Supporting Information

Navigating fast and uniform zinc deposition via a versatile metal-

organic complex interphase

Huanyan Liu, Jian-Gan Wang*, Wei Hua, Lingbo Ren, Huanhuan Sun, Zhidong Hou,

Yu Huyan, Yunjing Cao, Chunguang Wei, Feiyu Kang*

Experimental Section

Synthesis of Zn-PA coated Zn anode (Zn-PA@Zn): Firstly, 30 µL of 70% phytic acid (PA) was injected to 30 ml of 2 to 1 mixed solution of deionized (DI) water and ethanol. After stirring for 5 min, the solution was transferred into a glass culture dish. Then, Zn plates with a diameter of 12 mm were putted into the solution and stand for several minutes. Zn-PA@Zn was obtained after being alternatively washed with DI water and ethanol. Ba-PA, Al-PA, and Sn-PA coordinated Zn anodes were prepared using the same procedure except for the adding of 30 mg of BaCl₂, Al₂(SO₄)₃, and SnCl₄, respectively. Sn-Tannin (TA) coordinated Zn anode was prepared using the same procedure except for the change of PA to TA.

Synthesis of MnO_2 : In a typical procedure, 2 mM of KMnO₄ was dissolved in 50 mL of DI water under magnetic stirring for 15 min. Subsequently, 5 mL of 2 M H₂SO₄ was added into the above solution. After stirring for another 15 min, 3 mM of Zn powders were added into the mixture. The reaction lasted for 2 h under continuous magnetic stirring at room temperature. Finally, the resulting precipitate was collected and washed with DI water and ethanol alternatively for three times. MnO₂ powders were obtained after being dried in an oven at 80 °C for 12 h.

Assembly of Zn/Zn symmetric cells and Zn/MnO₂ cells: CR2025-type coin symmetric cells were assembled with identical electrodes of bare Zn or Zn-PA@Zn (diameter: 12 mm, thickness: 80 μ m), 2 M ZnSO₄ electrolyte and glass fiber separators. Zn||MnO₂ full cells were assembled by using pure Zn or Zn-PA@Zn as anodes, 2 M ZnSO₄ as electrolyte and glass fiber as separators. All batteries were assembled in open air

conditions and aged for 12 hours before electrochemical measurements.

Materials characterization: The physical morphology was characterized by scanning electron microscopy (SEM, NanoSEM 450, FEI). X-ray diffractometer (XRD, X'Pert PRO MPD, Philips) was carried out to confirm the crystallographic structure of the products using Cu-K α as the radiation source (λ = 1.5418 Å). The surface wettability of anodes was performed by OCA25 contact angle measuring system (Dataphysics, Germany). Fourier transform infrared (FTIR, ThermoNicolet iS50) and X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific) were employed to analyze the element and surface chemistry of the samples.

Electrochemical measurement: The cycling and rate performance were measured on the Land Battery Testing System at room temperature. Solartron electrochemical workstation (1400 + 1470E, England) was employed to collect the cyclic voltammetry (CV), electrochemical impedance spectra (EIS), linear sweep voltammetry (LSV), and linear polarization curves. Specifically, CV curves were measured at a scan rate of 0.1 mV s⁻¹ and EIS plots were tested in the frequency ranging from 100 kHz to 10 mHz with a perturbation amplitude of 5 mV. LSV and linear polarization curves were collected at the voltage range of $-1.1 \sim -1.85$ V and $-1.1 \sim -0.95$ V, respectively, with scan rate of 5 mV s⁻¹.

Simulation of the Electric Field Contribution: A simplified 2D electrodeposition model based on COMSOL was established to compare the proportional schematics of electric field distribution during cycling. The length of the entire model was set to 8 µm. The protuberance of Zn surface was represented by three semicircles with a

diameter of 1 µm and a height of 1 µm. In addition, there was a Zn-PA layer with a thickness of 1 µm for Zn-PA@Zn electrodes on the basis of primary model. It was reported that the ionic conductivity of 2 M ZnSO₄ electrolyte was \approx 5 S m⁻¹.¹ The overpotential of 500 mV was employed as voltage excitation between the anode side and the electrolyte side.

Fig. S1 Top-view SEM images of (a, b) Zn-PA@Zn and (c) bare Zn anode.

Fig. S2 Cross-section SEM images of Zn-PA@Zn.

