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S1 NaS Battery Model Derivation and Validation

The detailed models from Schaefer et al.1 form the basis of the reduced-order models of the

NaS battery developed in this work. The aforementioned work extensively considers the thermo-

electrochemical cell phenomena for studying the dynamic operation of the cell under load-following

conditions. The influence of the SOD on the cell EMF is studied through the modeling of electro-

chemical cell reactions using Arrhenius-type rate equations with temperature-dependent terms. In

addition, species as well as energy conservation is modeled for the chemical and ionic species of

the sulfur electrode, beta”-alumina electrolyte and sodium electrode depending on the SOD. The

resulting coupled system of partial differential equations (PDEs) is solved using Aspen Custom

Modeler V.8.4 and validated with experimental data. The data obtained on simulating the dy-

namic profiles is used to develop the battery reduced-order models using the NAARX (nonlinear

additive autoregressive with exogenous input)-based approach.

The NAARX-based reduced models, with the general form represented by Eq. 1, use nonlinear

functions of the previously observed outputs and an exogenous input time-series u to determine

the output y at any time instant t:

yt =

n∑
i=0

H1(i, p)upt−i +

r∑
j=1

H2(j, q)yqt−j , p = 1 : P, q = 1 : Q. (1)

Here, H1 and H2 denote the parameter vectors determined based on the least square estimate

considering a linear in parameter (LIP) model:

yt = ψtH,

H = (ψTψ)
−1
ψTY,

(2)

where, ψ represents the regression vector and Y represents the output vector, which are obtained

using the simulation data. The criterion for model selection is Akaike information criterion (AIC),

which is a well-accepted information-theoretic criterion for selecting the best approximating model

from a set of candidate models for a given set of data. It rewards the goodness of fit as well as

penalizes the increased number of estimated parameters, thereby reducing overfitting. AIC is given

by:

AIC = N ln

(
TSE

N

)
+ 2K, (3)

where, N denotes the number of data points, TSE represents the total squared error and K

is the number of fitted parameters. Model complexity is increased until the AIC value changes

significantly. Once no significant change in AIC value is observed, the simpler model is chosen.

Using this procedure, the input memory n, output memory r and exponent values P and Q are

determined from the model which exhibits a good trade-off between model simplicity and goodness

of fit.
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The reduced-order models for the NaS cell are generated in MATLAB with the inputs u as

the state of discharge of the cell SODcell (%) and the value of the current through the cell Icell

(ampere). The output y includes the cell voltage V cell (volt). We define the following set mappings

for representation of the reduced-order models: Set mapping maps1s,is,is1 links the individual states

is, is1 to their combination s ∈ S, with maps1s,is,is1 = 1 for the following values of {s, is, is1}:
{1c, single, charge}, {1d, single, discharge}, {2c, two, charge}, {2d, two, discharge}. We further

define the following sets for representation of the NAARX-based dynamic model: sets Z,A,L
denote the set of exponents of the first and second exogenous input time series and the output time

series respectively with z ∈ Z = {1}, a ∈ A = {1}, l ∈ L = {1}. Sets J ,B,G indicate the set of

the number of past values to be considered for the first input series, second input series and the

output time series respectively with j ∈ J = {1, 2, 3}, b ∈ B = {1, 2, 3}, g ∈ G = {1, 2}. The index

k ∈ K = {1, 2, 3, 4, 5} signifies the terms of the parameter vector Hs to be multiplied with the input

and output series in the NAARX model for state s.

Additionally, we introduce set mappings mapp1s,z,map
p2
s,a,map

q1
s,l to indicate the exponents z, a

and l which will be active for the dynamic model of state s. The following equations represent this:

mapp1s,z = 1, ∀z ≤ p1s, (4a)

mapp2s,a = 1, ∀a ≤ p2s, (4b)

mapq1s,l = 1, ∀l ≤ q1s. (4c)

Similarly, set mappings mapn1
s,j ,map

n2
s,b,map

r1
s,g denote the number of past values of the time series

used for prediction of the present battery output for state s. Here, we define:

mapn1
s,j = 1, ∀j ≤ n1s, (5a)

mapn2
s,b = 1, ∀b ≤ n2s, (5b)

mapr1s,g = 1, ∀g ≤ r1s. (5c)

