Electronic Supplementary Information (ESI)

Strategies in Cell Design and Operation for the Electrosynthesis of Ammonia: Status and Prospects

Wei Bi,^a Nima Shaigan,^b Ali Malek,^b Khalid Fatih,^{*b} Elöd Gyenge ^{*a} and David P. Wilkinson ^{*a}

- ^{a.} Faculty of Applied Science, Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada. Email: <u>dwilkinson@chbe.ubc.ca</u>, <u>egyenge@chbe.ubc.ca</u>
- ^{b.} Energy, Mining and Environment Research, National Research Council Canada, Vancouver, BC V6T 1W5, Canada. Email: <u>Khalid.Fatih@nrc-cnrc.gc.ca</u>
- * Corresponding authors

List of figures:

Table S1: S	Summary of Previous Aqueous ENRR Studies Performed in Non-separated (NS) Cells
Table S2: S	Summary of Previous Aqueous ENRR Studies Performed in Liquid-Liquid (L-L) Separated Cells4
Table S3: S	Summary of Previous Aqueous ENRR Studies Performed in Gas-Liquid (G-L) Separated Cells
Table S4: S	Summary of Previous Aqueous ENRR Studies Performed in Gas-Gas (G-G) Separated Cells
Table S5: [Detailed Comparison of Experimental Procedures in Conducting Quantitative Isotope NMR Tests for the
Aqueous E	ENRR

Glossary of terms:

<i>r</i> _m	mass-specific NH ₃ production rate	EDA	ethylenediamine
r _{geo}	geometric-surface-area-specific NH ₃	GC-MS	gas chromatography-mass spectrometry
	production rate		
FE	faradaic efficiency	CEM	cation exchange membrane
Ε	potential	G	graphene
j _{nн₃}	current density toward NH ₃ production	rGO	reduced graphene oxide
NMR	nuclear magnetic resonance	AEM	anion exchange membrane
СР	carbon paper	ZIF	zeolitic imidazolate framework
N/A	not available	HHTP	hexahydroxytriphenylene
RHE	reversible hydrogen electrode	MOF	metal-organic framework
ISE	ion-selective electrode	PEBCD	poly(N-ethyl-benzene-1,2,4,5-
			tetracarboxylic diimide)
IB	indophenol blue	CNT	carbon nanotube
CC	carbon cloth	PBS	phosphate buffer solution
IC	ion chromatography	Cys	cysteine

Catalyst	Substrate	Electrolyte	r _m	r _{geo}	FE	Ε	vs.	j _{NH₃}	NH ₃ detection	Qualitative or quantitative	Test duration	Ref.
			(μ g h ⁻¹ mg _{cat} ⁻¹)	(x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	(%)			(mA cm ⁻²)	method	NMR available?	(h)	
RuPt@C	СР	1 M KOH	N/A	6.37	1.2	-0.077	RHE	0.184	Nessler	None	1	1
Au	Au foil	0.1 M KOH	N/A	0.038	0.12	-0.5	RHE	0.001	ISE	None	10	2
Ni@N-C	Glassy C	0.1 M KOH	106.3	13.9	11.6	-0.3	RHE	0.402	IB, Nessler	None	1	3
Defective C	CC	0.1 M Na ₂ SO ₄ ,	N/A	2.59	6.9	-0.3	RHE	0.075	IB	None	1	4
		0.02 M H ₂ SO ₄										
NiGeO₄@C	Ni foam	0.1 M KOH	3.06	N/A	3.57	-0.1	RHE	N/A	IB	None	2	5
Au@N-C	Membrane	0.1 M HCl	N/A	5.88	10.9	-0.2	RHE	0.170	IB, NMR	Qualitative	3	6
Fe_3O_4	Ti mesh	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	4.63	0.56	2.6	-0.4	RHE	0.016	IB, NMR	Qualitative	3	7
Au	СР	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	40.6	0.085	18.8	-0.3	RHE	0.002	IB, NMR	Qualitative	2	8
Cu@polyimide	СС	0.1 M KOH	2.48	2.03	6.6	-0.3	RHE	0.059	IB, IC, NMR	Qualitative	6	9

Table S1: Summary of Previous Aqueous ENRR Studies Performed in Non-separated (NS) Cells.

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Catalyst	Substrate	Separator	Liquid electrolyte	r_m (µg h ⁻¹ mg _{cat} ⁻¹)	<i>r_{geo}</i> (x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	FE (%)	Ε	VS.	<i>ј_{№Н₃}</i> (mA cm ⁻²)	NH₃ detection method	Qualitative or quantitative NMR available?	Test duration (h)	Ref.
Au	СР	Nafion 211	0.1 M KOH	5.49	0.27	3.9	-0.2	RHE	0.008	Nessler	None	3	10
Ni	Ni foam	Nafion 211	0.1 M LiCl/EDA (cathode); 0.05 M H_2SO_4 (anode)	N/A	0.36	17.2	1.8	Cell voltage	0.010	GC-MS	None	1	11
Мо	Mo foil	Nafion 117	0.01 M H ₂ SO ₄	N/A	0.31	0.24	-0.49	RHE	0.009	IB	None	3	12
Au@TiO₂	СР	Nafion 211	0.1 M HCl	21.4	1.75	8.1	-0.2	RHE	0.051	IB	None	2	13
Au@CeO _x -rGO	СР	Nafion 117	0.1 M HCl	8.3	0.27	10.1	-0.2	RHE	0.008	IB	None	2	14
BiNi	СР	Nafion 115	0.1 M Na ₂ SO ₄	17.38	1.42	13.7	-0.6	RHE	0.041	IB	None	2	15
СоР	СР	Nafion 117	1 M KOH	21.56	1.76	0.03	-0.4	RHE	0.051	IB	None	2	16
MnO	Ti mesh	Nafion 117	0.1 M Na ₂ SO ₄	7.92	1.11	8.0	-0.39	RHE	0.032	IB, IC	None	3	17
VO ₂	СР	Nafion 211	0.1 M Na ₂ SO ₄	14.85	0.49	4.0	-0.7	RHE	0.014	IB	None	2.22	18
MoS ₂	СР	Nafion	0.1 M Na ₂ SO ₄	N/A	1.29	22.2	-0.25	RHE	0.037	IB	None	2	19
Rh	СР	Nafion 211	0.1 M KOH	23.88	1.25	0.22	-0.2	RHE	0.036	IB	None	2	20
Ag	СР	CEM	0.1 M HCl	N/A	0.46	4.8	-0.6	RHE	0.013	IB	None	2	21
B-C	Glassy C	Nafion 117	0.25 M LiClO ₄	33.8	N/A	39.2	-0.7	RHE	N/A	IB	None	3	22
BiTel	Glassy C	Nafion 211	0.1 M KOH	N/A	0.17	1.7	-0.5	Ag/AgCl	0.005	IB	None	N/A	23
Mo₂C@N-C	СР	Nafion 211	0.1 M Na ₂ SO ₄	1.20	0.16	12.3	-0.2	RHE	0.005	IB	None	2	24
Au@N-C	СР	CEM	0.1 M HCl	3.87	0.38	12.3	-0.2	RHE	0.011	IB	None	2	25
Au	ITO	Nafion	0.5 M LiClO ₄	N/A	0.61	35.9	-0.4	RHE	0.018	Nessler	None	12	26
PdCu@G	СР	Nafion 117	0.1 M KOH	2.8	N/A	0.8	-0.2	RHE	N/A	IB	None	2	27
VN	CC	Nafion	0.1 M HCl	9.55	2.48	3.6	-0.3	RHE	0.072	IB	None	3	28
Au@C	CC	Nafion 211	0.1 M KOH	1.46	N/A	6.5	-0.25	RHE	N/A	IB	None	2	29
WO ₃	СР	Nafion 117	0.1 M HCl	4.2	0.69	6.8	-0.12	RHE	0.020	IB	None	1	30
Mo ₂ N	Glassy C	Nafion 211	0.1 M HCl	78.4	4.53	4.5	-0.3	RHE	0.131	IB	None	3	31
WO ₃	СР	Nafion 117	0.1 M HCl	17.28	0.28	7	-0.3	RHE	0.008	IB	None	2	32
WP ₂	CC	Nafion 211	0.1 M KOH	N/A	1.17	7.2	-0.2	RHE	0.034	Nessler, IB, IC	None	3	33
Fe/Fe ₃ O ₄	Fe foil	Nafion 115	0.1 M PBS	0.19	0.031	8.3	-0.3	RHE	0.001	IB	None	1	34
SnO ₂	CC	Nafion	0.1 M Na ₂ SO ₄	4.00	1.47	2.2	-0.7	RHE	0.043	IB	None	2	35
Mn ₃ O ₄	СР	Nafion 211	0.1 M Na ₂ SO ₄	11.6	0.38	3	-0.8	RHE	0.011	IB	None	2	36
TiO ₂	Ti plate	Nafion 211	0.1 M Na ₂ SO ₄	N/A	0.92	2.5	-0.7	RHE	0.027	IB	None	3	37
TiO₂@rGO	СР	FKB-PK-130 (CEM)	0.1 M Na ₂ SO ₄	15.13	0.99	3.3	-0.9	RHE	0.029	IB	None	2	38
Cr_2O_3	СР	Nafion	0.1 M Na ₂ SO ₄	25.3	0.50	6.8	-0.9	RHE	0.014	IB	None	2	39
Cr_2O_3	СР	Nafion 115	0.1 M HCl	28.13	0.46	8.6	-0.75	RHE	0.013	IB	None	2	40
$Bi_4V_2O_{11}@CeO_2$	СР	CEM	0.1 M HCl	23.21	7.58	10.2	-0.2	RHE	0.220	IB	None	2	41

