Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Historical development and novel concepts upon electrolytes for aqueous rechargeable batteries

Shigang Chen,^a Mengfei Zhang, ^a Peimiao Zou, ^a Boyao Sun ^a and Shanwen Tao ^{ab*}

^o School of Engineering, University of Warwick, Coventry CV4 7AL, UK. ^b Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.

*Corresponding author: <u>S.Tao.1@warwick.ac.uk</u>

Electrolyte	Electrode	ESW	Energy density	Cyclic stability	Working temperature	Reference
	Zn//Na ₂ MnFe(CN) ₆	2.5 V	170 Wh·kg ⁻¹	2000 cycles	RT	Ref. 1
SDS-added 1 M $\operatorname{Na}_2\operatorname{SO}_4$ +1 M ZHSO_4			(cathode)	(5 C)		
$2 \text{ vol.}\% \text{ Et}_2\text{O} \text{ added } 3 \text{ M}$	$Zn//MnO_{-}$	n/a	n/a	4000 cycles	рт	Ref. 2
Zn(CF ₃ SO ₃) ₂ +0.1 M Mn(CF ₃ SO ₃) ₂		11/ a	11/ a	$(5 \text{ A} \cdot \text{g}^{-1})$	KI	
SDBS added 1 M LiSO ₃ CF ₃ and 1 M	7n//LiEePO	n/a	113 Wh·kg ⁻¹	500 cycles	рт	Ref. 3
$Zn(SO_3CF_3)_2$		11/ a	(total electrode)	(5 C)	KI	
0.5 m Me ₂ EtNOTE added 4 m $Zn(OTE)_{2}$	Zn//VOPO ₄	2.7 V	136 Wh·kg ⁻¹	6000 cycles	RT	Ref. 4
			(total electrode)	$(2 \text{ A} \cdot \text{g}^{-1})$		
DMSO added 2 M NaClO	$Na_{3}V_{2}(PO_{4})_{3}//Na_{3}V_{2}(PO_{4})_{3}$	3.1 V	n/a	100 cycles	RT	Ref. 5
Diviso added 2 in Nuclo4				$(1 \text{ A} \cdot \text{g}^{-1})$		
$2 \text{ M HBF}_4 + 2 \text{ M Mn}(\text{BF}_4)_2$	Alloxazine//MnO ₂	~1.8 V	110 Wh·kg ⁻¹	500 cycles	-60 °C	Ref 6
$2 \operatorname{Infill}_4 \cdot 2 \operatorname{Infill}_{4/2}$			(total electrode)	(4 C)		
				100 cycles		
ZnF2 added 2 M ZnSO4+1 M Li2SO4	Anode-free//LiMn ₂ O ₄	n/a	n/a	(200/400	RT	Ref. 7
				$mA \cdot g^{-1}$)		
5 M H ₂ SO	Pb//PCHL-rGO	n/a	n/a	3000 cycles BT to $70 \circ C$	RT to -70 °C	Ref. 8
$5 \text{ M} \text{ H}_2 \text{SO}_4$	ro//rCnL-rGO	II/a	11/ a	(10 A·g ⁻¹)	KI 10-70 C	

 Table S1 A summary of recently representative works upon additive-added electrolytes for ARBs.