Mappings mapk1
s,k,z,j ,map

k2
s,k,a,b,map

k3
s,k,l,g link the elements of set K to state s, given by the follow-

ing:

mapk1
s,k,z,j = 1, ∀z ≤ p1s, j ≤ n1s, k = (z − 1)n1s + j, (6a)

mapk2
s,k,a,b = 1, ∀a ≤ p2s, b ≤ n2s, k = n1sp1s + (a− 1)n2s + b, (6b)

mapk3
s,k,l,g = 1, ∀l ≤ q1s, g ≤ r1s, k = n1sp1s + n2sp2s + (l − 1)r1s + g. (6c)

The values of the parameters p1s, p2s, q1s, n1s, n2s, r1s and Hs,k for state s ∈ S are given in

Table S1.
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Table S1: NaS cell surrogate model parameters

Parameter Value Parameter Value Parameter Value

p11c 1 p21c 1 q11c 1

p11d 1 p21d 1 q11d 1

p12c 1 p22c 1 q12c 1

p12d 1 p22d 1 q12d 1

n11c 2 n21c 2 r11c 1

n11d 2 n21d 2 r11d 1

n12c 2 n22c 2 r12c 1

n12d 2 n22d 2 r12d 1

Parameter Value Parameter Value

H1c,1 -0.016426 H2c,1 -0.021226

H1c,2 0.017258 H2c,2 0.021023

H1c,3 -4.422954 H2c,3 0.072455

H1c,4 4.429539 H2c,4 -0.077897

H1c,5 0.998398 H2c,5 1.000766

H1d,1 -0.014160 H2d,1 -0.018347

H1d,2 0.014107 H2d,2 0.018109

H1d,3 0.065784 H2d,3 0.438184

H1d,4 -0.069630 H2d,4 -0.430225

H1d,5 1.001037 H2d,5 0.998227

The validation of the reduced-order model with the Aspen model for the single-phase charging

state is shown in Figure S1. Overall, there is a good agreement of the output voltage from the two

models for all four cell states.
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(a) (b)

Figure S1: Validation of the reduced-order model (ROM) of the NaS cell with the model from

Aspen Custom Modeler (ACM) for single-phase charging state. The input data is shown in (a),

with the current value varied between 4.5 A and 8 A through step changes. The variation of SOD

from 86.5% to the threshold SOD is in the form of a linearly decreasing function. The corresponding

output voltage data predicted by the ROM and the actual voltage data from the ACM are shown

in (b). We observe that the voltage increases with decreasing SOD and the NAARX-based ROM

is an accurate predictor of the actual voltage data.

S2 Battery Reduced-Order Models

S2.1 Li-ion Battery Model

From the Rint model, the terminal cell voltage V cell
t (in V) is represented by Eq. 7a. For Li-ion

batteries, the OCV is a nonlinear function of the SOC/SOD. This OCV-SOC characteristic curve

is modeled using a fitted polynomial function given by Eq. 7b for a temperature of 25 ◦C.2 We

define is ∈ S ′ = {charge, discharge} to denote the set of cell states representing charging and

discharging. fis,t in Eq. 7a denotes the flag variable for cell state is at time t, and xidlet signifies the

binary variable for the idle state of the cell at time t. When the cell is in the idle state, i.e. it is

neither charging nor discharging, xidlet is 1, and 0 otherwise. The flag variable helps to determine

if the cell is charging or discharging at time t. For instance, if the cell is charging, i.e. the charging

power yct (in W) is positive and the discharging power ydt (in W) has a value of 0, fcharge,t will

be 1 and fdischarge,t will be 0 from Eqs. 7c and 7d. For discharging, ydt will be positive and yct

will be 0, thereby assigning values of 0 and 1 to fcharge,t and fdischarge,t respectively. The current

Icellt is always a positive value. Thus, from Eq. 7a, the terminal voltage increases during charging

operation and reduces during discharging.

The total cell power output at time t, P cellt (in W), is represented as the difference between the
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discharging and charging variables ydt and yct using Eq. 7e, which makes the cell power output

positive for discharging and negative for charging operation. The magnitude of the power output is

determined as the product of the cell voltage and the current through the cell as given by Eq. 7f. For

idle state of the cell (xidlet = 1), the power charged/discharged by the cell is zero, giving ydt = yct.