Table S2: Summary of Previous Aqueous ENRR Studies Performed in Liquid-Liquid (L-L) Separated Cells.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Table S2: continued

Catalyst	Substrate	Separator	Liquid electrolyte	r _m	r _{geo}	FE	Ε	vs.	j _{NH₃}	NH ₃ detection	Qualitative or	Test	Ref.
				(µg h⁻¹ mg _{cat} ⁻¹)	(x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	(%)			(mA cm ⁻²)	method	Quantitative	duration	
											NMR available?	(h)	
Y_2O_3	СР	FAB-PK-130 (AEM)	0.1 M Na ₂ SO ₄	14.2	1.06	2.5	-0.9	RHE	0.031	IB	None	2	42
Au@C	CC	N/A	1 M KOH	8.07	2.11	0.2	-0.5	RHE	0.061	IB	None	2	43
MoS ₂	CC	Nafion 211	0.1 M Na ₂ SO ₄	N/A	0.81	1.17	-0.5	RHE	0.023	IB	None	2	44
C_3N_4	СР	FAAM-15 (AEM)	0.1 M HCl	8.09	2.64	11.6	-0.2	RHE	0.077	IB	None	1.39	45
N-C	СР	Nafion 211	0.05 M H ₂ SO ₄	23.8	2.33	1.42	-0.9	RHE	0.068	Nessler	None	2	46
B-G	СР	Nafion 117	0.05 M H ₂ SO ₄	54.9	1.60	10.8	-0.5	RHE	0.046	IB, Nessler	None	2	47
MoP ₂ O ₇ @N/P-C	СР	Nafion 211	0.1 M KOH	18.7	N/A	9.0	-0.2	RHE	N/A	IB	None	2	48
Fe ₂ O ₃	СР	Nafion 211	0.1 M Na ₂ SO ₄	15.9	1.25	0.94	-0.8	RHE	0.036	IB	None	2	49
K ₃ Ti ₈ O ₁₇	СР	Nafion 211	0.1 M HCl	31.6	0.52	15	-0.5	RHE	0.015	IB	None	2	50
Au	СР	CEM	0.1 M HCl	25.6	2.51	6.1	-0.2	RHE	0.073	IB	None	2	51
MoS ₂	Glassy C	Nafion 211	0.1 M Na ₂ SO ₄	N/A	2.9	4.6	-0.4	RHE	0.084	IB	None	2	52
FeOOH@G	СР	Nafion 211	0.1 M LiClO ₄	27.3	0.45	14.6	-0.4	RHE	0.013	IB, IC	None	2	53
Au@Bi ₂ Te ₃	СР	Nafion 115	0.1 M Na ₂ SO ₄	32.7	1.07	20.4	-0.4	RHE	0.031	IB	None	2	54
Bi ₂ O ₃ @G	С	Nafion 117	0.1 M Na ₂ SO ₄	5.68	0.69	11.2	-0.5	RHE	0.020	Nessler, ISE	None	2	55
Co@N-C	СР	Nafion 115	0.1 M Na ₂ SO ₄	19.2	1.57	21.8	-0.9	Ag/AgCl	0.045	IB	None	3	56
PdRu	СР	Nafion 211	0.1 M KOH	37.2	3.67	1.85	-0.2	RHE	0.106	IB	None	2	57
PdRu	СР	Nafion 211	0.1 M HCl	34.2	3.41	2.4	-0.2	RHE	0.099	IB	None	2	58
Fe ₂ O ₃	CC	Nafion 211	0.1 M Na ₂ SO ₄	13.6	1.11	7.7	-0.4	RHE	0.032	IB	None	2	59
Y ₂ O ₃ -Zr	СР	Nafion 117	0.1 M Na ₂ SO ₄	10.8	0.18	12.3	-0.5	RHE	0.005	IB	None	2	60
PdH _{0.43}	СР	Nafion 211	0.1 M Na ₂ SO ₄	17.5	N/A	18.8	-0.2	RHE	N/A	IB	None	2	61
Au	СР	Nafion 117	1 M KOH	20	0.42	10.2	-0.2	RHE	0.012	IB, Nessler	None	3	62
V@Fe ₂ O ₃	СР	Nafion 115	0.1 M HCl	68.7	1.12	5.7	-0.2	RHE	0.032	IB	None	2	63
Ag@TiO ₂	СР	Nafion 117	0.1 M HCl	N/A	3.16	0.13	-0.6	RHE	0.091	IB	None	2	64
MoS ₂ @ZIF	СР	Nafion 117	0.1 M Na ₂ SO ₄	56.7	4.63	30.9	-0.2	RHE	0.134	IB	None	2	65
Fe₃C@C	RDE	Nafion 211	0.05 M H ₂ SO ₄	8.53	2.09	9.2	-0.2	RHE	N/A	IB	None	2	66
La ₂ O ₃	СР	Nafion	0.1 M Na ₂ SO ₄	17.0	0.22	4.8	-0.8	RHE	0.006	IB	None	2	67
FeS@MoS ₂	CC	Nafion 211	0.1 M Na ₂ SO ₄	6.34	1.38	3.0	-0.5	RHE	0.040	IB	None	2	68
MoS₂@rGO	CC	CEM	0.1 M Na ₂ SO ₄	8.65	1.13	27.9	-0.35	RHE	0.033	IB	None	1	69
Mo ₃ Fe ₃ C	СР	Nafion 117	0.1 M Li ₂ SO4	1.23	0.16	27	-0.05	RHE	0.005	IB	None	2	70
Co ₃ HHTP ₂	СР	Nafion 211	0.5 M LiClO ₄	22.1	0.36	3.3	-0.4	RHE	0.010	IB	None	2	71
MoFe@P-C	FTO	Nafion 211	0.1 M HCl	34.2	0.56	16.8	-0.5	RHE	0.016	IB	None	1	72
AuCuB	СР	CEM	0.1 M Na ₂ SO ₄	13.2	0.86	12.8	-0.5	RHE	0.025	IB	None	2	73
Pd-Ag-S	СР	Nafion 211	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	9.73	0.64	18.4	-0.2	RHE	0.018	IB	None	2	74