Electrolyte	Electrode	ESW	Energy density	Cyclic stability	Working temperature	Reference
1 M ZnSO ₄ +1.5 M HOAc+1.5 M NaOAc 1 M FeSO ₄ +1.5 M FeCl ₂	Zn//Fe	n/a	n/a	200 cycles $(30 \text{ mA} \cdot \text{cm}^{-2})$	RT	Ref. 9
1 M ZnSO ₄ -P2VP	$Zn//I_2$	n/a	220 Wh·kg ⁻¹ (cathode)	250 cycles (0.3 A·g ⁻¹)	RT	Ref. 10
0.1 M H ₂ SO ₄ +1 M ZnSO ₄ +1 M MnSO ₄	Zn//MnO ₂	2.41 V	409 Wh·kg ⁻¹ (total electrode)	2000 cycles (30 mA · cm ⁻ ²)	RT	Ref. 11
6 M KOH+0.2 M ZnO+5 mM vanillin 3 M H ₂ SO ₄ +0.1 M MnSO ₄	Zn//MnO ₂	n/a	1621.7 Wh·kg ⁻¹ (cathode)	200 cycles (500 mA·g ⁻ ¹)	RT	Ref. 12
3 M NaOH+0.2 M ZnO 2 M ZnSO ₄ +0.5 MnSO ₄	Zn//MnO ₂	3.46 V	n/a	$\frac{4000 \text{ cycles}}{(10 \text{ mA} \cdot \text{cm}^2)}$	RT	Ref. 13
1 M LiOH+1 M Li ₂ Zn(OH) ₄ 5 M LiNO ₃	Zn//LiMn ₂ O ₄	3.0 V	208 Wh·kg ⁻¹ (total electrode)	1000 cycles (1.69 C)	RT	Ref. 14

Table S2 A summary of recently representative works upon pH-adjusted electrolytes for ARBs.

Electrolyte	Electrode	ESW	Energy density	Cyclic stability	Working temperature	Reference
25 m LiTFSI-PVA	LiVPO4F// LiVPO4F	3.2 V	141 Wh·kg ⁻¹ (total electrode)	4000 cycles (20 C)	RT	Ref. 15
2 m LiTFSI-PEG	$Li_4Ti_5O_{12}//LiMn_2O_4$	3.2 V	110 Wh·kg ⁻¹ (total electrode)	300 cycles (1 C)	RT	Ref. 16
1 M NaCl+1 M ZnCl ₂ -SA	Zn//CuHCF-CNT	2.72 V	440 Wh·kg ⁻¹ (cathode)	450 cycles (1 A·g ⁻¹)	RT	Ref. 17
1 M ZnSO ₄ -gelatin 1 M CuSO ₄ -gelatin	Zn//S	n/a	2372 Wh·kg ⁻¹ (cathode)	100 cycles (500 mA·g ⁻ ¹)	RT	Ref. 18
7 M LiCl-SBMA+HEA	AC//AC	2.2 V	n/a	10000 cycles (5 mA·cm ⁻²)	-30 °C, RT, 60 °C	Ref. 19
2 M ZnSO ₄ +0.2 M MnSO ₄ -PVA-B-G	Zn//MnO ₂	~2.0 V	25.8 mWh·cm ⁻³	2000 cycles (1 A·g ⁻¹)	-30 °C	Ref. 20

Table S3 A summary of recently representative works upon gelled electrolytes for ARBs.

Electrolyte	Electrode	ESW	Energy density	Cyclic stability	Working temperature	Reference
20 mM Zn(NO ₃) ₂ +3 M Zn(OTf) ₂	Zn//MnO ₂	n/a	168 Wh·kg ⁻¹ (total electrode)	700 cycles (10 C)	RT	Ref. 21
21 m LiTFSI+7 m LiOTf-PVA	LiTFSI- HFE+PEO+DMC/graphite//LiMn ₂ O ₄ or LiVPO ₄ F	~3.1 V	approaching state- of-art LiBs	50 cycles (0.3 C)	RT	Ref. 22
9.5 M LiNO ₃ +LiOH (pH=10)	AC//LiNO ₂	n/a	n/a	50 cycles (1 C)	RT	Ref. 23
15 m NaClO ₄	TiS ₂ -Al ₂ O ₃ //MFCN-TiO ₂	3.5 V	100 Wh·kg ⁻¹ (total electrode)	200 cycles (1 C)	RT	Ref. 24
2 M ZnSO ₄	Zn-graphite//MnO ₂	n/a	164 Wh·kg ⁻¹ (total electrode)	1000 cycles (8 mA·cm ⁻²)	RT	Ref. 25
2 M Al(OTf) ₃	Zn/Al//Al _x MnO ₂	n/a	n/a	80 cycles (100 mA·g ⁻ ¹)	RT	Ref. 26

Table S4 A summary of recently representative works upon interface-tuning electrolytes for ARBs.

