text{h}}$	-ΔΗ/R (κ)	References	Notes
$CO(OO^{\bullet})C(OH)(CHO)CO(O^{-}) + 2 H_2O \leftrightarrow$ C(OH)(OH)(OO^{\bullet})C(OH)(CH(OH)(OH))CO(O^{-})	T(447)	2.0 10 ³			1 = K _h (CHOC(OH)(CHO)CO(O ⁻)/CH(OH)(OH)C(OH)(CH(OH)(OH))CO(O ⁻))
2-(hydroxymethyl)-tartronic acid CO(OH)C(OH)(CH ₂ (OH))CO(OH) ↔ CO(OH)C(OH)(CH ₂ (OH))CO(O ⁻) + H ⁺ CO(OH)C(OH)(CH ₂ (OH))CO(O ⁻) ↔ CO(O ⁻)C(OH)(CH ₂ (OH))CO(O ⁻) + H ⁺ CO(OH)C(OH)(CH(OH)(OO [•]))CO(OH) ↔ CO(OH)C(OH)(CH(OH)(OO [•]))CO(O ⁻) + H ⁺	T(448) T(449) T(450)	3.8 10 ⁻³ 2.9 10 ⁻⁵ 3.8 10 ⁻³			$K_{a}(CO(OH)CH(OH)CO(OH)/CO(OH)CH(OH)CO(O^{-}))$ $= K_{a}(CO(OH)CH(OH)CO(O^{-})/CO(O^{-})CH(OH)CO(O^{-}))$ $= K_{a}(CO(OH)C(OH)(CH(OH))CO(OH)(CH(OH))CO(O^{-}))$
$CO(OH)C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-}) \longleftrightarrow CO(O^{-})C(OH)(CH(OH)(OO^{\bullet}))CO(O^{-}) + H^{+}$	T(451)	2.9 10 ⁻⁵			$= K_{a}(CO(OH)C(OH)(CH_{2}(OH))CO(O^{-})/CO(O^{-})C(OH)(CH_{2}(OH))CO(O^{-}))$ $= K_{a}(CO(OH)C(OH)(CH_{2}(OH))CO(O^{-})/CO(O^{-})C(OH)(CH_{2}(OH))CO(O^{-}))$
2-(oxomethyl)-tartronic acid $CO(OH)C(OH)(CHO)CO(OH) \leftrightarrow CO(OH)C(OH)(CHO)CO(O^-) + H^+$ $CO(OH)C(OH)(CHO)CO(O^-) \leftrightarrow CO(O^-)C(OH)(CHO)CO(O^-) + H^+$ $CO(OH)C(OH)(CHO)CO(OH) + H_2O \leftrightarrow CO(OH)C(OH)(CH(OH)(OH))CO(OH)$ $CO(OH)C(OH)(CHO)CO(O^-) + H_2O \leftrightarrow CO(OH)C(OH)(CH(OH)(OH))CO(O^-)$	T(452) T(453) T(454) T(455)	3.8 10 ⁻³ 2.9 10 ⁻⁵ 3.4 10 ² 4.6 10 ¹		Estimated with GROMHE Estimated with GROMHE	= K _a (CO(OH)CH(OH)CO(OH)/CO(OH)CH(OH)CO(O ⁻))
$CO(O + CO(O + CO(O + + H^2)) + H^2 O \leftrightarrow CO(O + CO(O + CO(O + + H^2)) + H^2 O \leftrightarrow CO(O + CO(O + + + H^2)) + O(O + + H^2)$	T(457)	3.8.10 ⁻³		with GROMHE	3
$CO(OH)C(OH)(CO(OO^{\circ}))CO(O^{-}) \leftrightarrow CO(O^{-})C(OH)(CO(OO^{\circ}))CO(O^{-}) + H^{+}$	T(458)	2.9 10 ⁻⁵			$= K_{a}(CO(OH)C(OH)(CHO)CO(OH)/CO(OH)C(OH)(CHO)CO(O^{-}))$ $= K_{a}(CO(OH)C(OH)(CHO)CO(O^{-})/CO(O^{-})C(OH)(CHO)CO(O^{-}))$
$\begin{array}{l} CO(OH)CO(OO^{\bullet})CO(OH) + H_2O \leftrightarrow CO(OH)C(OH)(COH)(OO^{\bullet})CO(OH)\\ CO(OH)CO(OO^{\bullet})CO(O^{-}) + H_2O \leftrightarrow CO(OH)C(OH)(COH)(OO^{\bullet})CO(O^{-})\\ CO(O^{-})C(OH)(CO(OO^{\bullet}))CO(O^{-}) + H_2O \leftrightarrow CO(O^{-})C(OH)(COH)(OO^{\bullet})CO(O^{-})\\ \end{array}$	T(459) T(460) T(461)	1.0 10 ⁻³ 1.0 10 ⁻³ 1.0 10 ⁻³			2 2 2 2
Hydroxymethanetricarboxylic acid CO(OH)C(OH)(CO(OH))CO(OH) ↔ CO(OH)C(OH)(CO(OH))CO(O ⁻) + H ⁺ CO(OH)C(OH)(CO(OH))CO(O ⁻) ↔ CO(OH)C(OH)(CO(O ⁻))CO(O ⁻) + H ⁺ CO(OH)C(OH)(CO(O ⁻))CO(O ⁻) ↔ CO(O ⁻)C(OH)(CO(O ⁻))CO(O ⁻) + H ⁺	T(462) T(463) T(464)	7.2 10 ⁻⁴ 1.7 10 ⁻⁵ 4.0 10 ⁻⁷			= K _{a1} (citric acid) = K _{a2} (citric acid) = K _{a3} (citric acid)
Methacrylic acid $CH_2=C(CH_3)CO(OH) \leftrightarrow CH_2=C(CH_3)CO(O^-) + H^+$	T(465)	1.3 10-5			$= K_a(CH_3CH_2CO(OH)/CH_3CH_2CO(O^-))$