Table S2: continued

Journal Name

Catalyst	Substrate	Separator	Liquid electrolyte	r_m (µg h ⁻¹ mg _{cat} ⁻¹)	r _{geo} (x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	FE) (%)	Ε	VS.	j _{№H₃} (mA cm ⁻²)	NH₃ detection method	Qualitative or Quantitative NMR available?	Test duration (h)	Ref.
$LaFeO_3$	СР	Nafion 117	0.1 M HCl	18.6	0.30	8.8	-0.55	RHE	0.009	IB, IC	None	2	75
NiTe@N-C	СС	Nafion	0.1 M HCl	33.3	1.63	17.4	-0.1	RHE	0.047	IB	None	2	76
MOF(AI)	Cu foam	Nafion 211	0.1 M KOH	10.6	N/A	22.6	0	RHE	N/A	IB, ISE	None	1	77
Pd	Ni foam	Nafion 117	0.1 M Na ₂ SO ₄	13.6	5.45	20.0	-0.15	RHE	0.158	IB	None	2	78
Bi	СР	Nafion 117	0.1 M Na ₂ SO ₄	13.2	0.42	10.5	-0.8	RHE	0.012	IB	None	2	79
Bi	СР	Nafion 117	0.1 M Na ₂ SO ₄	23.4	0.38	19.8	-0.4	RHE	0.011	IB	None	1	80
PdRu	Ni foam	Nafion 211	0.1 M KOH	34.1	3.34	2.1	-0.2	RHE	0.097	IB	None	2	81
S-Au	Ni foam	Nafion 115	0.1 M Na ₂ SO ₄	22.7	0.19	17.2	-0.2	RHE	0.005	IB	None	2	82
Pd	Ni foam	Nafion	0.1 M Na ₂ SO ₄	18.3	N/A	10.4	-0.1	RHE	N/A	IB	None	2	83
S@G	СР	Nafion 211	0.5 M LiClO ₄	28.6	0.93	7.1	-0.85	RHE	0.027	IB, IC, NMR	Qualitative	2	84
В	Glassy C	Nafion 211	0.05 M H ₂ SO ₄	23.1	0.38	25.2	-0.4	RHE	0.011	IB, NMR	Qualitative	2	85
VS ₂	СР	FKB-PK-130 (CEM)	0.1 M HCl	20.3	N/A	0.25	-0.6	RHE	0.119	IB, NMR	Qualitative	2	86
ln_2O_{3-x}/CeO_{2-y}	СР	Nafion	0.1 M KOH	26.1	4.26	16.1	-0.3	RHE	0.123	IB, NMR	Qualitative	2	87
FeMo@N-C	СР	Nafion 115	0.1 M PBS	17.5	2.86	11.8	-0.25	RHE	0.083	IB, NMR	Qualitative	2	88
FeMoO ₄	CC	CEM	0.5 M LiClO ₄	45.8	1.50	7.8	-0.5	RHE	0.043	IB, NMR	Qualitative	2	89
Pt@WO₃	СР	FAB-PK-130 (AEM)) 0.1 M K ₂ SO ₄	1.62	0.13	31.1	-0.2	RHE	0.004	IB, NMR	Qualitative	2.5	90
Nb_2O_5	СР		0.1 M HCl	43.6	2.85	9.3	-0.55	RHE	0.082	IB, NMR	Qualitative	3	91
Fe@N-C	СР	FAAM-15 (AEM)	0.1 M PBS	62.9	10.3	18.6	-0.4	RHE	0.298	IB, IC, NMR	Qualitative	2	92
PdPb@C	СР	Nafion 211	0.1 M HCl	25.7	0.84	5.8	0.05	RHE	0.024	IB, IC, NMR	Qualitative	1	93
Au	СР	Nafion 117	0.1 M Li ₂ SO ₄		1.51	73.3	-0.3	RHE	0.044	IB, IC, NMR	Qualitative	2	94
PEBCD	CC	Nafion 211	0.5 M LiClO ₄ and H_2SO_4	1.57	0.33	1.7	-0.7	RHE	0.010	Nessler, NMR	Qualitative	2	95
Mn₃O₄@rGO	СР	Nafion 211	0.1 M Na ₂ SO ₄	17.4	0.43	3.5	-0.85	RHE	0.012	IB, IC, NMR	Qualitative	2	96
Ru@CNT	Self-supporting	Glass frit	0.1 M PBS (cathode);	3.37	3.3	5.2	0	RHE	0.096	IB, NMR	Qualitative	2	97
			0.01 M H ₂ SO ₄ (anode)										
MOF(Fe)	CP	CEM	0.1 M HCl	44.8	1.46	16.2	-0.3	RHE	0.042	IB, IC, NMR	Qualitative	2	98
Mo_4P_3	Self-supporting	Nafion 211	1 M PBS	N/A	2.83	4	-0.2	RHE	0.082	IB, NMR	Qualitative	2	99
MoN	CC	Nafion 211	0.1 M HCl	N/A	3.01	1.2	-0.3	RHE	0.087	IB, NMR	Qualitative	3	100
MoO ₃	Glassy C	Nafion 115	0.1 M HCl	29.4	4.8	1.4	-0.4	RHE	0.139	IB, NMR	Qualitative	2	101
CaCoO _x	CP	Nafion 117	0.05 M Na ₂ SO ₄	16.3	1.33	20.5	-0.3	RHE	0.038	IB, NMR	Qualitative	2	102
B@MnO ₂	СС	Nafion 115	0.5 M LiClO ₄	54.2	N/A	14.5	-0.4	RHE	N/A	IB, IC, NMR	Qualitative	2	103
S/N-C	СС	Nafion 211	0.2 M Na ₂ SO ₄ ,		9.87	8.11	-0.3	RHE	0.286	IB, NMR	Qualitative	2	104
			0.05 M H ₂ SO ₄										
Pd@C	СР	Nafion 211	0.1 M PBS	15	2.45	8.2	0.1	RHE	0.072	IB, NMR	Qualitative	3	105
$MoS_2@C_3N_4$	Glassy C	Nafion 211	0.1 M HCl	30.0	3.46	20.5	-0.3	RHE	0.100	IB, NMR	Qualitative	3	106
MoS ₂	СР	Nafion 117	0.1 M Na ₂ SO ₄	9.1	0.74	13.6	-0.3	RHE	0.022	IB, NMR	Qualitative	2	107