Eq. 7g then determines the total number of cells in the battery pack, N cell, as a function of the

nominal power capacity of a single cell, ncpo,cell (in W), and the nominal power capacity ncp of

the battery (in MW). Eq. 7h establishes the relation of the nominal energy capacity nce (in MWh)

to the nominal power capacity through the maximum storage duration, nch. Eq. 7i represents the

power output from the battery at any given time P batt (in MW) as a function of the power output

from a single cell and the total number of cells in the battery pack. Similarly, from Eq. 7j, the

total energy capacity of the battery system Ebatt at any given time (in MWh) is determined as a

function of the nominal energy capacity of the battery pack and the cell state of charge. Since the

power equation does not include the storage round-trip efficiency, it is accounted for in the overall

energy balance equation given by Eq. 7k using a fixed round-trip efficiency ηS of 95%. The upper

bound on the nominal power capacity ncp is 100 MW.

V cell
t = OCV cell

t − Icellt Rcell(−fcharge,t + fdischarge,t)(1− xidlet ), ∀t ∈ T (7a)

OCV cell
t = a1 SOCt

3 + a2 SOCt
2 + a3 SOCt + a4, ∀t ∈ T (7b)

fdischarge,t =
1 + ydt−yct√

(ydt−yct)
2

2
, ∀t ∈ T (7c)

fcharge,t =
1− ydt−yct√

(ydt−yct)
2

2
, ∀t ∈ T (7d)

P cellt = ydt − yct, ∀t ∈ T (7e)√
(P cellt )

2
= V cell

t Icellt (1− xidlet ), ∀t ∈ T (7f)

N cell =
ncp 106

ncpo,cell
, ∀t ∈ T (7g)

nce = ncpnch, ∀t ∈ T (7h)

P batt = P cellt N cell10−6, ∀t ∈ T (7i)

Ebatt = nceSOCt, ∀t ∈ T (7j)

Ebatt+1 = Ebatt − (ηSfcharge,t + fdischarge,t)P
bat
t ∆t, ∀t ∈ T \ {NT + 1}, (7k)

0 ≤ fis,t ≤ 1, ∀is ∈ S ′. (7l)

The modified energy balance including the self-discharge rate is given by:

Ebatt+1 = Ebatt − (ηSfcharge,t + fdischarge,t)P
bat
t ∆t− xidlet Ebatt

ϕ
T
∆t

, ∀t ∈ T \ {NT + 1}, (8)

where, the self-discharge rate is denoted by the parameter ϕ. The last term of Eq 8 denotes that

the self-discharge takes place when the battery is in the idle state.
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The operational and cost parameter values for both the NaS and Li-ion technologies are given

in Table S2. The values of the cost parameters reported are the nominal values based on the

current technology status. There are several parameters which are specific to one technology alone,

governed by the assumptions specific to that technology.

Table S2: Operational and cost parameters of NaS and Li-ion technologies

Parameter Significance Unit NaS value Li-ion value

V min Minimum cell voltage2 V 1.61 3

V max Maximum cell voltage2 V 2.23 4.25

V nom Nominal cell voltage2 V 2 3.65

Inom Nominal cell current A 6 6

e1 Coefficient of NaS cell energy capacity model Wh 144.6 -

e2 Coefficient of NaS cell energy capacity model Wh -162.13 -

a1 Coefficient of Li-ion cell OCV model2 - - 0.82

a2 Coefficient of Li-ion cell OCV model2 - - -0.72

a3 Coefficient of Li-ion cell OCV model2 - - 0.69

a4 Coefficient of Li-ion cell OCV model2 - - 3.45

Rcell Equivalent series resistance Ω - 0.0082

nch Maximum storage duration3 h - 4

ncpo Maximum power output of battery module MW 0.05 -

ncpo,cell Maximum cell power output W 15.46 25.5

nceo,cell Maximum cell energy capacity Wh 107 -

nceo Maximum energy capacity of battery module MWh nceo,cellMcell10−6 -

Mcell No. of cells in a battery module - ncpo 106

ncpo,cell
-

SCiv,bat Battery installation cost per unit capacity3–5
$/kWh 907 320

SCof,bat Unit fixed O&M cost of battery system3–5
$/kWyr 10 3.79

SCov,bat Unit variable O&M cost of battery system3–5
$/MWh 0.3 0.3

tlf Battery lifetime3–5 yr 15 6

S2.2 NaS Battery Model

To represent the reduced-order models, the set of possible states of the NaS cell is denoted by

the set S with s ∈ S = {1c, 2c, 1d, 2d}. Here, the states 1c, 2c, 1d and 2d represent single-phase

charging, two-phase charging, single-phase discharging and two-phase discharging respectively. In

addition, we define is, is1 ∈ S ′ = {single, two, charge, discharge} to denote the individual states

given by the phase of the sulfur electrode, i.e. single or two-phase and the direction of power flow
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from the cell, i.e. charging or discharging. The NAARX model for the NaS cell is given as follows:

