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1. Experimental procedures
1.1 Materials

All chemicals and reagents used for synthesis were purchased commercially (Aladdin and
energy chemical) and used directly without any further purification. Solvents were purified by
standard methods and dried if necessary. Reactions were monitored by thin layer
chromatography (TLC) and were carried out under argon atmosphere. The materials and super
dehydrated solvents used for perovskite solar cell fabrication were all purchased from Advanced
Election Technology Co. Ltd., Xi’an Polymer Light Technology Corp, Yingkou Libra New
Energy Technology Co. Ltd., and Sigma-Aldrich. Air-sensitive reactions were carried out under
nitrogen atmosphere. The device preparation was done in a glovebox under nitrogen atmosphere.
1.2 Device Fabrication

SnO, NCs solution was prepared by our previous method.! The perovskite precursor
solution of MAPDI; was prepared by dissolving 922 mg Pbl, and 318 mg MAI in 1.6 mL mixed
solvent of DMF and DMSO (7:3). The perovskite precursor solution of
Cso.0sFAg.8sMAg.10Pb(Brg 0319.97)3 was prepared by dissolving 742.2 mg Pbl,, 224.4 mg FAI, 16.2
mg MABr, 20.3 mg MACI and 19.8 mg Csl in 1 mL mixed solvent of DMF and DMSO (4:1).
Spiro-OMeTAD solution was prepared by dissolving 72mg Spiro-OMeTAD into 1 ml
chlorobenzene, with the dopant of 17.5 pL Li-TFSI solution (520 mg in 1 mL acetonitrile), 28.8
uL tBP.

FTO substrates were sequentially ultrasonically cleaned with detergent, deionized water and
isopropanol for 10 min. The substrates were further cleaned with UV ozone treatment for 15 min
before used. Then the SnO, NCs solution was dropped on the FTO substrates and spin-coated at
500 rpm for 3 s and 3000 rpm for 30 s, followed by thermal annealing at 150 °C for 1 h. The
MAPbI;-perovskite precursor solution was spin-coated on SnO, layer at 500 rpm for 3 s and
4000 rpm for 30 s. And 420 pL chlorobenzene as antisolvent was dripped onto the perovskite
film 21 s prior to the end of the second spinning program. As well as the
Cso.0sFAg.8sMAg.10Pb(Brg 310.97)3-perovskite precursor solution was spin-coated at 1000 rpm for
10 s and 5000 rpm for 30 s. And 100 pL chlorobenzene as antisolvent was dripped onto the
perovskite film 10 s prior to the end of the second spinning program. After that, the Spiro-PU

solutions were deposited onto the perovskite layers by spin-coating at 3000 rpm for 30 s at 85 °C.



Then, the Spiro-OMeTAD solutions were deposited onto the perovskite layers by spin-coating at
3000 rpm for 30 s. Finally, 100 nm thick film of Ag was thermally evaporated under high
vacuum on top of the hole transporting layer. and the active area of all devices is 0.07 cm?
defined by a metal mask.

2. Characterization

'"H NMR and 3C NMR spectra were recorded with a Bruker-600MHz spectrometer. Mass
spectra were obtained by Bruker ultrafle Xtreme MALDITOF/TOF. The thermal decomposition
temperature (7,) was confirmed by thermogravimetric analysis (TGA) from PerkinElmer Pyris 1
conducted under N, atmosphere at a heating rate of 10 °C min’! from 25 °C to 800 °C. The
differential scanning calorimetry (DSC) was conducted on Mettler Toledo DSC 1 instrument at
heating rate of 10 °C min’! under nitrogen atmosphere within temperature range of 0 °C to 160
°C. We measured three cycles of DSC, and the second cycle is reported.