Fig. S3 Optical images of Zn-PA@Zn anode under bending, folding, twisting, and even taping

states.

Fig. S4 Optical image of the scale-up Zn-PA@Zn electrode.

Fig. S5 Fourier transform infrared (FTIR) curve of Zn-PA@Zn electrode.

Fig. S6 (a) Survey XPS profiles and (b) high-resolution O 1s XPS patterns of bare Zn and Zn-

PA@Zn electrodes.

Fig. S7 Current variation with time during polarization and the associated EIS curves of (a, b) bare Zn and (c, d) Zn-PA@Zn symmetrical cells with applied potential difference of 15 mV. The Zn²⁺ transference number (t_{Zn2+}) was calculated according to the Bruce-

Vincent method:

$$t_{Zn^{2+}} = \frac{I_s(V - I_0 R_0)}{I_0 \left(V - I_s R_s \right)}$$
(1)

Where V is the applied potential (15 mV); I_0 and R_0 are the initial current and interface resistance, respectively; I_s and R_s represent the steady-state current and interface resistance, respectively. Therefore, the $t_{Zn^{2+}}$ value in Zn-PA@Zn system can be calculated to 0.82, whereas the value in bare Zn system is only 0.43.

Fig. S8 Optical images of bare Zn (a) before and (b) after immersing in 2 M ZnSO₄ for 10 days. (c)

Magnified SEM image of bare Zn after immersing in 2 M ZnSO₄ for 10 days.

Fig. S9 Optical images of Zn-PA@Zn (a) before and (b) after immersing in 2 M ZnSO₄ for 10

days. (c) Magnified SEM image of Zn-PA@Zn after immersing in 2 M ZnSO₄ for 10 days.

Fig. S10 Cycling performance of bare Zn and Zn-PA@Zn symmetric cells at 1 mA cm⁻².

Fig. S11 Nucleation overpotential of bare Zn and Zn-PA@Zn symmetric cells at (a) 0.5 mA cm⁻²

and (b) 5 mA cm^{-2} .

Fig. S12 EIS curves of the Zn-PA@Zn and bare Zn symmetric cells.

Fig. S13 Self-made symmetric cell model for in-situ optical microscope.

Fig. S14 Chronoamperometry curves of bare Zn and Zn-PA@Zn at an overpotential of -150 mV.

Fig. S15 (a) Detached Zn-PA@Zn cell after 50 cycles at 1 mA cm⁻² and 0.5 mAh cm⁻². (b) Top-

view, and (c) cross-section SEM images of Zn-PA@Zn.

Fig. S16 (a) Detached bare Zn cell after 50 cycles at 1 mA cm⁻² and 0.5 mAh cm⁻². (b) SEM

image of bare Zn electrode after cycling.

Fig. S17 (a, b) Top-view, and (c) cross-section SEM images of Zn-PA@Zn after plating for 10

mAh cm⁻² at 10 mA cm⁻².

Fig. S18 Cycling performance of the as-prepared (a) Ba-PA@Zn, (b) Al-PA@Zn, (c) Sn-PA@Zn,

and Sn-TA@Zn symmetric cells at 1 mA cm⁻².

Fig. S19 SEM images of the MnO_2 sample.

Fig. S20 XRD pattern of the as-prepared MnO₂.

Fig. S21 CV curves of (a) bare $Zn \|MnO_2$ and (b) $Zn-PA@Zn\|MnO_2$ cells at a scan rate of 0.1 mV

s⁻¹.

Fig. S22 Z' $\sim \omega^{-1/2}$ fitting curves of the full cells based on EIS results.

The Zn²⁺ diffusion coefficient (D) was calculated according to $D=0.5R^2T^2n^{-4}F^{-4}A^{-2}C^{-2}\sigma^{-2}$. Here, *R* is the gas constant, *T* is the room temperature, *n* is the transfer number of the electrons during the Zn²⁺ reaction, *F* is the Faraday constant, A is the surface area of the electrode, C is the concentration of Li⁺, σ is the slope obtained from the Z'~ $\omega^{-1/2}$ line. Thus the D value of Zn-PA@Zn||MnO₂ cell was calculated to be 6.99×10⁻¹⁰ cm² s⁻¹, whereas the value for bare Zn||MnO₂ cell was 2.41×10⁻¹¹ cm² s⁻¹.