^{1 -} For peroxy radicals, we assumed that the hydration constant is similar to the parent species.

^{2 -} For acyl peroxylradicals, we assumed that hydration is not favored on the -CO(OO[•]) moiety. This is based on the similarity between the CO moiety in this function and the CO moiety in carboxylic (-CO(OH)) or percarboxylic acid (-CO(OOH)) organic functions which is not readily hydrated. Therefore we apply an arbitrarily low value ($K_h = 1.0 \ 10^{-3}$) to the hydration constant of these species.

^{3 -} For peroxy radicals, we assumed that the acidity constant is similar to the parent species.

Henry's law constants

Species		H (298K) (M atm ⁻¹)	-ΔΗ/R (K)	References	Notes
C4 compounds					
Methacrolein					
CH ₂ =C(CH ₃)CHO	T(70)	4.8 10-2	4300	Ji and Evans, 2007	
Hydroxymethacrolein					
$CH_2=C(CH_2(OH))CHO$	T(71)	6.9 10 ⁴	6014	Estimated	1 - 2 - 3
Methylvinylketone					
CH ₂ =CHCOCH ₃	T(72)	2.6 10-1	4800	Ji and Evans, 2007	
Hydroxymethylvinylketone					
CH ₂ =CHCOCH ₂ (OH)	T(73)	1.3 10 ³	6014	Estimated	1 - 2 - 3
Hydroxybutandione					
CH₃COCOCH₂(OH)	T(74)	5.4 10 ⁵	6014	Estimated	1 - 3
3,4-dihydroxybutan-2-one					
CH ₂ (OH)CH(OH)COCH ₃	T(75)	1.1 10 ⁵	6014	Estimated	1 - 2 - 3
1,4-dihydroxybutanedione					
CH ₂ (OH)COCOCH ₂ (OH)	T(76)	1.9 10 ⁸	6014	Estimated	1 - 2 - 3
1,3,4-trihydroxybutanone					
CH ₂ (OH)COCH(OH)CH ₂ (OH)	T(77)	9.1 10 ⁸	6014	Estimated	1 - 2 - 3
2,4-dihidroxy-3-oxobutanal					
CH ₂ (OH)COCH(OH)CHO	T(78)	3.5 10 ⁸	6014	Estimated	1 - 2 - 3
2-oxo-3,4-dihidroxybutanal					
CH ₂ (OH)CH(OH)COCHO	T(79)	1.5 10 ⁹	6014	Estimated	1 - 2 - 3
2-oxo-3-hydroxybutanedial					
СНОСН(ОН)СОСНО	T(80)	3.6 10 ⁹	6014	Estimated	1 - 2 - 3
2,4-dioxo-3-hydroxybutanoic acid					
СНОСН(ОН)СОСО(ОН)	T(81)	5.2 10 ⁹	6014	Estimated	1 - 2 - 3
2,3-dioxobutanal					
CH ₃ COCOCHO	T(82)	6.3 10 ⁸	6014	Estimated	1 - 2 - 3
2-hydroxy, 3-oxobutanal					
CH₃COCH(OH)CHO	T(83)	2.0 10 ⁴	6014	Estimated	1 - 2 - 3
2-hydroxy,3-oxobutanoïc acid					
CH₃COCH(OH)CO(OH)	T(84)	2.0 10 ⁵	6014	Estimated	1 - 2 - 3
2,4-dihydroxy, 3-oxobutanoic acid					
CO(OH)CH(OH)COCH ₂ (OH)	T(85)	2.3 10 ⁹	6014	Estimated	1 - 2 - 3
2-hydroxy, 3,4-dioxobutanoic acid					
СО(ОН)СН(ОН)СОСНО	T(86)	5.8 10 ⁹	6014	Estimated	1 - 2 - 3