The electrochemical cyclic voltammetry (CV) was conducted on an electrochemical
workstation (CHI760D Chenhua, Shanghai) with Pt plate as working electrode, Pt slice as
counter electrode, and saturated calomel electrode (SCE) as reference electrode in
tetrabutylammonium hexafluorophosphate (n-BusNPFg, 0.1 M) dichloromethane solutions at a
scan rate of 100 mV s!. In addition, the insoluble Spiro-PU was coated on Pt plate as working
electrode for testing. Ferrocene/ferrocenium (Fc/Fc™) was used as the reference. UV—vis
absorption spectra of Spiro-OH in THF solution (10~ mol/L) and thin film on quartz (spin-
coated Spiro-OH and Spiro-PU in CB, 3000 rpm for 20s) were recorded with a PerkinElmer
lambda 950 UV/Vis/NIR Spectrophotometer. Photoluminescence (PL) spectra of Spiro-OH in
THF solution (103 mol/L) and thin film on quartz (spin-coated Spiro-OH and Spiro-PU in CB,
3000 rpm for 20s) were measured with a HITACHI F-4600 spectrofluorometer.

GPC gel permeation chromatograph was used to determine the molecular weight of Spiro-
NPU precursor solution, model Waters 1515. We have designed an experiment to gauge the
cross-linking efficiency of Spiro-NPU. We soaked the as-obtained Spiro-NPU (x mg) with CB
(20 mL) overnight and conducted the vacuum filtration, followed by drying and measuring the
left materials (y mg). We define the ration of y/x as the cross-linking efficiency. We also
collected five groups of independent experimental data and calculated their average value.

The morphology and microstructures were investigated by FE-SEM (ZEISS Ultra-500). The

5



J-V characteristics of the devices were measured with a Keithley 2440 source under a simulated
AM1.5G spectrum. With a solar simulator (Newport, 91160), the light intensity was calibrated
using a standard silicon solar cell device by the NREL. The external quantum efficiency (EQE)
curves were measured using a standard EQE system (Newport 66902), consist of a xenon light
source, a monochromator, and a potentiostat. The surface roughness was measured by atomic-
force microscopy (AFM). The X-Ray Diffraction (XRD) was measured using X-ray
polycrystalline diffractometer (BRUKER D8 ADVANCE). The electrochemical impedance
spectroscopy (EIS) measurements were performed on the Zahner Zennium electrochemical
workstation with an illumination of 300 W m™2 light source. Steady-state photoluminescence
emission spectroscopy (PL) and time-resolved photoluminescence (TRPL) were measured by
fluorescence spectrometer (HITACHI F-5000) and steady-state/transient fluorescence
spectrometer (FLS980) with the excitation wavelength of 450 nm.

Hole mobility was measured by using the space-charge-limited current (SCLC) method
with the device structure of ITO/PEDOT:PSS/Spiro-PU/Spiro-OMeTAD/Ag. Space charge-
limited current can be described by equation below:

9,u£r80V2

Y

where J is the current density, u is the hole mobility, ¢ is the vacuum permittivity (8.85x10-
12 F/m), ¢, is the dielectric constant of the material (normally taken to approach 3.5 for organic
semiconductors), V is the applied bias, d is the film thickness of the active layer is obtained from
cross-sectional SEM. When plotted on a log-log plot the J-V characteristics will ideally exhibit
three characteristic regimes: In the range of low voltage, the current increases linearly with the
increase of the voltage, indicating an Ohmic response. At intermediate voltages, the current

exhibited a rapid non-linear increase, indicating the trap-controlled space charge limited current.

At higher voltage the current exhibited a Jo<V? behavior, indicating trap-filled SCLC region

according to Mott Gurney law.
J—V characteristics of the devices was measured using a Keithley 2400 in the dark. The
devices configuration follows: ITO/PEDOT:PSS/Perovskite/Spiro-PU/Spiro-OMeTAD/Ag for

hole-only devices, and ITO/Perovskite /Ag for electron-only devices. The perovskite films and



Spiro-OMeTAD films were made by the same protocols used in solar cell fabrication.
PEDOT:PSS films were prepared by spin-coated PEDOT:PSS aqueous solution on ITO at 4000
rpm for 30 s, and then baked at 120 °C for 15 min according to SCLC theory, the defect (trap)

density can be estimated as follows:

2eeV i

ntrap =

eL?

where L, & &) and e are the thickness of the perovskite film, dielectric constant of the
material, permittivity of vacuum, and electronic charge, respectively.