Electrolyte	Electrode	ESW	Energy density	Cyclic stability	Working temperature	Reference
33 m LiNO ₃ -PVA	VO2//LiNi0.5Mn1.5O4 or LiMn2O4	3.2 V	176 Wh·kg ⁻¹ (total electrode)	700 cycles (3 C)	RT to 80 °C	Ref. 27
1 m Zn(ClO ₄) ₂ +10 m LiClO ₄ -PVA	Zn//LiMn ₂ O ₄	3.3 V	183 Wh·kg ⁻¹ (cathode)	300 cycles (1 C)	RT to 80 °C	Ref. 28
1 m Zn(OAc) ₂ +40 m KOAc-PAA	Zn//MnO ₂	3.45 V	386 Wh·kg ⁻¹ (cathode)	2000 cycles (5 C)	RT to 80 °C	Ref. 29
1 M Zn(ClO ₄) ₂	Zn//AC	n/a	n/a	70000 cycles (1 A·g ⁻¹)	-30 °C & -60 °C	Ref. 30
45 m ZnBr _{0.5} Cl _{1.5} +1 m Zn(OAc) ₂	Zn/GFF//PGA	n/a	908.5 Wh·kg ⁻¹ (cathode)	500 cycles (1 A·g ⁻¹)	RT	Ref. 31
42 m LiTFSI+21 m Me ₃ EtN·TFSI	Li ₄ Ti ₅ O ₁₂ //LiMn ₂ O ₄	3.25 V	145 Wh·kg ⁻¹ (total electrode)	150 cycles (0.2 C)	RT	Ref. 32

Table S5 A summary of recently representative works upon beyond concentrated electrolytes for ARBs.

References

- 1. Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang and Y. Qian, *Journal of Materials Chemistry A*, 2017, 5, 730-738.
- 2. W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao, X. Gu, H. Cheng, L. Mai, C. Hu and X. Wang, *Nano Energy*, 2019, **62**, 275-281.
- 3. J. Hao, J. Long, B. Li, X. Li, S. Zhang, F. Yang, X. Zeng, Z. Yang, W. K. Pang and Z. Guo, Advanced Functional Materials, 2019, 29, 1903605.
- 4. L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X.-Q. Yang, K. Xu, O. Borodin and C. Wang, *Nature Nanotechnology*, 2021, **16**, 902-910.
- 5. Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun, S. Zheng, X. Ren, Z. Tao, D. Zhang and J. Chen, ACS Energy Letters, 2021, 6, 2174-2180.
- 6. T. Sun, H. Du, S. Zheng, J. Shi and Z. Tao, *Advanced Functional Materials*, 2021, **31**, 2010127.
- 7. Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu, S. Xiong, J. Feng and Y. Qian, Advanced Functional Materials, 2021, 31, 2101886.
- 8. F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang and Z. Niu, Angewandte Chemie International Edition, 2021, 133, 14001-14005.
- 9. Z. Xie, Q. Su, A. Shi, B. Yang, B. Liu, J. Chen, X. Zhou, D. Cai and L. Yang, Journal of Energy Chemistry, 2016, 25, 495-499.
- 10. F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang, G. Chen, W. Wu, M. Yu, Y. Wu and X. Feng, Advanced Materials, 2020, 32, 2000287.
- 11. D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey and S.-Z. Qiao, Angewandte Chemie International Edition, 2019, 58, 7823-7828.
- 12. C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao and W. Hu, *Nature Energy*, 2020, 5, 440-449.
- 13. L. Dai, Y. Wang, L. Sun, Y. Ding, Y. Yao, L. Yao, N. E. Drewett, W. Zhang, J. Tang and W. Zheng, Advanced Science, 2021, 8, 2004995.
- 14. X. Yuan, X. Wu, X.-X. Zeng, F. Wang, J. Wang, Y. Zhu, L. Fu, Y. Wu and X. Duan, Advanced Energy Materials, 2020, 10, 2001583.
- 15. C. Yang, X. Ji, X. Fan, T. Gao, L. Suo, F. Wang, W. Sun, J. Chen, L. Chen, F. Han, L. Miao, K. Xu, K. Gerasopoulos and C. Wang, *Advanced Materials*, 2017, 29, 1701972.
- 16. J. Xie, Z. Liang and Y.-C. Lu, *Nature Materials*, 2020, **19**, 1006-1011.
- 17. W. Pan, Y. Wang, X. Zhao, Y. Zhao, X. Liu, J. Xuan, H. Wang and D. Y. C. Leung, Advanced Functional Materials, 2021, 31, 2008783.
- 18. C. Dai, X. Jin, H. Ma, L. Hu, G. Sun, H. Chen, Q. Yang, M. Xu, Q. Liu, Y. Xiao, X. Zhang, H. Yang, Q. Guo, Z. Zhang and L. Qu, *Advanced Energy Materials*, 2021, **11**, 2003982.
- 19. J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji, H. Jiang and L. Liu, Advanced Functional Materials, 2021, 31, 2009438.
- 20. M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen, J. Xu and C.-P. Wong, Journal of Materials Chemistry A, 2020, 8, 6828-6841.
- 21. D. Li, L. Cao, T. Deng, S. Liu and C. Wang, Angewandte Chemie International Edition, 2021, 60, 13035-13041.
- 22. C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, A. von Cresce, M. S. Ding, O. Borodin, J. Vatamanu, M. A. Schroeder, N. Eidson, C. Wang and K. Xu, Joule, 2017, 1,