6 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Table S2: continued

Catalyst	Substrate	Separator	Liquid electrolyte	r _m	r _{geo}	FE	Ε	vs.	j _{NH₃}	NH ₃ detection method	Qualitative or	Test	Ref.
				$(\mu g h^{-1} m g_{cat}^{-1})$	(x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	(%)			(mA cm ⁻²)		Quantitative	duration	
											NMR available?	(h)	
Fe@MoS ₂	Glassy C	Nafion 211	0.1 M Na ₂ SO ₄	20.1	0.79	15.7	-0.35	RHE	0.023	IB, NMR	Qualitative	2	108
PdZn@N-C	СР	Nafion 117	0.1 M PBS	5.3	0.17	16.9	-0.2	RHE	0.005	IB, NMR	Qualitative	2	109
B ₄ C	СР	Nafion 115	0.1 M HCl	26.6	0.43	16	-0.75	RHE	0.013	IB, NMR	Qualitative	2	110
Au@TiO ₂	СР	Nafion 117	0.01 M HCl	64.6	N/A	7	-0.4	RHE	N/A	IB, IC, NMR	Qualitative	2	111
Ru@N-C	СР	Nafion 117	0.1M HCl	11.0	3.59	15	-0.21	RHE	0.104	IB, NMR	Qualitative	2	112
$Fe_2Mo_6S_8$	Glassy C	Nafion 211	0.5 M Na ₂ SO ₄ ,	70	2.29	12.5	-0.2	RHE	0.066	IB,NMR	Qualitative	2	113
			0.1 M citrate buffer										
Ti ₃ C ₂	СР	Nafion	0.1 M KOH	0.11	0.28	7.0	-0.2	RHE	0.008	Nessler, NMR	Qualitative	3	114
Bi	Cu foil	Nafion 211	0.1 M HCl	5.3	0.69	10.3	-0.5	RHE	0.020	IB, IC, NMR	Qualitative	2	115
В	СР	CEM	0.1 M Na ₂ SO ₄	13.2	0.22	4.0	-0.8	RHE	0.006	IB, NMR	Qualitative	2	116
fluorographene	СР	Nafion 117	0.1 M Na ₂ SO ₄	9.3	0.30	4.2	-0.7	RHE	0.009	IB, IC, NMR	Qualitative	2	117
TiO ₂	Ti mesh	Nafion 211	0.1 M HCl	N/A	1.24	9.2	-0.15	RHE	0.036	IB, IC, NMR	Qualitative	3	118
MoS ₂	Ni foil	Nafion 211	0.25 M LiClO ₄	N/A	10.3	27.7	-0.2	RHE	0.298	IB, NMR	Qualitative	0.67	119
Mo/Mo ₂ C@N-CNT	CC	CEM	5 mM H ₂ SO ₄ ,	8.1	1.32	5.9	-0.25	RHE	0.038	IB, IC, NMR	Qualitative	2	120
			0.1 M K ₂ SO ₄										
VN	Ti mesh	Nafion	0.1 M HCl	3.6	0.84	2.3	-0.5	RHE	0.024	IB, NMR	Qualitative	3	121
Au ₂₅ -Cys-Mo	СР	Nafion 117	0.1 M HCl	34.5	N/A	26.5	-0.2	RHE	0.609	Nessler, IB, NMR	Qualitative	3	122
$P-C_3N_4$	СР	Nafion	0.1 M Na ₂ SO ₄	28.7	N/A	22.2	-0.3	RHE	N/A	IB, NMR	Qualitative	2	123
Ru@N-C	Glassy C	Nafion 211	0.05 M H ₂ SO ₄	120.9	5.04	29.6	-0.2	RHE	0.146	IB, NMR	Qualitative	2	124
MoO ₂ -MoO ₃	СР	Nafion 211	0.05 M H ₂ SO ₄	60.9	1.99	23.8	-0.35	RHE	0.058	IB, NMR	Qualitative	2	125
Al@Co ₃ O ₄	Ni foam	Nafion 117	0.1 M KOH	N/A	0.65	6.3	-0.2	RHE	0.019	IB, NMR	Quantitative	2	126
Pd-Ag-Au	ITO	Nafion 211	0.5 M LiClO ₄	N/A	2.25	44.1	-0.4	RHE	0.065	IB, NMR	Quantitative	4	127
Mo ₂ C	СР	Nafion 115	0.1 M HCl	35.2	11.5	6.8	-0.3	RHE	0.333	IB, NMR	Quantitative	3	128
TiO ₂	Ti plate	Nafion	0.1 M HCl	16.7	0.90	26	-0.5	RHE	0.026	IB, NMR	Quantitative	2	129
Pd-Ag	ITO	Nafion 211	0.5 M LiClO ₄	N/A	7.45	19.6	-0.6	RHE	0.216	IB, NMR	Quantitative	12	130
Fe@N-C	Glassy C	Nafion 211	0.1 M KOH	53.1	N/A	39.6	-0.35	RHE	N/A	IB, NMR	Quantitative	2	131
NbSe ₂	Ni foam	FKB-PK-130 (CEM)	0.1 M Na ₂ SO ₄	89.5	14.6	6.8	-0.45	RHE	0.423	IB, IC, NMR	Quantitative	2	132
MOF(NiFe)@C	Glassy C	Nafion	0.1 M NaHCO ₃	9.3	1.52	11.5	-0.347	RHE	0.044	Enzymatic kit, IB, NMR	Quantitative	1	133
Fe ₃ C/Fe ₂ O ₃ /Fe@C	CC	Nafion 115	6 М КОН	0.3	0.05	0.4	0.1	RHE	0.001	IB, IC, NMR	Quantitative	0.17	134
Mo₂C@C	CC	CEM	0.5 M Li ₂ SO ₄	3.7	N/A	1.1	-0.3	RHE	N/A	Nessler, ISE, NMR	Quantitative	2	135
Pd₃Bi	Glassy C	FAB-PK-130 (AEM)	0.05 M H ₂ SO ₄	59.1	2.32	21.5	-0.2	RHE	0.067	IB, NMR	Quantitative	2	136
Mo@MnO ₂	CC	N/A	0.1 M Na ₂ SO ₄	36.6	1.20	7.9	-0.5	RHE	0.035	IB, NMR	Quantitative	2	137
Pd@N-C	СР	Nafion 211	0.05 M H ₂ SO ₄	69.2	5.65	24.8	-0.45	RHE	0.164	IB, NMR	Quantitative	2	138
Ru@MoS ₂	СР	FAAM-15 (AEM)	0.01 M HCl	5.6	0.91	12.2	-0.15	RHE	0.026	IB, NMR	Quantitative	1	139

Please do not adjust margins

ARTICLE

Table S2: continued

Journal Name

Catalyst	Substrate	e Separator	Liquid electrolyte	r _m (μg h ⁻¹ mg _{cat} ⁻¹)	r _{geo} (x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	FE (%)	Ε	VS.	<i>j_{№Н₃}</i> (mA cm ⁻²)	NH ₃ detection method	Qualitative or Quantitative	Test duration	Ref.
Αιι	ITO	Nafion 211	0.5 M LiClO	N/A	0.65	14.8	-0.5	RHF	0.019	Nessler NMR		(II) 2	140
Au@MoSe ₂	СР	Nafion 117	0.1 M Na ₂ SO ₄	30.8	1.01	37.8	-0.3	RHE	0.029	IB, NMR	Quantitative	2	141
VN@N/S-C	СР	Nafion 211	0.1 M HCl	20.5	N/A	8.6	-0.3	RHE	N/A	IB, NMR	Quantitative	2	142
Fe@MoS ₂	СР	Nafion 211	0.5 M K ₂ SO ₄	8.6	1.13	18.8	-0.3	RHE	0.033	IB, NMR	Quantitative	2	143
Mo@N-C	СР	Glass frit	0.1 M KOH	34	5.56	14.6	-0.3	RHE	0.161	Nessler, NMR	Quantitative	1	144
Bi@C	СР	CEM	1.0 M K ₂ SO ₄	3400	144.4	66	-0.5	RHE	4.181	Nessler, NMR	Quantitative	2	145
Bi₅O ₇ I@C	Ti plate	Nafion 211	0.1 M Na ₂ SO ₄ ,	113.9	1.40	6.4	-0.4	RHE	0.040	IB, IC, NMR	Quantitative	2	146
			2.25 mg _{cat} mL ⁻¹										

Table S3: Summary of Previous Aqueous ENRR Studies Performed in Gas-Liquid (G-L) Separated Cells.

Catalyst	Substrate	Separator	Liquid electrolyte in the anode compartment	r_m (µg h ⁻¹ mg _{cat} ⁻¹)	r _{geo} (x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	FE (%)	Ε	VS.	<i>ј_{NH3}</i> (mA cm ⁻²)	NH₃ detection method	Qualitative or Quantitative NMR available?	Test duration (h)	n Ref.
Ru	C felt	Nafion	2 М КОН	N/A	0.034	0.28	-1.1	Ag/AgCl	0.001	IB, IC	None	24	147
Pt@C	СР	Nafion 211	0.1 M Li ₂ SO ₄	41.6	1.4	0.07	2	Cell voltage	0.039	ISE, Nessler	None	1	148
$Fe_2O_3@CNT$	СР	Nafion 115	KHCO ₃	0.22	0.036	0.03	-2	Ag/AgCl	0.001	IB, ISE	None	6	149
$Fe_2O_3@CNT$	СР	Nafion 115	0.5 M KOH	0.26	0.11	0.16	-2	Ag/AgCl	0.003	IB	None	4	150
Fe ₂ O ₃	СР	FAA-3 (AEM)	0.5 M KOH	0.95	0.16	0.04	1.6	Cell voltage	0.005	IB, Nessler	None	1	151
$Fe_2O_3@CNT$	СР	Nafion 115	0.1 M KOH	0.14	0.075	6.0	-0.9	Ag/AgCl	0.002	Nessler	None	4	152
$CrO_{0.66}N_{0.56}$	Membrane	Nafion 117	H ₂ O	11.8	0.68	6.7	1.8	Cell voltage	0.020	ISE	None	1	153
Fe ₂ O ₃ @CNT	СР	Nafion 115	0.5 M KOH	41.4	0.34	17	-0.5	RHE	0.010	IB, ISE	None	2	154
$Fe_2O_3@CNT$	СР	Nafion 115	0.5 M KOH	24.1	N/A	3.4	-0.5	RHE	N/A	IB	None	2	155
Ag@N-C	СР	Nafion 117	0.1 M HCl	270.9	8.9	19.5	-0.6	RHE	0.256	IB, IC, NMR	Qualitative	2	156
Cu	СР	Exellion (AEM)	0.32 M KOH	N/A	8.6	6.3	-0.5	RHE	0.249	Nessler, NMR	Quantitative	1	157