V 1s,t =
∑
z∈Z

∑
j∈J

∑
k∈K

(−Icellt−j+1)
z
Hs,k map

n1
s,j map

k1
s,k,z,j map

p1
s,z, ∀s ∈ {1c, 2c},∀t ∈ T ,

(9a)

V 1s,t =
∑
z∈Z

∑
j∈J

∑
k∈K

Icellt−j+1
z
Hs,k map

n1
s,j map

k1
s,k,z,j map

p1
s,z, ∀s ∈ {1d, 2d},∀t ∈ T ,

(9b)

V 2s,t =
∑
a∈A

∑
b∈B

∑
k∈K

SODcell
t−b+1

a
Hs,k map

n2
s,b map

k2
s,k,a,b map

p2
s,a, ∀s ∈ S,∀t ∈ T ,

(9c)

V 3s,t =
∑
l∈L

∑
g∈G

∑
k∈K

(V cell
t−g )

l
Hs,k map

r1
s,g map

k3
s,k,l,g map

q1
s,l, ∀s ∈ S,∀t ∈ T ,

(9d)

Vs,t
′

= V 1s,t + V 2s,t + V 3s,t, ∀s ∈ S,∀t ∈ T ,
(9e)

V cell
t =

∑
is∈S′

∑
is1∈S′

∑
s∈S

fis,tfis1,tVs,t
′
maps1s,is,is1(1− xidlet ) + V cell

t−1 x
idle
t , ∀t ∈ T ,

(9f)

where, V 1s,t, V 2s,t and V 3s,t denote the portion of cell voltage determined as a function of the

time-series values of the cell current, SOD and previous voltage respectively. The NAARX model

is developed assuming positive current for discharging and negative for charging. As Icellt denotes

the absolute value of the current, we have two separate equations for V 1s,t for the charging states

1c and 2c, and the discharging states 1d and 2d, depicted by Eqs. 9a and 9b respectively. The two

input time series of current and SOD, and the output time series of previously observed voltage

are summed up to obtain the cell voltage at time t and state s, Vs,t
′
, as given by Eq. 9e. The

overall voltage at time t, V cell
t , is then computed depending on the actual state of the cell at time

t using Eq. 9f. The various set mappings and parameters in Eqs. 9a-9f are defined in Section S1.

In addition to the flag variables for charging and discharging, Eq. 9f also includes the flag variables

for the single state and the two-phase state of the cell. These are further defined as follows:

fsingle,t =

1 +
SODcell

t −SODthres√
(SODcell

t −SODthres)
2

2
, ∀t ∈ T , (10a)

ftwo,t =

1− SODcell
t −SODthres√

(SODcell
t −SODthres)

2

2
, ∀t ∈ T . (10b)

If the state of discharge SODcell
t is greater than the threshold state of discharge SODthres of 55.8%

for phase change, fsingle,t will have a value of 1 and ftwo,t will be 0. Conversely, for the two-phase

state of the sulfur electrode, the state of discharge SODcell
t will be less than SODthres, resulting
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in fsingle,t to be 0 and ftwo,t to be 1. If the cell is in the non-idle state (xidlet = 0), the cell voltage

is determined by selecting the appropriate cell model depending on the actual cell state using the

flag variables, as given by the first term of Eq. 9f. If the cell is in the idle state, the cell voltage is

equal to the voltage at the past time step, as depicted by the second term of Eq. 9f.

The relationship between the cell state of discharge and the corresponding energy capacity at

time t, Ecellt (Wh), is expressed using a surrogate model given by Eq. 11a. Eq. 11b denotes the

energy balance for the cell. To derive the battery power output from the cell output, we assume

that each battery module has a maximum power capacity of 50 kW. The overall battery system is

then comprised of a collection of such modules connected in parallel to achieve the desired power

output. The power output from the battery at any given time is thereby determined as a function

of the output from a single cell, the total number of cells in a module M cell and the number of

battery modules in a battery bank M bat using Eq. 11c. Similarly, from Eq. 11d, we determine the

total energy capacity of the battery system at a given time as a function of the cell capacity Ecellt

and the total number of cells. The nominal energy capacity and the nominal power capacity of the

battery pack are determined as a function of the fixed nominal capacity of a single module and the

number of modules connected in parallel, as shown by Eqs. 11e and 11f respectively.

