Table S1. ECE calculation of combining the light cycle method of 2 min light/3 min dark ¹ with the substrate limitation method ², which is expected for sustainable bioH₂ production by preventing inactivation of hydrogenases by O_2 and competition by the Calvin cycle, respectively.

Conditions	Production rate or yield		
Illumination regime ¹	2 min light/3 min dark		
Medium ²	Acetate and carbon free		
Light intensity (I _r) ¹	$370 \ \mu E \ m^{-2} \ s^{-1}$		
Average rate of bioH ₂ production $(n_a)^{1}$	49 μ mol (mg Chl) ⁻¹ h ⁻¹		
Alga DW per m ² (based on 2 g DW per L alga cul	200 g m ⁻²		
Amount of Chl per m ² (C, at 30 µg ml ⁻¹ , correspon	3 g m ⁻²		
Calculations	Algorithm	Production rate or yield	
H_2 energy (E _H , based on E ₀ 286 KJ mol ⁻¹) ⁴	$E_{\rm H} = nE_0 = n_{\rm a}CE_0$	42042 J	
Light energy (E_L , based on 1 h of illumination) ³	$E_{L} = tE_{L0} = tN_{A}I_{r}hc/\lambda *$	289546 J	
ECE (%) ^{3, 4}	ECE (%)= $100 E_{\rm H}/E_{\rm L}$	14.5 %	

* N_A the Avogadro constant 6.02 ×10²³, h the Planck constant (6.62×10⁻³⁴), c the light velocity (3×10⁸ m/s), λ the light wavelength. For solar energy, 550 nm is used as an average light wavelength.

Table S2. Amount of nonarable land needed to supplement 30% of oil consumption for different regions around the world based on replacement by algal bioH₂ with two scenarios of high and low ECE, i.e. 14.1% and 2.5%, respectively.

Location		Typical bioH ₂ production	Nonarable land, ha	30% of transportation fuel	BioH ₂ required for 30%	BioH ₂ production with	Nonarable land required, %	BioH ₂ production with 2.5%	Nonarable land required, %
		with 14.1%		consumption,	replacement,	14.1%		ECE, kg	
		ECE, kg m ⁻²		L yr ⁻¹	kg yr ⁻¹	ECE, kg		yr-1	
	1	yr-1				yr-1			
Australia	Learmonth	8.2	2.74E+08	1.63E+10	4.16E+09	2.25E+13	0.019	3.98E+12	0.104
China	Guangzhou	4.8	2.22E+08	1.90E+11	4.85E+10	1.07E+13	0.455	1.89E+12	2.567
Colombia	Magdalena	7	3.80E+08	4.43E+09	1.13E+09	2.66E+13	0.004	4.72E+12	0.024
India	Trivandrum	6.9	6.08E+06	5.99E+10	1.53E+10	4.20E+11	3.644	7.44E+10	20.555
Japan	Fukushima	4.7	9.16E+04	7.61E+10	1.94E+10	4.31E+09	451.178	7.63E+08	2544.645
Russia	Poltavka	3.9	2.41E+08	5.15E+10	1.31E+10	9.40E+12	0.140	1.67E+12	0.789
United	II								
States	Hawaii	7.4	7.03E+07	2.86E+11	7.30E+10	5.20E+12	1.403	9.22E+11	7.914

References

- 1. Y. Milrad, S. Schweitzer, Y. Feldman and I. Yacoby, *Plant Physiology*, 2018, **177**, 918–926.
- V. Nagy, A. Podmaniczki, A. Vidal-Meireles, R. Tengölics, L. Kovács, G. Rákhely, A. Scoma and S. Z. Tóth, *Biotechnology for Biofuels*, 2018, 11, 69.
- 3. S. Z. Tóth and I. Yacoby, *Trends in Biotechnology*, 2019, **37**, 1159-1163.
- 4. G. Torzillo, A. Scoma, C. Faraloni and L. Giannelli, *Critical Reviews in Biotechnology*, 2015, **35**, 485-496.