Catalyst	Substrate	Separator	Liquid	r _m	r _{geo}	FE	Ε	VS.	j _{nн₃}	NH ₃ detection	Qualitative or	Test	Ref.
			electrolyte	(µg h ⁻¹ mg _{cat} ⁻¹)	(x 10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)	(%)			(mA cm ⁻²)	method	Quantitative	duration	
											NMR available?	(h)	
Ru	Membrane	Nafion 417	N/A	N/A	0.0049	0.0015	N/A	N/A	0.0001	IB	None	N/A	158
$SmFe_{0.7}Cu_{0.1}Ni_{0.2}O_{3}\\$	Self-supporting	Nafion 102	N/A	N/A	113	90.4	2	Cell voltage	3.271	Nessler	None	N/A	159
Pt@C	СР	Nafion 211	N/A	189.7	31	2	0.2	Cell voltage	0.897	ISE	None	1	160
Au@C	СР	FAAM-PK-75 (AEM)	N/A	2.22	0.15	0.55	-0.4	RHE	0.004	Nessler	None	1	161
Pt@C	СР	Celgard 3401	6 М КОН	9.91	0.40	0.011	0.5	Cell voltage	0.012	IB	None	1.5	162
VN	СР	Nafion 211	N/A	40.5	3.3	6	-0.1	RHE	0.096	Nessler, elemental	Qualitative	2	163
										analysis, NMR			
Pd-Ag	СР	Nafion 211	N/A	N/A	3.2	7.9	-0.07	RHE	0.092	IB, NMR	Quantitative	6	130

 Table S4: Summary of Previous Aqueous ENRR Studies Performed in Gas-Gas (G-G) Separated Cells.

Table S5: Detailed Comparison of Experimental Procedures in Conducting Quantitative Isotope NMR Tests for the Aqueous ENRR.

Ref.	¹⁵ N ₂ purity	Gas cleaning traps	Repetition on quantitative	Cross-exami	nation with colorimetric NH ₂ r	neasurements
ner.	(atom %)	(in the listed	NMR experiments	¹⁵ NH ₂ by NMR	¹⁴ NH ₂ by NMR	¹⁴ NH ₂ by colorimetric
		order)				methods (IB or Nessler)
126	N/A	Alkaline, acid	N/A	6.54 x 10 ⁻¹¹ mol s ⁻¹ cm _{geo} ⁻²	6.67 x 10 ⁻¹¹ mol s ⁻¹ cm _{geo} ⁻²	6.48 x 10 ⁻¹¹ mol s ⁻¹ cm _{geo} ⁻²
127	98	Acid, H ₂ O	N/A	71.9 μM	N/A	78.4 μM
128	N/A	N/A	N/A	94.8 μg h ⁻¹ mg _{cat} ⁻¹	N/A	95.1 μ g h ⁻¹ mg _{cat} ⁻¹
129	98	Acid, H ₂ O	N/A	14.25 – 14.94 μM	16.2 – 17.01 μM	15.90 μM
130	98	Acid	N/A	769.3 μM	706.7 μM	804.9±65.3 μM
131	98	N/A	N/A	51.86 μg h ⁻¹ mg _{cat} ⁻¹	52.09 μg h ^{−1} mg _{cat} ^{−1}	53.12 μg h ⁻¹ mg _{cat} ⁻¹
132	N/A	Alkaline, FeSO ₄ ,	N/A	260.9 μM	N/A	264.4 μM
		acid				
133	N/A	Acid	N/A	9.0 μ g h ⁻¹ mg _{cat} ⁻¹	N/A	9.3 μg h ⁻¹ mg _{cat} ⁻¹
134	98	N/A	N/A	124 ppb	N/A	165 ppb
135	99	N/A	N/A	4.2 μ g h ⁻¹ mg _{cat} ⁻¹		11.3 μ g h ⁻¹ mg _{cat} ⁻¹
136	99	N/A	N/A	7.91 μg mL ⁻¹ or 59.3 μg h ⁻¹	7.78 μg mL ⁻¹ or 58.3 μg h ⁻¹	59.05±2.27 μg h ⁻¹ mg _{cat} ⁻¹
				mg _{cat} ⁻¹	mg _{cat} ⁻¹	
137	N/A	Acid	Triplet measurements for the	0.378 μg mL ⁻¹	N/A	0.366 µg mL ⁻¹
			NMR spectroscopy from the			
			same electrolyte sample			
138	N/A	Alkaline, FeSO ₄ ,	N/A	51.2 μΜ	50.7±1.8 μM	50.9 μM
		acid				
139	98	Acid	N/A (Error bars provided)	28±3 nmol or 5.5±0.6 μM	30±3 nmol	28±3 nmol
140	N/A	N/A	N/A (Error bars provided)	N/A	N/A (below lower detection	N/A (only the normalized
					range of 100 μM)	rate was provided: 0.65 x
						10 ⁻¹⁰ mol s ⁻¹ cm _{geo} ⁻²)
141	99	Alkaline, FeSO ₄ ,	N/A (Error bars provided)	$33.2\pm0.9~\mu g~h^{-1}~m g_{cat}^{-1}$	$31.0\pm1.1~\mu g~h^{-1}~mg_{cat}^{-1}$	$30.8 \ \mu g \ h^{-1} \ m g_{cat}^{-1}$
		acid				
142	N/A	Alkaline, acid	N/A	N/A	0.5 μg mL ^{−1}	N/A
143	N/A	N/A	N/A	0.124 μg mL ^{−1}	N/A	0.122 μg mL ^{−1}
144	N/A	N/A	N/A	45.2 μΜ	N/A	46.3±1.8 μM
145	N/A	N/A	N/A	26.7 µmol	N/A	25.7 µmol
146	98	N/A	N/A	Values are claimed to be clo	ose but the exact values are no	ot disclosed explicitly.
157	N/A	Acid, Alkaline	N/A	The FE calculated from the	NMR-detected ¹⁵ NH ₃ is 86% of	f that calculated from the
				detected NH ₃ via the Nessle	er's reagent test.	