122-132.

- 23. C. Lee, Y. Yokoyama, Y. Kondo, Y. Miyahara, T. Abe and K. Miyazaki, Advanced Energy Materials, 2021, 11, 2100756.
- 24. Z. Hou, X. Zhang, H. Ao, M. Liu, Y. Zhu and Y. Qian, *Materials Today Energy*, 2019, 14, 100337.
- 25. J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok and L. A. Archer, *Science*, 2019, **366**, 645-648.
- 26. C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang, K. N. Dinh, H. Tan, C. Wu, T. Wu, Y. Ren, J. Chen, Z. Liu, M. Srinivasan, X. Rui, Q. Yan and G. Yu, *Journal of the American Chemical Society*, 2020, **142**, 15295-15304.
- 27. S. Chen, P. Sun, B. Sun, J. Humphreys, P. Zou, K. Xie and S. Tao, *Energy Storage Materials*, 2021, **37**, 598-608.
- 28. S. Chen, R. Lan, J. Humphreys and S. Tao, ACS Applied Energy Materials, 2020, 3, 2526-2536.
- 29. S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang, G. Jeerh and S. Tao, *Energy Storage Materials*, 2021, **42**, 240-251.
- 30. Y. Sun, H. Ma, X. Zhang, B. Liu, L. Liu, X. Zhang, J. Feng, Q. Zhang, Y. Ding, B. Yang, L. Qu and X. Yan, Advanced Functional Materials, 2021, 31, 2101277.
- 31. S. Cai, X. Chu, C. Liu, H. Lai, H. Chen, Y. Jiang, F. Guo, Z. Xu, C. Wang and C. Gao, Advanced Materials, 2021, 33, 2007470.
- L. Chen, J. Zhang, Q. Li, J. Vatamanu, X. Ji, T. P. Pollard, C. Cui, S. Hou, J. Chen, C. Yang, L. Ma, M. S. Ding, M. Garaga, S. Greenbaum, H.-S. Lee, O. Borodin, K. Xu and C. Wang, ACS Energy Letters, 2020, 5, 968-974.