Ecellt = e1 + e2SOD
cell
t , ∀t ∈ T , (11a)

Ecellt+1 = Ecellt − P cellt ∆t, ∀t ∈ T , (11b)

P batt = P cellt M cell M bat 10−6, ∀t ∈ T , (11c)

Ebatt = Ecellt M cell M bat 10−6, ∀t ∈ T , (11d)

nce = nceo M bat, ∀t ∈ T , (11e)

ncp = ncpo M bat, ∀t ∈ T . (11f)
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S3 Optimization Model

In the optimization framework, the nominal power capacity ncp is the design decision variable for

both the NaS and the Li-ion batteries. The time-dependent operating decision variables include the

battery power output ydt (in W), the binary variable for the idle state of the battery xidlet , power

output of the NGCC power plant Pngt (in MW) and the amount of electricity undersupply of the

integrated system P ust (in MW). The power output from a single cell is determined as a function

of the cell state of operation xidlet and the discharging power ydt through the cell reduced-order

models. This is scaled up to the power output from a battery module using the fixed number of

cells in the module. The battery pack power P batt is then determined as a function of the module

power and the design power capacity of the battery pack ncp. The combined power output from the

NGCC plant Pngt and the battery pack is delivered to the grid to meet the net demand Dt, wherein

the NGCC power output and the amount of power undersupply P ust are the decision variables.

The model variables in addition to the decision variables are defined as follows: TC: total cost

($), Civ,bat: battery investment cost ($), Cof,bat: fixed O&M cost of battery ($), Cov,batt : variable

O&M cost of battery at time t ($/h), Cov,ngt : NGCC variable O&M cost at time t ($/h), Cos,it :

electricity oversupply cost of integrated system at time t ($/h), Cus,it : electricity undersupply cost

of integrated system at time t ($/h), Crc,ngt : NGCC cycling cost at time t ($), Pngt : NGCC gross

power output at time t (MW), P ost : power oversupply at time t (MW), P ust : power undersupply at

time t (MW),
ηng
t

ηnom,ng : ratio of actual NGCC efficiency to nominal efficiency at time t.

Tables S3 and S4 present the model parameters and the cost parameters for sensitivity analysis,

respectively.

Table S4: Cost parameter bounds for sensitivity analysis

Parameter Unit Lower bound Upper bound (Li-ion/NaS)

SCiv,bat
$ per kWh 50 320/907

SCof,bat
$ per kWyr 1 3.79/10

SCov,ng
$ per MWh 10 50

SCrc,ng
$ per MW 0.64 64
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Table S3: Model parameters

Parameter Significance Unit Value

∆t Time resolution for decision making h 0.1667

rdisc Annual discount rate % 8

DF Discounting factor - 1
rdisc

(
1 − 1

(1+rdisc)
tlf

)
CRF Capital recovery factor - 1

DF

T Time horizon in consideration h 24

NT Number of decision stages in time horizon - T
∆t

SCov,ng Unit variable O&M cost of NGCC plant6
$ per MWh 30

SCos,i Specific oversupply penalty of integrated system7
$ per MWh 155

SCus,i Specific undersupply penalty of integrated system7
$ per MWh 1000

SCrc,ng Specific NGCC cycling costs8
$ per MW 0.64

πt Electricity price at time t $ per MWh -

Dt Grid net electricity demand at time t9 MW -

rong Ramp rate of NGCC plant as fraction of nominal capacity10 hr−1 1.2

Pnom,ng Nominal NGCC power output MW 641

m1 Coefficient of NGCC partial load efficiency model - 0.7355

m2 Coefficient of NGCC partial load efficiency model - 0.284

lfmin,ng Min load factor of NGCC plant % 40

The optimization formulation minimizing the total cost of the integrated system is given below.

The various attributes of the optimization model are defined as follows: The set T denotes the set

of time steps in the scheduling horizon, where t ∈ T = {1, 2, ..., NT,NT + 1} and NT represents

the number of discrete decision stages. The NT + 1th step denotes the start of the next identical

time horizon. The overall MINLP model for a given power plant is composed of 5372 equations,

5519 continuous variables and 145 discrete variables. It is solved using the global solver BARON11

v.21.1.13 in GAMS environment.

min TC = Civ,bat + Cof,bat +

NT∑
t=1

((
Cov,batt + Cov,ngt + Cos,it + Cus,it

)
∆t+ Crc,ngt

)
(12a)

s.t. Civ,bat = SCiv,bat nce CRF
T

8760
103, (12b)