References

- 1 R. Manjunatha and A. Schechter, *Electrochem. commun.*, 2018, **90**, 96–100.
- 2 Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, J. Am. Chem. Soc., 2018, 140, 1496–1501.
- 3 S. Mukherjee, X. Yang, W. Shan, W. Samarakoon, S. Karakalos, D. A. Cullen, K. More, M. Wang, Z. Feng, G. Wang and G. Wu, *Small Methods*, 2020, **4**, 1900821.
- 4 W. Li, T. Wu, S. Zhang, Y. Liu, C. Zhao, G. Liu, G. Wang, H. Zhang and H. Zhao, Chem. Commun., 2018, 54, 11188–11191.
- 5 D. Kim, S. Surendran, Y. Lim, H. Choi, J. Lim, J. Y. Kim, M. Han and U. Sim, Int. J. Energy Res., 2022, 46, 4119–4129.
- 6 H. Wang, L. Wang, Q. Wang, S. Ye, W. Sun, Y. Shao, Z. Jiang, Q. Qiao, Y. Zhu, P. Song, D. Li, L. He, X. Zhang, J. Yuan, T. Wu and G. A. Ozin, *Angew. Chemie Int. Ed.*, 2018, **57**, 12360–12364.
- 7 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, **10**, 14386–14389.
- 8 J. Zhang, B. Zhao, W. Liang, G. Zhou, Z. Liang, Y. Wang, J. Qu, Y. Sun and L. Jiang, Adv. Sci., 2020, 7, 2002630.
- 9 Y.-X. Lin, S.-N. Zhang, Z.-H. Xue, J.-J. Zhang, H. Su, T.-J. Zhao, G.-Y. Zhai, X.-H. Li, M. Antonietti and J.-S. Chen, Nat. Commun., 2019, 10, 4380.
- 10 D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang and X.-B. Zhang, Adv. Mater., 2017, 29, 1604799.
- 11 K. Kim, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, J. Electrochem. Soc., 2016, 163, F1523–F1526.
- 12 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.
- 13 M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan and Q. Jiang, Adv. Mater., 2017, 29, 1606550.
- 14 S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, Adv. Mater., 2017, 29, 1700001.
- 15 Z. Fang, P. Wu, Y. Qian and G. Yu, Angew. Chemie Int. Ed., 2021, 60, 4275–4281.
- 16 W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, Small Methods, 2018, 2, 1800204.
- 17 Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li, P. Gao, X. Shi, B. Li, B. Tang and X. Sun, Adv. Sci., 2019, 6, 1801182.
- 18 R. Zhang, H. Guo, L. Yang, Y. Wang, Z. Niu, H. Huang, H. Chen, L. Xia, T. Li, X. Shi, X. Sun, B. Li and Q. Liu, *ChemElectroChem*, 2019, 6, 1014–1018.
- 19 L. Niu, Z. Liu, G. Liu, M. Li, X. Zong, D. Wang, L. An, D. Qu, X. Sun, X. Wang and Z. Sun, *Nano Res.*, , DOI:10.1007/s12274-021-4015-6.
- 20 H. M. H.-M. Liu, S. H. S.-H. Han, Y. Zhao, Y. Y. Y.-Y. Zhu, X.-L. L. X. L. Tian, J. H. J.-H. Zeng, J. X. J.-X. Jiang, B. Y. Y. Xia and Y. Chen, J. Mater. Chem. A, 2018, 6, 3211–3217.
- 21 H. Huang, L. Xia, X. Shi, A. M. Asiri and X. Sun, Chem. Commun., 2018, 54, 11427–11430.
- 22 N. Li, Y. Tong, H. Li, L. Wang, F. Hou, S. X. Dou and J. Liang, Carbon N. Y., 2021, 182, 233–241.
- 23 N. Antonatos, E. Kovalska, V. Mazánek, M. Veselý, D. Sedmidubský, B. Wu and Z. Sofer, ACS Appl. Nano Mater., 2021, 4, 590–599.
- 24 Y. Zhang, J. Hu, C. Zhang, A. T. F. Cheung, Y. Zhang, L. Liu and M. K. H. Leung, Int. J. Hydrogen Energy, 2021, 46, 13011–13019.
- 25 Q. Qin, T. Heil, M. Antonietti and M. Oschatz, *Small Methods*, 2018, **2**, 1800202.
- 26 M. Nazemi and M. A. El-Sayed, J. Phys. Chem. Lett., 2018, 9, 5160-5166.
- 27 M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan and Q. Jiang, Adv. Energy Mater., 2018, 8, 1800124.
- 28 X. Zhang, R.-M. Kong, H. Du, L. Xia and F. Qu, Chem. Commun., 2018, 54, 5323-5325.
- 29 J. Wei, Y. Jing, Z. Zhao, Z. Fan, Z. Liang, J. Huang, H. Wu, Z. Xie, D. Liu, D. Qu, H. Tang and J. Li, Electrochim. Acta, 2021, 381, 138222.
- 30 Z. Sun, R. Huo, C. Choi, S. Hong, T.-S. Wu, J. Qiu, C. Yan, Z. Han, Y. Liu, Y.-L. Soo and Y. Jung, Nano Energy, 2019, 62, 869–875.
- 31 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, Chem. Commun., 2018, 54, 8474–8477.
- 32 W. Kong, R. Zhang, X. Zhang, L. Ji, G. Yu, T. Wang, Y. Luo, X. Shi, Y. Xu and X. Sun, Nanoscale, 2019, 11, 19274–19277.
- 33 D. Han, X. Liu, J. Cai, Y. Xie, S. Niu, Y. Wu, Y. Zang, Y. Fang, F. Zhao, W. Qu, M. Chen, G. Wang and Y. Qian, J. Energy Chem., 2021, 59, 55–62.
- 34 L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312–9319.
- 35 L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, Chem. Commun., 2018, 54, 12966–12969.
- 36 X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, Small, 2018, 14, 1803111.
- 37 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- 38 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, J. Mater. Chem. A, 2018, 6, 17303–17306.
- 39 Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, ACS Catal., 2018, 8, 8540–8544.
- 40 H. Du, X. Guo, R.-M. Kong and F. Qu, *Chem. Commun.*, 2018, **54**, 12848–12851.
- 41 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, Angew. Chemie Int. Ed., 2018, 57, 6073–6076.
- 42 X. Li, L. Li, X. Ren, D. Wu, Y. Zhang, H. Ma, X. Sun, B. Du, Q. Wei and B. Li, Ind. Eng. Chem. Res., 2018, 57, 16622–16627.
- 43 G. Li, H. Lin, Z. Pan, Y. Liu and L. An, Int. J. Energy Res., 2021, 45, 19634–19644.
- 44 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, Adv. Mater., 2018, 30, 1800191.
- 45 C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chemie Int. Ed.*, 2018, **57**, 10246–10250.
- 46 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.
- 47 X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, *Joule*, 2018, **2**, 1610–1622.
- 48 J.-T. Ren, L. Chen, H.-Y. Wang and Z.-Y. Yuan, Chem. Eng. J., 2021, 418, 129447.
- 49 X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, ChemCatChem, 2018, 10, 4530–4535.
- 50 M. Sebastian, S. Das and N. K. Gopalan, Sustain. Energy Fuels, 2022, 6, 1519–1528.
- 51 Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang and L. Wang, ChemSusChem, 2018, 11, 3480–3485.
- 52 C. Ma, N. Zhai, B. Liu and S. Yan, Electrochim. Acta, 2021, 370, 137695.
- 53 X. Zhu, J. Zhao, L. Ji, T. Wu, T. Wang, S. Gao, A. A. Alshehri, K. A. Alzahrani, Y. Luo, Y. Xiang, B. Zheng and X. Sun, *Nano Res.*, 2020, 13, 209–214.
- 54 M. Liu, S. Yin, T. Ren, Y. Xu, Z. Wang, X. Li, L. Wang and H. Wang, ACS Appl. Mater. Interfaces, 2021, 13, 47458–47464.
- 55 Y. Sun, Z. Deng, X.-M. Song, H. Li, Z. Huang, Q. Zhao, D. Feng, W. Zhang, Z. Liu and T. Ma, Nano-Micro Lett., 2020, 12, 133.
- 56 F. Yin, X. Lin, X. He, B. Chen, G. Li and H. Yin, Mater. Lett., 2019, 248, 109–113.
- 57 H. Wang, Y. Li, C. Li, K. Deng, Z. Wang, Y. Xu, X. Li, H. Xue and L. Wang, J. Mater. Chem. A, 2019, 7, 801-805.

