Electronic Supplementary Material (ESI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Single-particle measurements and estimations of activity coefficients for semi-volatile organic compounds in organic aerosol of known chemical speciation

Thomas G. Hilditch¹, Daniel A. Hardy¹, Natasha J. Stevens², Peter B. Glover², and Jonathan P. Reid¹

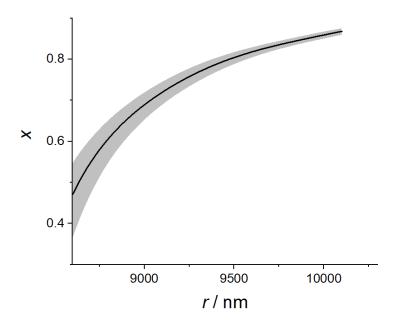


Figure S1 - Radius (r) vs mole fraction (x) for an evaporating droplet of T20/DEG described in the main text. The black line represents the simulated data from the model and grey shading represents the impact of a ± 100 nm uncertainty in the fitted optical r on the simulated x.

¹School of Chemistry, University of Bristol, Bristol, UK, BS8 1TS

²Defence Science and Technology Laboratory, Porton Down, Salisbury, UK, SP4 0JQ

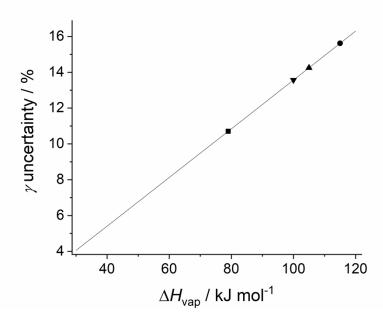


Figure S2 - Impact of a ± 1 K temperature uncertainty on the uncertainty of γ for a selection of DCAs of different ΔH_{vap} , using literature values for ΔH_{vap} . The DCAs are oxalic acid, square; malonic acid, circle; succinic acid, triangle and glutaric acid, inverted triangle. A straight line is drawn through the points to highlight the linear relationship.

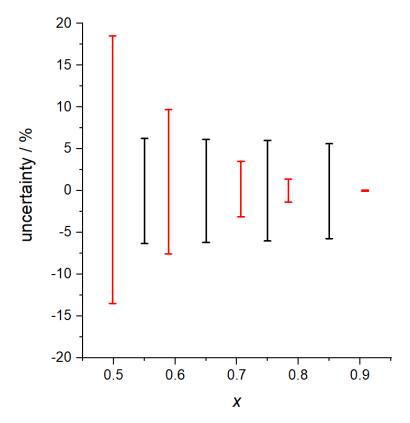


Figure S3- Modelled uncertainties of x (red) and y (black) for a range of x for a droplet of T20/DEG, assuming a ± 5 % uncertainty in melt ρ_{DEG}