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Supplementary Figures 

 

Figure S1. Time-resolved voltage waveform of DEH cell.  
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Figure S2. Coplanar-electrode DEH cell. (a) Top-view and side-view schematic diagram; (b) 

Open-circuit voltage and short-circuit current; (c) Working mechanism; (d) Equivalent circuit 

model, the parasitic capacitance is 0.26 pF, which is about 1/10 of the non-coplanar-electrode DEH 

cell and omitted in the schematic diagram.  
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Figure S3. Non-coplanar-electrode DEH cell. (a) Top-view and side-view schematic diagram; 

(b) Open-circuit voltage and short-circuit current; (c) Working mechanism; (d) Equivalent circuit 

model, the parasitic capacitance CP is 2.49 pF, which is about tenfold as the coplanar-electrode 

DEH cell (0.26 pF).  
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Figure S4. Large-area DEH panel. (a) Open-circuit voltage and short-circuit current of the 

coplanar-electrode DEH panel; (b) Open-circuit voltage and short-circuit current of the non-

coplanar-electrode DEH panel; (c) Impedance matching of the coplanar-electrode DEH panel, the 

maximum power density of the coplanar panel is 22.52 W m-2 (at the load resistance of 100 kΩ).  
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Figure S5. Liquid-solid TENG cells. (a) Open-circuit voltage of single-electrode TENG cell; (b) 

Short-circuit current of single-electrode TENG cell; (c) Open-circuit voltage of double-electrode 

TENG cell; (b) Short-circuit current of double-electrode TENG cell. 
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Figure S6. Large-area liquid-solid TENG panels. (a) Open-circuit voltage of single-electrode 

TENG panel; (b) Short-circuit current of single-electrode TENG panel; (c) Open-circuit voltage 

of double-electrode TENG panel; (b) Short-circuit current of double-electrode TENG panel. 
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Figure S7. Large-area coplanar-electrode DEH panel for multi-position droplet impacts.  (a) 

Schematics of large-area DEH panels under multi-position droplet impacts and (b) single-position 

droplet impacts; (c) Open-circuit voltages of large-area DEH panels under multi-position droplet 

impacts and (b) single-position droplet impacts. 
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Figure S8. Schematic and output of the sliding contact.  
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Figure S9. Schematic and charging performance of three different droplet impact positions. 

(a) Droplet impacts of three full outputs; (b) Droplet impacts of one full output and two incomplete 

outputs; (c) Comparison of charging performance, the charging curve shows that more full outputs 

contribute to higher charging performance. 
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Figure S10. Theoretical possibility of full output for strip-like DEH panel and checker-like 

DEH panel. (a) The possibility of full output is 27.8% for the strip-like DEH panel; (b) The 

possibility of full output is 11.1% for the checker-like DEH panel, the possibility of full output for 

the strip-like DEH panel will be nearly 3 times the checker-like DEH panel when the Y-direction 

dimension becomes infinitely large. 
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Figure S11. Effect of droplet volume and dripping height on the output. (a) Droplet volume 

from 38 μL to 83 μL; (b) Dripping height from 20 cm to 160 cm.  
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Figure S12. Transmittance spectrum of transparent DEH panel.  
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Figure S13. Surface potential of transparent dielectric materials.  
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Figure S14. Effect of wettability and surface charge density on the output. (a) Hydrophobic 

surface (untreated) and hydrophilic surface (treated by air plasma); (b) Untreated and ion injection 

(treated by releasing the trigger of an antistatic gun Zerostat3 at a vertical distance of about 5.0 

cm).  
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Figure S15. Effect of electrode materials on the output.  
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Figure S16. Optical image of coplanar-electrode DEH panels. (a) Transparent DEH panel (5.7 

cm × 8.6 cm, credit-card-sized); (b) Large-area DEH panel (29.7 cm×21.0 cm, A4-paper-sized); 

(c) Before random droplet impact; (d) After random droplet impact. 
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Figure S17. Optical image of setup for random droplet generation.  

 

 

 



19 

 

Supporting Tables 

Table S1. Performance comparison of different cell devices and large-area panels. 

Type Device structure 
Transferred 

charge (nC) 

Voltage 

(V) 

Current 

(μA) 

 Power density 

(W m-2) 

      Cell  

    device 

Single-electrode TENG 0.023 3.88 0.007 6.02×10-3 

Double-electrode TENG 3.85 10.64 0.081 45.3×10-3 

Non-coplanar-electrode DEH 14.3 261.5 246.1 75.84 

Coplanar-electrode DEH 14.85 266.6 273.6 83.02 

Large-area   

    panel 

(A4-paper- 

    sized) 

Single-electrode TENG 0.018 3.27 0.005 4.28×10-3 

Double-electrode TENG 2.23 7.37 0.055 21.7×10-3 

Non-coplanar-electrode DEH 4.58 10.76 2.75 46.3×10-3 

Coplanar-electrode DEH 10.49 103.47 19.78 22.52 

* The power density is calculated by the followed equation: 

Power density = Power/droplet spreading area, the droplet spreading area is assumed as 2.5 cm2. 
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Table S2. Performance comparison of the coplanar-electrode DEH cell with reported droplet 

energy harvesters. 

Ref. Device structure 
Transferred 

charge (nC) 

Voltage 

(V) 

Current 

(μA) 

 Power density 

(W m-2) 

 Ref.1 Single-electrode TENG 1.5 9.3 17 0.58 * 

 Ref.2 Single-electrode TENG 1.5 52 43 1.31 * 

     Ref.3 Single-electrode TENG 0.6 7 0.128 1.08×10-3 * 

     Ref.4 Single-electrode TENG - 30 27.5 1.81 * 

     Ref.5 Single-electrode TENG - 13.6 3.2 0.14 

     Ref.6 Single-electrode TENG 0.8 9.2 8.7 - 

 Ref.7 Single-electrode TENG - 2.86 1.8 0.013 

 Ref.8 Single-electrode TENG 1 30 10 9.6×10-3 

     Ref.9 Single-top-electrode TENG - 40.74 0.032 0.464* 

      Ref.10 Single-top-electrode TENG 2 68.1 84.8 - 

  Ref.11 Double-electrode TENG 2.2 0.175 0.018 4.87×10-6 * 

  Ref.12 Double-electrode TENG 2.76 5.48 0.177 1.19×10-3 * 

  Ref.13 Double-electrode TENG 5 0.055 0.005 - 

  Ref.14 Double-electrode TENG - 18 14 0.8×10-3 * 

  Ref.15 Double-electrode TENG 3.18 11.8 0.78 - 

  Ref.16 Transistor-inspired structure 8.5 40 2.5 0.038 

  Ref.17 Transistor-inspired structure 8.89 23.92 2.41 0.68* 

  Ref.18 Transistor-inspired structure 30 37.11 7.56 0.59* 

  Ref.19 Transistor-inspired structure 13 60 9 0.072 

  Ref.20 Transistor-inspired structure 49.8 143 270 50.1 

 This work Transistor-inspired structure 14.85 266.6 273.6 83.02 

* The power density is calculated by the followed equation: 

Power density = Power/droplet spreading area20, the droplet spreading area is assumed as 2.5 cm2. 
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