Species		H (298K) (M atm ⁻¹)	-ΔΗ/R (K)	References	Notes
2-oxomalic acid					
СО(ОН)СН(ОН)СОСО(ОН)	T(87)	2.0 1010	6014	Estimated	1 - 2 - 3
Dioxosuccinic acid					
CO(OH)COCOCO(OH)	T(88)	1.3 1016	6014	Estimated	1 - 2 - 3
2,4-dioxobutanedial					
СНОСОССНО	T(89)	3.5 10 ⁶	6014	Estimated	1 - 2 - 3
2,3-dioxobutanoic acid					
CH₃COCOCO(OH)	T(90)	3.9 10 ⁹	6014	Estimated	1 - 2 - 3
2,3-dioxo-4-hydroxybutanal					
CH ₂ (OH)COCOCHO	T(91)	1.3 10 ¹²	6014	Estimated	1 - 2 - 3
2,3-dioxo-4-hydroxybutanoic acid					
CH ₂ (OH)COCOCO(OH)	T(92)	1.4 1012	6014	Estimated	1 - 2 - 3
2,3,4-trioxobutanoic acid					
CHOCOCOCO(OH)	T(93)	2.1 1017	6014	Estimated	1 - 2 - 3
Methacrylic Acid Epoxide					
CH ₃ C1(CO(OH))-O-C1H ₂	T(94)	3.4 10 ²	6014	Estimated	1 - 3
Hydroxymethyl-methyl-α-lactone					
CH ₃ C1(CH ₂ (OH))-O-C1O	T(95)	6.5	6014	Estimated	1 - 3
2- Methylglyceric Acid					
$CH_2(OH)C(OH)(CH_3)CO(OH)$	T(96)	6.0 10 ⁶	6014	Estimated	1 - 3
2-hydroxy-3-oxomethylpropanoic acid					
CHOC(OH)(CH₃)CO(OH)	T(97)	1.1 10 ⁶	6014	Estimated	1 - 2 - 3
2-hydroxy-2-(hydroxymethyl)-3-oxopropanoic acid					
$CHOC(OH)(CH_2(OH))CO(OH)$	T(98)	2.4 10 ¹⁰	6014	Estimated	1 - 2 - 3
2,3-hydroxy-2-(hydroxymethyl)-propanoic acid					
$CH_2(OH)C(OH)(CH_2(OH))CO(OH)$	T(99)	8.8 10 ⁹	6014	Estimated	1 - 3
Methyltartronic acid					
CO(OH)C(OH)(CH₃)CO(OH)	T(100)	7.6 10 ⁶	6014	Estimated	1 - 3
2- hydroxy-2-(oxomethyl)-3-oxopropanoic acid					
CHOC(OH)(CHO)CO(OH)	T(101)	2.2 1011	6014	Estimated	1 - 2 - 3
2-(hydroxymethyl)-tartronic acid					
$CO(OH)(CH_2(OH))CO(OH)$	T(102)	9.2 10 ⁹	6014	Estimated	1 - 3
2-(oxomethyl)-tartronic acid					
СО(ОН)С(ОН)(СНО)СО(ОН)	T(103)	2.2 1011	6014	Estimated	1 - 2 - 3
Hydroxymethanetricarboxylic acid					
СО(ОН)С(ОН))СО(ОН)	T(104)	2.0 1011	6014	Estimated	1 - 3
Methacrylic Acid					
CH ₂ =C(CH ₃)CO(OH)	T(105)	1.3 10 ³	6014	Estimated	1 - 3