Fig. S23 Charge-discharge profiles of (a) Zn-PA@Zn MnO_2 and (b) bare Zn MnO_2 cells at

different current densities.

Fig. S24 Digital photos of the elastic PAM gel electrolyte, showing the splendid elasticity.

Fig. S25 Digital photos of a ZIB cell powering an electronic watchband under (a) flat, (b) bending

90° and (c) bending 180° conditions.

Fig. S26 LED display screen before connection with the ZIB cells.

Electrode or	Current density	Average CE	CPC	Reference
electrolyte	$(mA cm^{-2})$	(%)	(mAh cm ⁻²)	
Zn-PA@Zn	2	99.9	800	This work
ZnO-3D@Zn	2	99.5	150	2
ZnS@Zn	2	99.2	200	3
$Zn(ClO_4)_2 \cdot 6H_2$	0.5	98.4	45	4
O electrolyte				
Zn(TFSI) ₂ -	0.5	99.9	175	5
TFEP@MOF@				
Zn				
Antisolvents	1	99.7	450	6
Glucose	1	97.2	100	7
Additive				
CNG@Zn	0.5	99.4	150	8

 Table S1 The comparison of CPC and average CE with other reported literatures.

Electrode or	Current density	Areal capacity	CPC	Reference
electrolyte	$(mA cm^{-2})$	per cycle	$(Ah \text{ cm}^{-2})$	
		$(mAh cm^{-2})$		
Zn-PA@Zn	5	1.25	1.25	This work
ZnO-3D@Zn	5	1.25	1.25	2
TiO ₂ @Zn	2	2	0.28	9
Kaolin@Zn	4.4	1.1	1.76	10
Polyamide@Zn	0.5	0.25	2	11
ZnS@Zn	2	2	1.1	3
CNG@Zn	1	0.5	1.5	8
Zn(OTF) ₂ -	0.5	0.5	0.3	12
$Zn(NO_3)_2$				
electrolyte				
Polyimide@Zn	4	2	1.7	13
Zn ₃ (PO ₄) ₂ @Zn	0.5	99.4	150	14

Table S2 The CPC comparison of Zn-PA@Zn symmetric cell with other reported literature.

References

- 1. Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong and X. Lu, *Adv. Mater.*, 2019, **31**, 1903675.
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo, C. Wang, G. Xu, X. Wu, G. Chen and J. Zhou, *Energy Environ. Sci.*, 2020, 13, 503-510.
- 3. J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu and Z. Guo, *Adv. Mater.*, 2020, **32**, 2003021.
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li, J. Xie, Y. Zhang, Z. Cui, Q. Kong, Z. Zhao, C. Wang, Q. Zhang and G. Cui, *Joule*, 2020, 4, 1557-1574.
- 5. L. Cao, D. Li, T. Deng, Q. Li and C. Wang, Angew. Chem. Int. Ed., 2020, 59, 19292-19296.
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo and S. Z. Qiao, Angew. Chem. Int. Ed., 2021, 60, 7366-7375.
- 7. P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao and W. Mai, *Angew. Chem. Int. Ed.*, 2021, **60**, 18247-18255.
- 8. X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou, K. Qi, L. Shi, Y. Zhu and Y. Qian, *Energy Environ. Sci.*, 2021, **14**, 3120-3129
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun, Y. Tang, X. Ji and H. Wang, *Nat. Commun.*, 2020, **11**, 3961.
- 10. C. Deng, X. Xie, J. Han, Y. Tang, J. Gao, C. Liu, X. Shi, J. Zhou and S. Liang, *Adv. Funct. Mater.*, 2020, **30**, 2000599.

11. Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang and G. Cui, *Energy Environ. Sci.*, 2019, **12**, 1938-1949.

- 12. D. Li, L. Cao, T. Deng, S. Liu and C. Wang, Angew. Chem. Int. Ed., 2021, 60, 13035-13041.
- 13. M. Zhu, J. Hu, Q. Lu, H. Dong, D. D. Karnaushenko, C. Becker, D. Karnaushenko,
- Y. Li, H. Tang, Z. Qu, J. Ge and O. G. Schmidt, Adv. Mater., 2021, 33, 2007497.
- 14. X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Z. Wang, Y. Wang, S. Zhang, T. Zheng, J.

Liu, P. Rao and Z. Guo, Adv. Mater., 2021, 33, 2007416.