XPS spectra was performed for films on silicon wafers using a Thermo Fisher ESCALAB
250 Xi. Curve fitting was performed using the Thermo Avantage software. The curves were
corrected based on the Cls peak at 284.8 eV. The samples were prepared by spin-coating 20 puL
of the perovskite colloidal precursor solution (same solution used in the fabrication process of
PSCs) on silicon wafer. UPS spectra were recorded by Thermo Fisher ESCALAB 250Xi, with a
He Ia source (hv=21.22), an ultrahigh vacuum chamber with a base pressure of ~10-1 torr.

Flame atomic absorption spectrophotometry (FAAS) was conducted with an ZA3000
(HITACHI, JAPAN), equipped with a Pb hollow-cathode lamp as a radiation source, where the
resonance line wavelength is 217 nm. A calibration curve based on Pbl, solutions was referenced
by all sample tests to determine the aqueous Pb content in pure water as a standard.

Desktop constant temperature and humidity testing machine was conducted with a T-
TOPH-22-C (TOTC TEST EQRATION CO., LIMITED).

TOF-SIMS measurement was performed using a TOF-SIMS V instrument (ION-TOF Gmb
5, Miinster, Germany), where a 3 keV Cs* ion beam was used for erosion and a 25 keV Bi*
pulsed primary ion beam was used for the analysis. The area of analysis was 104x104 um? while

the sputtering area was 260x260 pm?



3. Synthetic details
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Fig. S1. Schematic illustration of the Spiro-PU IEL spin-coating process.



2-(2-bromoethoxy)ethan-1-ol (2). Phosphorus tribromide (3.15 g, 11.5 mmol) was dropwised to
diethylene glycol (10.6g, 100 mmol) at -5 °C for 0.5h. The reaction mixture was slowly warmed
to room temperature and heated to 160 °C for 2 hours. The crude material was purified by
column chromatography (EtAc:PE = 2:1) to give oil in 48% yield (8 g, 47.6 mmol). '"H NMR
(600 MHz, CDCl;-d1): 4.19 (s, 1H), 3.70-3.56 (m, 8H).
2-(2-(2-bromoethoxy)ethoxy)tetrahydro-2H-pyran 3). To solution of 2-(2-
bromoethoxy)ethanol (7.05 g, 42 mmol) in CHCI, (70 mL) were added 3,4-dihydro-2H-pyran
(3.87 g, 46 mmol) and a catalytic amount of toluenesulfonic acid (70 mg) and the mixture was
allowed to stir at room temperature for 6 h. The reaction mixture was washed with H,O and
evaporated under reduced pressure to give the product as an oil in 53% yield (4 g, 15.9 mmol).
'"H NMR (600 MHz, CDCl;-d1): 4.54 (s, 1H), 3.77-3.40 (m, 10H). 13C NMR (150 MHz, CDCl;-
dl1): 98.74, 72.48, 70.41, 66.55, 61.94, 61.52, 30.45, 25.35, 19.29.
N-(2-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethyl)aniline (4). Aniline (1.48 g, 15.9 mmol)
was dissolved in DMF (10 ml) in round-bottom flask. To this stirred solution (3) (4 g, 15.9 mmol)
and K,COj3 (5.5 g, 40 mmol) were added. Then, the reaction mixture was heated to 70 °C stir for
36 h. Solvent was removed under reduced pressure and the residue was extracted three times
with CHCI,. The combined organic layers were dried over anhydrous sodium sulphate. After
removing the solvent, the crude product was purified by passing through a silica column using
ethylacetate /hexane (1:4) as the eluent to as a yellow liquid in 72% yield (3 g, 11.3 mmol). 'H
NMR (600 MHz, CDCl3-d1): 7.22-7.19 (t, J=12Hz, 2H), 6.74-6.65 (m, 3H), 4.67-4.66 (t, J=6Hz,
1H), 3.92-3.32 (m, 10H), 1.86-1.55 (m, 6H). 13C NMR (150 MHz, CDCl;-d1): 148.32, 132.90,
117.71, 113.13, 99.05, 70.28, 69.53, 62.32, 43.10, 30.62, 25.47, 19.47.
N2,N2',N7,N7'-tetraphenyl-N2,N2',N7,N7'-tetrakis(2-(2-((tetrahydro-2H-pyran-yl)oxy)ethoxy)
ethyl)-9,9'-spirobi[fluorenel-2,2',7,7'-tetraamine (Spiro-ET). A mixture of (5) (0.5 g, 0.8
mmol), (4) (1.27 g, 4.8 mmol), t-BuONa (0.2 g, 2.08mmol), Pd,(dba); (0.03 g, 0.032 mmol), tri-
tert-butylphosphine terafluoroborate (TTBuP) (0.01 g, 0.034 mmol) into dry toluene (10 ml), and
heated at 120 °C for 24 h under nitrogen atmosphere. After cooling, it was quenched with water
and extracted with dichloromethane. The crude product was purified by passing through silica
column to give (Spiro-ET) as a yellow oil (600 mg, 55.4 % yield). 'TH NMR (600 MHz, CDCl;-
dl): 7.57-7.56 (d, J=6Hz, 1H), 7.14-7.12 (t, J=12Hz, 2H), 7.05-7.04 (d, J/=6Hz, 1H), 6.84-6.83
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(d, J=6Hz, 1H), 6.80-6.77 (t, J=12Hz, 2H), 6.56 (s 1H), 4.57-4.55 (t, J=12Hz, 1H), 3.81-73.74
(m, 4H), 3.60-3.44 (m, 6H), 1.78-1.48 (m, 6H).!3C NMR (150 MHz, CDCl3-d1): 150.37, 148.08,
146.59, 136.35, 129.01, 122.98, 120.27, 119.81, 118.43, 98.94, 70.52, 67.98, 66.66, 62.16, 51.62,
30.53, 25.43, 19.46. Mass spectrometry (HRMS-ESI, m/z): [M+H]" calcd. for CgsH;poN4O1,:
1368.73; found: 1368.79.