Cof,bat = SCof,bat ncp
T

8760
103, (12c)

Cov,batt = SCov,bat (yct + ydt) M
cell M bat 10−6, ∀t ∈ T (12d)

Cov,ngt = SCov,ng Pngt
ηnom,ng

ηngt
, ∀t ∈ T (12e)
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Crc,ngt ≥ SCrc,ng
(
Pngt+1 − P

ng
t

)
, ∀t ∈ T \ {NT + 1} (12f)

Crc,ngt ≥ SCrc,ng
(
Pngt − P

ng
t+1

)
, ∀t ∈ T \ {NT + 1} (12g)

Crc,ngt ≥ 0, ∀t ∈ T \ {NT + 1} (12h)

Cos,it = SCos,i P ost , ∀t ∈ T (12i)

Cus,it = SCus,i P ust , ∀t ∈ T (12j)

Dt = Pngt + P batt − P ost + P ust , ∀t ∈ T (12k)

− 0.1 ≤
EbatNT+1 − Ebat1

Ebat1

≤ 0.1, (12l)

0 ≤ ydt ≤ ncpo,cell ∀t ∈ T (12m)

0 ≤ yct ≤ ncpo,cell ∀t ∈ T (12n)

0 ≤ Ebatt ≤ nce, ∀t ∈ T (12o)

P batt ≤ ncp, ∀t ∈ T (12p)

− P batt ≤ ncp, ∀t ∈ T (12q)

− rongPnom,ng∆t ≤ Pngt+1 − P
ng
t ≤ rongPnom,ng∆t, ∀t ∈ T \ {NT + 1} (12r)

ηngt
ηnom,ng

= m1 +m2
Pngt

Pnom,ng
, ∀t ∈ T (12s)

Icellt = Inom, ∀t ∈ T (12t)

V min ≤ V cell
t ≤ V max, ∀t ∈ T (12u)

SODmin ≤ SODcell
t ≤ SODmax, ∀t ∈ T (12v)

lfmin,ngPnom,ng ≤ Pngt ≤ Pnom,ng, ∀t ∈ T (12w)

0 ≤ P ost ≤ Pnom,ng, ∀t ∈ T (12x)

0 ≤ P ust ≤ Pnom,ng, ∀t ∈ T (12y)

0 ≤ P gt ≤ Pnom,ng, ∀t ∈ T (12z)

M bat ∈ Z+, ncp ∈ R+, Pngt ∈ R+, P ust ∈ R+, ydt ∈ R+, xidlet ∈ {0, 1}.

The objective function of total integrated system cost given by Eq. 12a comprises of the investment

cost and fixed O&M cost of the battery system as fixed cost components, given by the first and

second terms respectively. The time-varying cost components, shown by the remaining terms of

Eq. 12a, include: variable O&M cost of the battery, variable O&M cost of the NGCC power plant

which includes the fuel cost, penalty on the oversupply and undersupply of electricity to the grid,

and the cost associated with the ramping operation of the power plant.

Each of these cost components are further expressed through Eqs. 7e, 12b - 12h. Eq. 12b

denotes the battery capital cost, which is first annualized using the capital recovery factor and

then further scaled over the sub-yearly time horizon of interest. Similarly, the fixed O&M cost of

the battery system is normalized over the sub-yearly time horizon in Eq. 12c. Eq. 12d calculates
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the variable O&M cost of the battery as a function of the total power output. We denote the

charging and discharging power outputs by two different non-negative continuous variables (yct

and ydt), and include the sum of the two variables in the variable O&M cost. This eliminates the

need to introduce a binary variable at each time step to represent the mutually exclusive charging

and discharging operation, and together with Eqs. 12m and 12n ensures that the battery is either

charging, discharging or idle at a given time. Eq. 12e computes the variable operating cost of the

NGCC plant including the effect of efficiency loss at partial load operation. The ramping cost

associated with the dynamic operation of the NGCC plant is given by Eqs. 12f - 12h.

Eq. 12k represents the overall energy balance for the integrated system at each time step. Here,

we introduce slack variables to relax the hard constraint on the system energy balance, with any

violations penalized in the objective through Eqs. 12i and 12j. Eq. 12l imposes a cyclical constraint

on the energy stored in the battery system over a day with a tolerance of 10%. The cyclical

constraint ensures that each day is identical with respect to energy storage, such that there is no

borrowing of energy between the days to meet the demand.