- 58 H. Wang, Y. Li, D. Yang, X. Qian, Z. Wang, Y. Xu, X. Li, H. Xue and L. Wang, Nanoscale, 2019, 11, 5499–5505.
- 59 Z. Wang, K. Zheng, S. Liu, Z. Dai, Y. Xu, X. Li, H. Wang and L. Wang, ACS Sustain. Chem. Eng., 2019, 7, 11754–11759.
- 60 H. Xian, Q. Wang, G. Yu, H. Wang, Y. Li, Y. Wang and T. Li, Appl. Catal. A Gen., 2019, 581, 116–122.
- 61 Z. Wang, Z. Dai, S. Wang, H. Zhang, W. Tian, Y. Xu, X. Li, L. Wang and H. Wang, Chem. Eng. J., 2021, 416, 129105.
- 62 W. Zhang, Y. Shen, F. Pang, D. Quek, W. Niu, W. Wang and P. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 41613–41619.
- 63 M. Zhao, C. Guo, L. Gao, H. Yang, C. Liu, X. Kuang, X. Sun and Q. Wei, ChemCatChem, 2021, 13, 4990–4997.
- 64 Y. Dong, T. Wang, S. Hu, Y. Tang, X. Hu, Y. Ye, H. Li and D. Cao, ACS Appl. Nano Mater., 2021, 4, 10370–10377.
- 65 J. Duan, D. Shao, X. He, Y. Lu and W. Wang, Colloids Surfaces A Physicochem. Eng. Asp., 2021, 619, 126529.
- 66 M. Peng, Y. Qiao, M. Luo, M. Wang, S. Chu, Y. Zhao, P. Liu, J. Liu and Y. Tan, ACS Appl. Mater. Interfaces, 2019, 11, 40062–40068.
- 67 B. Xu, Z. Liu, W. Qiu, Q. Liu, X. Sun, G. Cui, Y. Wu and X. Xiong, Electrochim. Acta, 2019, 298, 106–111.
- 68 Y. Guo, Z. Yao, B. J. J. Timmer, X. Sheng, L. Fan, Y. Li, F. Zhang and L. Sun, Nano Energy, 2019, 62, 282–288.
- 69 Y. Liu, W. Wang, S. Zhang, W. Li, G. Wang, Y. Zhang, M. Han and H. Zhang, ACS Sustain. Chem. Eng., 2020, 8, 2320–2326.
- 70 B. Qin, Y. Li, Q. Zhang, G. Yang, H. Liang and F. Peng, Nano Energy, 2020, 68, 104374.
- 71 W. Xiong, X. Cheng, T. Wang, Y. Luo, J. Feng, S. Lu, A. M. Asiri, W. Li, Z. Jiang and X. Sun, Nano Res., 2020, 13, 1008–1012.
- 72 S. Chen, H. Jang, J. Wang, Q. Qin, X. Liu and J. Cho, J. Mater. Chem. A, 2020, 8, 2099–2104.
- 73 Z. Wang, J. Niu, Y. Xu, L. Wang, H. Wang and H. Liu, ACS Sustain. Chem. Eng., 2020, 8, 12588–12594.
- 74 H. Wang, S. Liu, H. Zhang, S. Yin, Y. Xu, X. Li, Z. Wang and L. Wang, *Nanoscale*, 2020, **12**, 13507–13512.
- 75 C. Li, D. Ma, S. Mou, Y. Luo, B. Ma, S. Lu, G. Cui, Q. Li, Q. Liu and X. Sun, J. Energy Chem., 2020, 50, 402–408.
- 76 M. Yuan, Q. Li, J. Zhang, J. Wu, T. Zhao, Z. Liu, L. Zhou, H. He, B. Li and G. Zhang, Adv. Funct. Mater., 2020, 30, 2004208.
- 77 Y. Fu, K. Li, M. Batmunkh, H. Yu, S. Donne, B. Jia and T. Ma, ACS Appl. Mater. Interfaces, 2020, 12, 44830–44839.
- 78 S. Liu, Z. Wang, H. Zhang, S. Wang, P. Wang, Y. Xu, X. Li, L. Wang and H. Wang, ACS Sustain. Chem. Eng., 2020, 8, 14228–14233.
- 79 L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng and S.-Z. Qiao, ACS Catal., 2019, 9, 2902–2908.
- 80 J. Wang, Y. Ren, M. Chen, G. Cao, Z. Chen and P. Wang, J. Alloys Compd., 2020, 830, 154668.
- 81 Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang and H. Wang, Int. J. Hydrogen Energy, 2020, 45, 5997–6005.
- 82 M. Zhang, Z. Wang, H. Yu, S. Wang, Y. Xu, X. Li, L. Wang and H. Wang, J. Mater. Chem. A, 2020, 8, 20414–20419.
- 83 Z. Wang, Z. Dai, H. Yu, H. Zhang, W. Tian, Y. Xu, X. Li, L. Wang and H. Wang, ACS Sustain. Chem. Eng., 2020, 8, 11827–11833.
- 84 H. Chen, X. Zhu, H. Huang, H. Wang, T. Wang, R. Zhao, H. Zheng, A. M. Asiri, Y. Luo and X. Sun, Chem. Commun., 2019, 55, 3152-3155.
- 85 J. Lan, M. Peng, P. Liu, D. Chen, X. Xu, M. Luo, Y. Tan and M. Chen, Mater. Today, 2020, 38, 58-66.
- 86 L. Zhao, Y. Xiong, X. Wang, R. Zhao, X. Chi, Y. Zhou, H. Wang, Z. Yang and Y. Yan, Small, 2022, 18, 2106939.
- 87 Z. Wang, J. Shen, W. Fu, J. Liao, J. Dong, P. Zhuang, Z. Cao, Z. Ye, J. Shi and M. Ye, Inorg. Chem. Front., 2020, 7, 3609–3619.
- 88 W. Liu, L. Han, H.-T. Wang, X. Zhao, J. A. Boscoboinik, X. Liu, C.-W. Pao, J. Sun, L. Zhuo, J. Luo, J. Ren, W.-F. Pong and H. L. Xin, Nano Energy, 2020, 77, 105078.
- 89 K. Chu, Q. Li, Y. Cheng and Y. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 11789–11796.
- 90 R. Hao, W. Sun, Q. Liu, X. Liu, J. Chen, X. Lv, W. Li, Y. Liu and Z. Shen, Small, 2020, 16, 2000015.
- 91 J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, Nano Energy, 2018, 52, 264–270.
- 92 F. Lü, S. Zhao, R. Guo, J. He, X. Peng, H. Bao, J. Fu, L. Han, G. Qi, J. Luo, X. Tang and X. Liu, Nano Energy, 2019, 61, 420–427.
- 93 H. Zhao, D. Zhang, Z. Wang, Y. Han, X. Sun, H. Li, X. Wu, Y. Pan, Y. Qin, S. Lin, Z. Xu, J. Lai and L. Wang, Appl. Catal. B Environ., 2020, 265, 118481.
- 94 L. Tan, N. Yang, X. Huang, L. Peng, C. Tong, M. Deng, X. Tang, L. Li, Q. Liao and Z. Wei, Chem. Commun., 2019, 55, 14482–14485.
- 95 G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 96 H. Huang, F. Gong, Y. Wang, H. Wang, X. Wu, W. Lu, R. Zhao, H. Chen, X. Shi, A. M. Asiri, T. Li, Q. Liu and X. Sun, Nano Res., 2019, 12.1093-1098.
- 97 X. Wei, D. Vogel, L. Keller, S. Kriescher and M. Wessling, ChemElectroChem, 2020, 7, 4679–4684.
- 98 M. Cong, X. Chen, K. Xia, X. Ding, L. Zhang, Y. Jin, Y. Gao and L. Zhang, J. Mater. Chem. A, 2021, 9, 4673–4678.
- 99 L. Xiao, S. Zhu, Y. Liang, Z. Li, S. Wu, S. Luo, C. Chang and Z. Cui, Appl. Catal. B Environ., 2021, 286, 119895.
- 100 L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, ACS Sustain. Chem. Eng., 2018, 6, 9550–9554.
- 101 J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974–12977.
- 102 X. Chen, K. Li, X. Yang, J. Lv, S. Sun, S. Li, D. Cheng, B. Li, Y.-G. Li and H.-Y. Zang, Nano Res., 2021, 14, 501–506.
- 103 K. Chu, Y. Liu, Y. Cheng and Q. Li, J. Mater. Chem. A, 2020, 8, 5200–5208.
- 104 S. Cheng, C. Li, Z. Yu, Y. Sun, L. Li and J. Yang, RSC Adv., 2020, 10, 9814–9823.
- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Nat. Commun., 2018, 9, 1795. 105
- 106
- X. Xu, X. Tian, B. Sun, Z. Liang, H. Cui, J. Tian and M. Shao, Appl. Catal. B Environ., 2020, 272, 118984.
- 107 G. Lin, Q. Ju, X. Guo, W. Zhao, S. Adimi, J. Ye, Q. Bi, J. Wang, M. Yang and F. Huang, Adv. Mater., 2021, 33, 2007509.
- 108 L. Niu, D. Wang, K. Xu, W. Hao, L. An, Z. Kang and Z. Sun, Nano Res., 2021, 14, 4093–4099.
- 109 M. Ma, X. Han, H. Li, X. Zhang, Z. Zheng, L. Zhou, J. Zheng, Z. Xie, Q. Kuang and L. Zheng, Appl. Catal. B Environ., 2020, 265, 118568.
- 110 W. Qiu, X.-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang and X. Sun, Nat. Commun., 2018, 9, 3485.
- S. Zhao, H.-X. Liu, Y. Qiu, S.-Q. Liu, J.-X. Diao, C.-R. Chang, R. Si and X.-H. Guo, J. Mater. Chem. A, 2020, 8, 6586–6596. 111
- H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu and Z. Sun, 112 Chem, 2019, 5, 204-214.
- 113 K. Lu, F. Xia, B. Li, Y. Liu, I. B. Abdul Razak, S. Gao, J. Kaelin, D. E. Brown and Y. Cheng, ACS Nano, 2021, 15, 16887–16895.
- 114 J. Xia, S.-Z. Yang, B. Wang, P. Wu, I. Popovs, H. Li, S. Irle, S. Dai and H. Zhu, Nano Energy, 2020, 72, 104681.
- 115 R. Zhang, L. Ji, W. Kong, H. Wang, R. Zhao, H. Chen, T. Li, B. Li, Y. Luo and X. Sun, Chem. Commun., 2019, 55, 5263–5266.
- X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo, Y. Zhang and X. Sun, ACS Catal., 2019, 9, 4609–4615. 116
- 117 J. Zhao, J. Yang, L. Ji, H. Wang, H. Chen, Z. Niu, Q. Liu, T. Li, G. Cui and X. Sun, Chem. Commun., 2019, 55, 4266–4269.
- L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y. Zhang and X. Sun, Nanoscale, 2019, 11, 1555–1562. 118