2,2',2"2""-(((9,9'-spirobi[fluorene]-2,2',7, 7 -tetrayltetrakis(phenylazanediyl) ) tetrakis(ethane-
2,1-diyl))tetrakis(oxy))tetrakis(ethan-1-0l) (Spiro-OH). To a solution of (Spiro-ET) (500mg,
0.365mmol), THF 3mL, methanol 15mL and toluenesulfonic acid (63mg, 0.365mmol) at room
temperature (RT) for 12 h. Then add Na,COj; solution to adjust the pH to neutral, add ethyl
acetate to extract three times, and purified by column chromatography on silica gel (ethyl acetate :
methanol = 15 : 1) to afford an yellow-green solid (230 mg, yield 61%). 'H NMR (600 MHz,
DMSO-d6): 7.71-7.69 (d, J=6Hz, 1H), 7.14-7.11 (t, J=18Hz, 2H), 7.05-7.03 (d, J=12Hz, 1H),
6.84-6.80 (M, 3H), 6.34 (s, 1H), 4.52-4.50 (t, J=12Hz, 1H), 3.76-3.74 (t, J=12Hz, 2H), 3.48-3.46
(t, J=12Hz, 2H), 3.77-3.75 (t, J=12Hz, 2H), 3.28-3.26 (t, J=12Hz, 2H). '*C NMR (150 MHz,
DMSO-d6): 150.51, 147.94, 146.88, 136.25, 129.16, 122.83, 120.26, 118.78, 118.29, 72.35,
68.28, 61.67, 51.64. Mass spectrometry (HRMS-ESI, m/z): [M+H]" calcd. for CgsHggN4Og:
1032.50; found: 1032.48. (Tg =35 °C, 7d = 390 °C)

The optimal Spiro-NPU prepolymer solution was prepared by dissolving 20 mg Spiro-OH
and 12.6 mg 1,5-Naphthalene Diisocyanate (NDI) in 1 mL chlorobenzene (CB), and then stirred
at 85 °C for 6 h. The remaining exploratory concentrations were 10 mg Spiro-OH (6.3 mg NDI)
and 30 mg Spiro-OH (18.9 mg NDI), and Spiro-PPU was prepared by 20 mg Spiro-OH and 9.2
mg PDI. We call Spiro-PU of PPDI as Spiro-PPU (7g = 137 °C, Td = 175 °C), and Spiro-PU of
NDI as Spiro-NPU (7g = 125 °C, Td = 170 °C).