References:

Ji, C., Evans, E. M.: Using an internal standard method to determine Henry's law constants, Environmental Toxicology and Chemistry, 26-2, 231-236, 2007.

^{1 -} Estimated by the SAR GROMHE (Raventos-Duran et al., 2010).

^{2 -} Effective Henry's law constant.

^{3 -} When unavailable, the temperature dependence (enthalpy of dissolution) is set at 50 kJ mol⁻¹; - Δ H/R = 6014 K.

Accommodation coefficients

Species		α (208K)	-ΔH	$-\Delta S$	References	Notes
C4 compounds		(290K)	(1/1101)	(J/1101/K)		
Methacrolein		T				
	T(70)	5 0 10 ⁻²			Estimated	2
Hydroxymethacrolein	1(70)	5.0 10			Estimated	2
	T(71)	5 0 10 ⁻²			Estimated	2
Methylvinylketone	((/ 1)	5.0 10			Estimated	Z
	T(72)	5 0 10 ⁻²			Estimated	2
Hydroxymethylvinylketone	(, 2)	5.6 10			Estimated	2
$CH_2 = CHCOCH_2(OH)$	T(73)	5.0 10 ⁻²			Estimated	2
Hydroxybutandione	.(, .)	0.0 10			200111000	-
$CH_3COCOCH_2(OH)$	T(74)	5.0 10 ⁻²			Estimated	2
3 4-dihydroxyhutan-2-one	. (, .)	0.0 10			200111000	-
CH ₂ (OH)CH(OH)COCH ₃	T(75)	5.0 10 ⁻²			Estimated	2
1 4-dihydroxybutanedione	. ()					_
$CH_2(OH)COCOCH_2(OH)$	T(76)	5.0 10 ⁻²			Estimated	2
1.3.4-trihydroxybutanone						
$CH_2(OH)COCH(OH)CH_2(OH)$	T(77)	5.0 10 ⁻²			Estimated	2
2.4-dihidroxy-3-oxobutanal						
CH ₂ (OH)COCH(OH)CHO	T(78)	5.0 10 ⁻²			Estimated	2
2-oxo-3.4-dihidroxybutanal						
CH ₂ (OH)CH(OH)COCHO	T(79)	5.0 10 ⁻²			Estimated	2
2-oxo-3-hydroxybutanedial						
СНОСН(ОН)СОСНО	T(80)	5.0 10 ⁻²			Estimated	2
2,4-dioxo-3-hydroxybutanoic acid						
СНОСН(ОН)СОСО(ОН)	T(81)	5.0 10 ⁻²			Estimated	2
2,3-dioxobutanal						
CH ₃ COCOCHO	T(82)	5.0 10 ⁻²			Estimated	2
2-hydroxy, 3-oxobutanal						
CH₃COCH(OH)CHO	T(83)	5.0 10 ⁻²			Estimated	2
2-hydroxy,3-oxobutanoïc acid						
CH₃COCH(OH)CO(OH)	T(84)	5.0 10 ⁻²			Estimated	2
2,4-dihydroxy, 3-oxobutanoic acid						
CO(OH)CH(OH)COCH ₂ (OH)	T(85)	5.0 10 ⁻²			Estimated	2
2-hydroxy, 3,4-dioxobutanoic acid						
CO(OH)CH(OH)COCHO	T(86)	5.0 10 ⁻²			Estimated	2