This journal is C The Royal Society of Chemistry 20xx

- 119 S. B. Patil, H.-L. Chou, Y.-M. Chen, S.-H. Hsieh, C.-H. Chen, C.-C. Chang, S.-R. Li, Y.-C. Lee, Y.-S. Lin, H. Li, Y. J. Chang, Y.-H. Lai and D.-Y. Wang, J. Mater. Chem. A, 2021, 9, 1230–1239.
- 120 Y. Ma, T. Yang, H. Zou, W. Zang, Z. Kou, L. Mao, Y. Feng, L. Shen, S. J. Pennycook, L. Duan, X. Li and J. Wang, *Adv. Mater.*, 2020, **32**, 2002177.
- 121 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, ACS Sustain. Chem. Eng., 2018, 6, 9545–9549.
- 122 Y. Tan, L. Yan, C. Huang, W. Zhang, H. Qi, L. Kang, X. Pan, Y. Zhong, Y. Hu and Y. Ding, *Small*, 2021, **17**, 2100372.
- 123 Z. Zhao, Y. Long, Y. Chen, F. Zhang and J. Ma, Chem. Eng. J., 2022, 430, 132682.
- 124 Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si and J. Zeng, *Adv. Mater.*, 2018, **30**, 1803498.
- 125 H. Tan, Q. Ji, C. Wang, H. Duan, Y. Kong, Y. Wang, S. Feng, L. Lv, F. Hu, W. Zhang, W. Chu, Z. Sun and W. Yan, *Nano Res.*, , DOI:10.1007/s12274-021-3934-6.
- 126 X.-W. W. Lv, Y. Liu, R. Hao, W. Tian and Z.-Y. Y. Yuan, ACS Appl. Mater. Interfaces, 2020, 12, 17502–17508.
- 127 M. Nazemi, L. Soule, M. Liu and M. A. El-Sayed, J. Electrochem. Soc., 2020, **167**, 054511.
- 128 X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A. M. Asiri, B. Li, B. Tang and X. Sun, ACS Cent. Sci., 2019, 5, 116– 121.
- 129 P. Li, Z. Jin, Z. Fang and G. Yu, Angew. Chemie Int. Ed., 2020, 59, 22610–22616.
- 130 M. Nazemi, P. Ou, A. Alabbady, L. Soule, A. Liu, J. Song, T. A. Sulchek, M. Liu and M. A. El-Sayed, ACS Catal., 2020, 10, 10197– 10206.
- 131 H. Yang, Y. Liu, Y. Luo, S. Lu, B. Su and J. Ma, ACS Sustain. Chem. Eng., 2020, 8, 12809–12816.
- 132 Y. Wang, A. Chen, S. Lai, X. Peng, S. Zhao, G. Hu, Y. Qiu, J. Ren, X. Liu and J. Luo, J. Catal., 2020, 381, 78–83.
- 133 J. Duan, Y. Sun, S. Chen, X. Chen and C. Zhao, J. Mater. Chem. A, 2020, 8, 18810–18815.
- 134 J. H. Kim, H. Ju, B.-S. An, Y. An, K. Cho, S. H. Kim, Y.-S. Bae and H. C. Yoon, ACS Appl. Mater. Interfaces, 2021, **13**, 61316–61323.
- 135 H. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- 136 X. Wang, M. Luo, J. Lan, M. Peng and Y. Tan, Adv. Mater., 2021, 33, 2007733.
- 137 K. Chu, Y. Liu, Y. Li, Y. Guo, Y. Tian and H. Zhang, *Appl. Catal. B Environ.*, 2020, **264**, 118525.
- 138 L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J. Sun, J. Luo and H. L. Xin, *Angew. Chemie Int. Ed.*, 2021, **60**, 345–350.
- 139 B. H. R. R. Suryanto, D. Wang, L. M. Azofra, M. Harb, L. Cavallo, R. Jalili, D. R. G. G. Mitchell, M. Chatti and D. R. MacFarlane, ACS Energy Lett., 2019, 4, 430–435.
- 140 M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, Nano Energy, 2018, 49, 316–323.
- 141 D. Chen, M. Luo, S. Ning, J. Lan, W. Peng, Y. Lu, T. Chan and Y. Tan, *Small*, 2022, **18**, 2104043.
- 142 X.-W. Lv, Y. Liu, Y.-S. Wang, X.-L. Liu and Z.-Y. Yuan, Appl. Catal. B Environ., 2021, 280, 119434.
- 143 H. Su, L. Chen, Y. Chen, R. Si, Y. Wu, X. Wu, Z. Geng, W. Zhang and J. Zeng, Angew. Chemie Int. Ed., 2020, 59, 20411–20416.
- 144 L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic and H. L. Xin, *Angew. Chemie Int. Ed.*, 2019, **58**, 2321–2325.
- 145 Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang and C.-H. Yan, *Nat. Catal.*, 2019, **2**, 448–456.
- 146 Y. Liu, B. Huang, X. Chen, Z. Tian, X. Zhang, P. Tsiakaras and P. K. Shen, Appl. Catal. B Environ., 2020, 271, 118919.
- 147 V. Kordali, G. Kyriacou and C. Lambrou, Chem. Commun., 2000, 1673–1674.
- 148 R. Lan and S. Tao, *RSC Adv.*, 2013, **3**, 18016.
- 149 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Angew. Chemie Int. Ed., 2017, 56, 2699–2703.
- 150 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, ACS Sustain. Chem. Eng., 2017, 5, 7393–7400.
- 151 J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, ACS Sustain. Chem. Eng., 2017. 5, 10986–10995.
- 152 X. Cui, C. Tang, X. Liu, C. Wang, W. Ma and Q. Zhang, *Chem. A Eur. J.*, 2018, **24**, 18494–18501.
- 153 Y. Yao, Q. Feng, S. Zhu, J. Li, Y. Yao, Y. Wang, Q. Wang, M. Gu, H. Wang, H. Li, X. Yuan and M. Shao, *Small Methods*, 2019, **3**, 1800324.
- 154 S. Chen, S. Perathoner, C. Ampelli, H. Wei, S. Abate, B. Zhang and G. Centi, *J. Energy Chem.*, 2020, **49**, 22–32.
- 155 S. Chen, S. Perathoner, C. Ampelli, H. Wei, S. Abate, B. Zhang and G. Centi, *ChemElectroChem*, 2020, 7, 3028–3037.
- 156 Y. Chen, R. Guo, X. Peng, X. Wang, X. Liu, J. Ren, J. He, L. Zhuo, J. Sun, Y. Liu, Y. Wu and J. Luo, ACS Nano, 2020, 14, 6938–6946.
- 157 N. C. Kani, A. Prajapati, B. A. Collins, J. D. Goodpaster and M. R. Singh, ACS Catal., 2020, 10, 14592–14603.
- 158 R. L. Cook and A. F. Sammells, *Catal. Letters*, 1988, **1**, 345–349.
- 159 G. Xu, R. Liu and J. Wang, Sci. China Ser. B Chem., 2009, 52, 1171–1175.
- 160 R. Lan, J. T. S. S. Irvine and S. Tao, *Sci. Rep.*, 2013, **3**, 1145.
- 161 J. Nash, X. Yang, J. Anibal, J. Wang, Y. Yan and B. Xu, J. Electrochem. Soc., 2017, 164, F1712–F1716.
- 162 B. L. Sheets and G. G. Botte, Chem. Commun., 2018, 54, 4250–4253.
- X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y. Yan and B. Xu, J. Am. Chem. Soc., 2018, 140, 13387–13391.