The polymer power of Spiro-NPU could not be dissolved, thus the GPC determination of
prepolymer solution of Spiro-NPU was conducted (Mp = 87145, Mn = 39576, Mv = 77497, Mw
= 84488, Mz = 134725, Mz+1 = 180112, PD = 2.1348). The cross-linking efficiency was

determined to be 98%.
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4. Optical, electrochemical, and thermal properties.

Fo H 5 !
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Fig. S2. Comparison of the '"H NMR spectra (DMSO-d6) of Spiro-OH, NDI and Spiro-NPU.
Spiro-OH and NDI were dissolved in DMSO-d6 for heating polymerization to obtain the Spiro-
NPU.
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Fig. S3. (a) Schematic diagram of low solubility of Spiro-NPU (even in 1,1,3,3,3-Hexafluoro-2-
propanol (HFIP) with high polarity). (b) GPC determination of prepolymer solution of Spiro-
NPU.
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Fig. S4. (a-c) DSC curve of Spiro-OH, Spiro-NPU and Spiro-PPU, respectively. (d) TGA curves
of Spiro-OH, Spiro-NPU and Spiro-PPU, respectively. (The decomposition temperature is about
170 °C, which is due to the -NCO group.)
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Fig. S5. (a) Emission spectra, and (b) UV-vis of Spiro-OH, Spiro-PPU and Spiro-NPU.
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Fig. S6. Tauc plot of the Spiro-OH, Spiro-PPU and Spiro-NPU.
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Fig. S7. UPS spectra of Spiro-OH, Spiro-PPU and Spiro-NPU.
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Table S1. Optical, electrochemical properties of Spiro-OH, Spiro-PPU and Spiro-NPU.

Sample Ay (nm) Ay, (nm) Eg (eV) Egomo (V) E;vmo (eV)
Spiro-OH 356.99°  359.09" 42448  428.93f 3.14 -5.26" -5.24 2120 220
Spiro-PPU 360.63 428.93 3.16 =527 -5.25 2117 2209
Spiro-NPU 353.83 428.93 3.21 -5.32" -5.29 2,117 -2.08

sResults from Absorption in THF solution. fResults from absorption of films. *Results from CV
curves.
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Fig. S11. SCLC curves.
Table S2. TRPL fitting results.
Samples T,ve(NS) T,(ns) Ay T,(ns) A,
PVK 114.43 25.37 8.58 116.25 91.42
PVK/Spiro-PPU 77.29 15.08 58.99 91.96 41.01
PVK/Spiro-NPU 57.09 12.88 74.09 77.97 25.91
PVK/Spiro-OMeTAD  26.61 6.97 95.91 71.51 4.09
PVK/Spiro-PPU/
Spiro-OMeTAD 19.08 10.47 84.98 34.06 15.02
PVK/Spiro-NPU/ 10.19 5.33 94.93 27.69 5.07
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5. Device performance
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Fig. S12. The statistical distributions of 20 devices based on CH3;NH;Pbl; with different
concentration of Spiro-NPU of (a) PCE, (b) Voc, (¢) FF, and (d) Jsc
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Fig. S13. J-V characteristics of the best-performing based on CH;NH;Pbls.