Eqs. 12m - 12q denote the bounds on the battery power output and energy capacity. Eq. 12r

denotes the ramping constraint on the power plant output. The actual efficiency of the NGCC

plant relative to the rated efficiency is expressed as a function of the partial load fraction using

Eq. 12s. The parameters of the efficiency equation are determined using a linear fit for the partial

load efficiency curve from the work of Van den Bergh and Delarue.12 Finally, Eqs. 12t-12z signify

the bounds on the cell current, voltage, state of discharge, NGCC power output, oversupply and

undersupply of electricity, and power bought from the grid. The cell current at each time step

is considered to be constant at the nominal cell current for both the NaS and the Li-ion battery

technologies. The upper bound on the power oversupply, undersupply and the amount bought from

the grid is assumed to be equal to the nominal power output of the NGCC plant.
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S4 Cost and Emission Metrics

To evaluate the system cost with the battery integration, we calculate cost metrics such as the

levelized cost of storage (LCOS) and the levelized cost of energy (LCOE).

The battery LCOS is given by the following expression:

LCOS =

Civ,bat
∗

+ Cof,bat
∗

+
NT∑
t=1

Cov,batt

∗
∆t + SCov,ng

NT∑
t=1

P cht
∗
∆t

NT∑
t=1

P dist
∗
∆t

, (13)

where, Civ,bat
∗
, Cof,bat

∗
and Cov,bat

∗
denote the optimal values of the scaled investment cost, the

fixed O&M and the variable O&M cost of the battery respectively. The fourth term in the numerator

represents the charging cost, or the cost of electricity charged into the battery system. As the

battery is being charged using power derived from the NGCC plant, the unit cost of electricity

is taken to be the variable operating cost of the power plant SCov,ng. P cht
∗

and P dist
∗

denote

the magnitude of power charged into and discharged by the battery at time t respectively, where:

P cht
∗

= −P batt
∗

if the optimal battery power P batt
∗
< 0, and 0 otherwise. Similarly, P cht

∗
= P batt

∗
if

the optimal battery power P batt
∗
> 0, and 0 otherwise. The overall LCOS is thus reported as the

sum of the total investment, O&M and charging cost of the battery system over the time horizon

divided by the total discharged energy.

The system LCOE with battery integration is determined using Eq. 14. Here, P tott
∗

represents

the total optimal power output of the integrated system at a given time t, and is given as the sum

of the NGCC power plant, battery and renewable power plant outputs (Pngt
∗

+ P batt
∗

+ P rent
∗).

LCOE =
TC∗

NT∑
t=1

P tott
∗
∆t

. (14)

The CO2 emission intensity, ECO2, of the integrated system of NGCC power plant, renewable

farm and battery is calculated using Eq. 15, where P rent
∗ denotes the optimal power output of

the renewable farm at time t, and εbase represents the base-case CO2 emission intensity of the

stand-alone NGCC power plant. In addition, εbat represents the life cycle emission intensity of the

battery, and εren denotes the life cycle emission intensity of the solar farm.

ECO2 =

NT∑
t=1

(
Pngt

∗
εbase + P dist

∗
εbat + P rent

∗εren
)

∆t

NT∑
t=1

(
Pngt

∗
+ P batt

∗
+ P rent

∗)∆t

. (15)
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S5 Solutions

S5.1 Battery Selection Sensitivity Study

Figure S2: Sensitivity analysis of optimal Li-ion battery integration size with NGCC cycling cost

and battery investment cost, where (a) shows the battery size variation for the entire range of the

cost parameters, and (b) focuses specifically on the region where battery selection is optimal. The

red dashed lines in (a) denote the nominal values of the cost parameters. The orange solid lines in

(b) represent the threshold values of the cost parameters for battery selection.

To determine the combination of the cost parameters which favor the battery selection for the

nominal net load profile, we conduct a sensitivity study of the 5 specific cost parameters: the battery

installation cost, battery fixed and variable O&M cost, NGCC variable O&M cost and NGCC

cycling cost, on the integration economics. The lower and upper bounds of the cost parameters

considered for the analysis for both the NaS and Li-ion technologies are provided in Table S4.

