Electronic Supplementary Information

Achieving Ultrahigh Direct-Current Voltage of 130 V by Semiconductor Heterojunction Power Generation Based on Tribovoltaic Effect

Zhaozheng Wang,‡ab Zhi Zhang,‡ab Yunkang Chen,‡ac Likun Gong,ab Sicheng Dong,ab Han Zhou,ad Yuan Lin,ad Yi Lv,ab Guoxu Liu,ab and Chi Zhang *abcd

a CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
b School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
c Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
d School of Mechanical Engineering, Guangxi University, Nanning 530004, China

‡ These authors contributed equally to this work.

* Corresponding author

E-mail addresses: czhang@binn.cas.cn (C. Zhang).
The PDF file includes:

Electronic Supplementary Materials

Table S1. The performance of different type TENGs based on tribovoltaic effect.

Fig. S1. The structure of the GaN thin film. (a) Crystal plane orientation (b) Epitaxial wafer structure of n-type GaN.

Fig. S2. AFM topographic images of n-GaN.

Fig. S3. AFM topographic images of p-Si.

Fig. S4. The short circuit current of SDC-TENG. Inset: partial magnified view of the current.

Fig. S5. The Impedance-matching curve of SDC-TENG.

Fig. S6. The original curve of open circuit voltage for SDC-TENG with different speeds.

Fig. S7. The original curve of short circuit current for SDC-TENG with different speeds.

Fig. S8. The transfer charge in one cycle of SDC-TENG under different speeds.

Fig. S9. The original waveform of the open circuit voltage for SDC-TENG over 20,000 cycles.

Fig. S10. The SEM morphology of n-GaN and p-Si before and after long-term friction.

Fig. S11. The open circuit voltage of Polymer-TENG with different materials.

Fig. S12. The average power density (APD) of Polymer-TENG with different materials.

Fig. S13. Comparison of the number of LED Illuminated by SDC-TENG and Polymer-TENG in the centimeter-level (2 cm²).

Movie SV1. Comparison of the SDC-TENG and Polymer-TENG in driving LEDs.

Movie SV2. Driving Commercial Light Bulb by the SDC-TENG.

Movie SV3. Driving the Piezoelectric bimorph to bend by the SDC-TENG.

Table S1. The performance of different type TENGs based on tribovoltaic effect

<table>
<thead>
<tr>
<th>Type</th>
<th>Materials</th>
<th>Open Voltage(V)</th>
<th>Short current(μA)</th>
<th>Area(cm²)</th>
<th>Impedance(Ω)</th>
<th>Power(μW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip contact</td>
<td>Graphite/n-Si</td>
<td>0.13</td>
<td>0.0034</td>
<td>1.6×10⁻⁷</td>
<td>-</td>
<td>1.1×10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>p-Si/Al</td>
<td>0.4</td>
<td>5</td>
<td>0.01</td>
<td>1×10⁵</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Au/PPy-SnO₂/Al</td>
<td>0.25</td>
<td>3.6</td>
<td>1.3</td>
<td>1×10⁵</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>PPy/Au</td>
<td>0.7</td>
<td>290</td>
<td>1.33</td>
<td>8200</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>PPy-GO/Au</td>
<td>0.73</td>
<td>175</td>
<td>1.33</td>
<td>4700</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Al/PANI-HCl/Au</td>
<td>0.9</td>
<td>45</td>
<td>1.33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conducting polymer</td>
<td>PEDOT-PSS/Al</td>
<td>0.8</td>
<td>200</td>
<td>2.54</td>
<td>10000</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>PEDOT-PSS/Al</td>
<td>1</td>
<td>309</td>
<td>2.5</td>
<td>20000</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>PEDOT-PSS/Al</td>
<td>0.7</td>
<td>9</td>
<td>1</td>
<td>30000</td>
<td>0.11</td>
</tr>
<tr>
<td>Liquid-Semiconductor</td>
<td>DI water/ Si</td>
<td>0.4</td>
<td>0.3</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Water/n-Si</td>
<td>0.3</td>
<td>0.64</td>
<td>-</td>
<td>-</td>
<td>2.3×10⁻³</td>
</tr>
<tr>
<td></td>
<td>Si/water</td>
<td>1</td>
<td>0.7</td>
<td>-</td>
<td>2.5×10⁵</td>
<td>8×10⁻³</td>
</tr>
<tr>
<td>Surface contact</td>
<td>Si/stainless</td>
<td>0.02</td>
<td>20</td>
<td>1</td>
<td>5000</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>n-Si/p-Si</td>
<td>0.35</td>
<td>0.58</td>
<td>1</td>
<td>1×10⁶</td>
<td>1.2×10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>n-Si/Al</td>
<td>0.6</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Carbon aerogel/Si</td>
<td>2</td>
<td>15</td>
<td>0.785</td>
<td>1.46×10⁴</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>Si/AlN/MoS₂</td>
<td>5.1</td>
<td>5.6</td>
<td>0.0005</td>
<td>3.6×10⁵</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Black phosphorus/Si/AlN/Si</td>
<td>6.1</td>
<td>6.2</td>
<td>0.0005</td>
<td>4.5×10⁵</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>130</td>
<td>15</td>
<td>1</td>
<td>1×10⁷</td>
<td>280</td>
</tr>
</tbody>
</table>
Fig. S1. The structure of the GaN thin film. (a) Crystal plane orientation (b) Epitaxial wafer structure of n-type GaN.

Fig. S2. AFM topographic images of n-GaN.

Fig. S3. AFM topographic images of p-Si.
Fig. S4. The short circuit current of SDC-TENG. Inset: partial magnified view of the current.

Fig. S5. The Impedance-matching curve of SDC-TENG.

Fig. S6. The original curve of open circuit voltage for SDC-TENG with different speeds.
Fig. S7. The original curve of short circuit current for SDC-TENG with different speeds.

Fig. S8. The transfer charge in one cycle of SDC-TENG under different speeds.
Fig. S9. The original waveform of the open circuit voltage for SDC-TENG over 20,000 cycles.

Fig. S10. The SEM morphology of n-GaN and p-Si before and after long-term friction.
Fig. S11. The open circuit voltage of Polymer-TENG with different materials.

Fig. S12. The average power density (APD) of Polymer-TENG with different materials.

Fig. S13. Comparison of the number of LED Illuminated by SDC-TENG and Polymer-TENG in the centimeter-level (2 cm²).
References

10 S. Lin, X. Chen and Z. L. Wang, *Nano Energy*, 2020, **76**.