Species		α (208K)	-ΔH	$-\Delta S$	References	Notes
2-oxomalic acid		(298K)	(1/11/01)	(J/1101/K)		
	T(87)	5.0 10 ⁻²			Estimated	2
	.(0,)	010 10			Lotination	-
	T(88)	5.0 10 ⁻²			Estimated	2
2 4-dioxobutanedial	. (= =)					
СНОСОСОСНО	T(89)	5.0 10 ⁻²			Estimated	2
2.3-dioxobutanoic acid	· · · ·					
CH ₃ COCOCO(OH)	T(90)	5.0 10 ⁻²			Estimated	2
2.3-dioxo-4-hvdroxybutanal	· · · ·					
CH ₂ (OH)COCOCHO	T(91)	5.0 10 ⁻²			Estimated	2
2,3-dioxo-4-hydroxybutanoic acid						
CH ₂ (OH)COCOCO(OH)	T(92)	5.0 10 ⁻²			Estimated	2
2,3,4-trioxobutanoic acid						
CHOCOCOCO(OH)	T(93)	5.0 10 ⁻²			Estimated	2
Methacrylic Acid Epoxide						
CH ₃ C1(CO(OH))-O-C1H ₂	T(94)	5.0 10 ⁻²			Estimated	2
Hydroxymethyl-methyl-α-lactone						
CH ₃ C1(CH ₂ (OH))-O-C1O	T(95)	5.0 10-2			Estimated	2
2- Methylglyceric Acid						
$CH_2(OH)C(OH)(CH_3)CO(OH)$	T(96)	5.0 10-2			Estimated	2
2-hydroxy-3-oxomethylpropanoic acid						
CHOC(OH)(CH₃)CO(OH)	T(97)	5.0 10-2			Estimated	2
2-hydroxy-2-(hydroxymethyl)-3-oxopropanoic acid						
CHOC(OH)(CH ₂ (OH))CO(OH)	T(98)	5.0 10 ⁻²			Estimated	2
2,3-hydroxy-2-(hydroxymethyl)-propanoic acid						
$CH_2(OH)C(OH)(CH_2(OH))CO(OH)$	T(99)	5.0 10 ⁻²			Estimated	2
Methyltartronic acid						
$CO(OH)C(OH)(CH_3)CO(OH)$	T(100)	5.0 10 ⁻²			Estimated	2
2- hydroxy-2-(oxomethyl)-3-oxopropanoic acid						
CHOC(OH)(CHO)CO(OH)	T(101)	5.0 10 ⁻²			Estimated	2
2-(hydroxymethyl)-tartronic acid						
CO(OH)C(OH)(CH ₂ (OH))CO(OH)	T(102)	5.0 10 ⁻²			Estimated	2
2-(oxomethyl)-tartronic acid						
CO(OH)C(OH)(CHO)CO(OH)	T(103)	5.0 10 ⁻²			Estimated	2
Hydroxymethanetricarboxylic acid	,					
CO(OH)C(OH)(CO(OH))CO(OH)	T(104)	5.0 10 ⁻²			Estimated	2
Methacrylic Acid	,	_				
$CH_2=C(CH_3)CO(OH)$	T(105)	5.0 10 ⁻²			Estimated	2

-

^{1 -} α can be calculated with ΔH and ΔS; this allows considering the temperature dependency of α following Jayne et al. (1997): $\frac{\alpha}{1-\alpha} = \exp\left(\frac{-\Delta G}{RT}\right)$; $\Delta G = \Delta H - T\Delta S$ 2 - Estimated equal 5.0 10⁻² following Lelieveld and Crutzen (1991) and Davidovits et al. (2011).

Schöne, L., Schindelka, J., Szeremeta, E., Schaefer, T., Hoffmann, D., Rudzinski, K. J., Szmigielski, R., and Herrmann, H.: Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic acid and acrylic acid - kinetics and product studies, Physical Chemistry Chemical Physics, 16, 6257-6272, 10.1039/c3cp54859g, 2014.