We generate 1000 sample points based on Latin Hypercube Sampling (LHS) design of the cost

parameters between these bounds. Through this analysis, we find that the battery unit investment

cost, SCiv,bat, and the NGCC specific cycling cost, SCrc,ng, are the two most important parameters

influencing battery selection and size for both storage technologies. Figure S2 shows the variation

of the optimal Li-ion battery integration size with the two crucial cost parameters. The sensitivity

analysis for NaS battery is shown in Figure S3. We observe that the ratio of the NGCC specific

cycling cost and the battery unit investment cost has to be greater than 0.33 for Li-ion battery and

0.27 for NaS battery to achieve favorable economics of integration with the NGCC plant. For cases

where the battery is selected, the battery integration size does not exceed 20 MWh for Li-ion and

35 MWh for NaS battery. Furthermore, the average reduction in NGCC cycling costs from battery

integration is 5.18% considering Li-ion integration and 4.87% with NaS integration.
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Figure S3: Sensitivity analysis for NaS battery integration size with NGCC cycling cost and battery

investment cost.

S5.2 Battery Operational Profiles

The optimal operational profiles of the NGCC power plant with the Li-ion and NaS battery inte-

gration are shown in Figure S4. We observe that there is an underutilization of the battery capacity

resulting from bounds imposed on the battery state and voltage for safe operation. For instance,

in this case, although the optimal installed capacity of the NaS battery is 134 MW, the power

discharged at any time period does not exceed 116 MW. Thus, the battery storage is overdesigned

owing to the limitations on its utilization. This can also be observed from Figure S4d for the NaS

battery, which shows the optimal battery operational profile. The SOD is 65% at the beginning of

the day and is brought to an SOD level of 67.5% at the end of the day due to the cyclical constraint

on the energy stored. The SOD hits the lower bound of 40% when the battery is charged during

the afternoon hours. To avoid going below the lower bound of SOD, the entire excess energy in the

afternoon hours is not stored in the battery. Similarly, the amount of energy that can be discharged

is limited by the cyclical constraint. Similar operation is observed from Figure S4b for the Li-ion

case. However, due to the lower storage duration compared to NaS battery, the amount of power

oversupply/undersupply is higher.
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Figure S4: Optimal operational profiles for (a) integrated system comprising the power plant and

Li-ion battery, (b) Li-ion battery system, (c) integrated system comprising the power plant and

NaS battery and (d) NaS battery system. The profiles are shown for a time discretization of 10

minutes within a time horizon of 1 day of operation. Plots (b) and (c) show opposite trends as

they represent the different state variable used in the Li-ion and NaS models: SOD and SOC,

respectively.

S5.3 Variation of Battery Cost and Size for Integration with NGCC Power

Plants

Figure S5 depicts the variation in the battery integration size in terms of both the energy and power

capacities with increasing demand variability. For a given power plant, the increase in the battery

integration size is the highest as we move from 20% to 40% increase in renewables. Additionally,

for high NGCC nominal capacities, the optimal Li-ion battery size is at the upper bound of 100

MW/400 MWh.
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Figure S5: Optimal battery integration size in terms of (a) Li-ion nominal energy capacity, (b) Li-

ion nominal power capacity, (c) NaS nominal energy capacity and (d) NaS nominal power capacity

for increasing renewable penetration.

Figure S6 depicts how the different cost components constituting the overall LCOE change as we

vary the extent of renewable penetration for the different power plants for the representative case of

NaS battery integration. We observe that the three components majorly contributing to the overall

LCOE include the battery investment cost, NGCC variable cost and the electricity undersupply

cost. Among these, the battery investment cost increases with the battery size as we increase

the renewable penetration and the power plant nameplate capacity. The undersupply cost also

increases across the various renewable penetration scenarios. However, the average increase is not

as significant as the increase in the battery cost. The increasing undersupply cost can be attributed

to the peak in the net demand profile which increases as we increase the renewable penetration.

Although a bigger battery can provide the required discharge power to reduce undersupply as we

increase the renewable penetration, there is a trade-off between completely meeting the demand

peak and the battery cost. An interesting observation from Figure S6 is that the NGCC variable

operating and fuel cost decreases with increasing battery size. The NGCC cycling cost forms

a small component of the LCOE and does not show a distinct trend for increasing battery size

at the same renewable penetration level. The increasing battery investment and the electricity
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undersupply cost with the renewable penetration and NGCC nominal capacity contributes majorly

to the overall increasing trend shown by the overall LCOE.

Figure S6: Cost components of (a) battery investment cost, (b) battery fixed cost, (c) battery

variable cost, (d) NGCC variable cost, (e) electricity undersupply cost, (f) electricity oversupply

cost and (g) NGCC cycling cost constituting the LCOE of the integrated system for 20%, 40%,

60% and 80% increase in renewable energy penetration considering NaS battery integration.
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