1.2

Table S3. The average J-J performance of CH;NH;Pbls-based PSCs manufactured with

different precursor concentrations. (The values are obtained from 20 devices)

Device Voc (V) Jsc (mA/em?) FF (%) PCE (%)
Spiro-OMeTAD 1.118+0.013 22.988+0.355 75.638+1.334 19.453+0.658
10 Spiro-NPU 1.132+0.017 22.722+0.380 76.480+1.430 19.666+0.597
20 Spiro-NPU 1.128+0.018 22.965+0.411 77.407+1.804 20.058+0.899
30 Spiro-NPU 1.104+0.019 22.444+0.554 73.676+1.544 18.256+0.670
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Fig. S14. (a) The steady-state output at maximum power point for CH;NH;Pbl; with Spiro-NPU.
(b) EQE spectra and integrated photocurrent curves of the corresponding devices
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Table S4. The average J-V performance of CsgosFAggsMAg10Pb(Brgo3lo97)3-based PSCs
manufactured with different precursor concentrations. (The values are obtained from 30 devices)

Device Voc (V) Jsc (mA/cm?) FF (%) PCE (%)

w/o Spiro-NPU 1.135+0.011 24.426%0.366 74.386+2.084 20.627+0.651

w/ Spiro-NPU 1.166£0.007 24.650+0.275 78.119+1.489 22.459+0.532

Fig. S16. '"H NMR spectra of Spiro-NPU with or without Pbl,. The NMR reference chemical
shift is the tetramethylsilane (TMS).
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Fig. S17. (a) The dark current-voltage curves for hole-only devices

of

ITO/PEDOT:PSS/perovskite/Spiro-PU/Spiro-OMeTAD/Ag. (b) Voc dependence on light
intensity. (¢) Dark J-V curves. (d) Nyquist plots of PSCs under the dark condition at 0.7 V bias.
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Fig. S18. The water contact angle of perovskite/Spiro-NPU.
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Fig. S19. (a) Photographs of the CH;NH;Pbl; films with and without Spiro-PU exposed to 85 %
RH for 30 days and 8 min irradiation at one sun. (b-d) Corresponding XRD patterns of the
CH;NH;Pbl; films with and without polymer.
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Fig. S20. (a) Photographs of the CH;NH;Pbl; films with and without Spiro-PU exposed to 85 %

RH for 30 days and thermal annealing at 100 °C for 1 min. (b-d) Corresponding XRD patterns of

the CH3;NH;PbI; films with and without polymer.
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Fig. S21. Schematic illustration of the degradation and repairable mechanism.
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Fig. S22. (a) The  statistical  distributions of 10 devices based on
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conditions. (b) J-V curves of the champion devices.
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Fig. S23. Stabilized power output measurement of fresh and recovered devices based on
FTO/SI’IOz/ Cso,05FA0,g5MA0,1OPb(Br0,03IO,97)3/Spir0-NPU/Spiro-OMeTAD/Au.
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Fig. S24. XPS spectra after FTO/Spiro-NPU/Li-TFSI+tBP device aging. (a) survey, (b) N 1S, (¢)
F 1S, and (d) Li IS. First, the Spiro-NPU was deposited onto FTO by spin-coating, then a
mixture of Li-TFSI and tBP (1 ml chlorobenzene with the dopant of 17.5 pL Li-TFSI solution
and 28.8 puL t-BP) deposited onto Spiro-NPU, and finally exposed it to 85% RH (25 °C) for 500
hours of aging treatment. We carried out in-depth analysis (Ar", 1 keV) on the aged films with
etching time of 0 s, 120 s, 240 s, 360 s, 480 s and 600 s, respectively.
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Fig. S25. (a) Photographs of the CH3;NH;Pbl; film with Spiro-OMeTAD soaked in water. (b)
XRD patterns of the CH3;NH;Pbl;/Spiro-OMeTAD film after soaked in water over 30 minutes.
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Fig. S26. (a) Photographs of the CH3;NH;Pbl; films without and with Spiro-NPU soaked in

water for a long time. (b) Determination of Pb?* concentration in water at different soaking time.
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Spiro-OMeTAD

Fig. S27. Cross-sectional SEM image of the completed device.
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6. Properties of Spiro-PPU and devices.
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Fig. S28. FTIR spectra of Spiro-OH, PPDI and Spiro-PPU. The C=0 stretching vibration at
~1718 cm!, -NH- stretching vibration at ~3336 cm’!, -NCO stretching vibration at ~2266 cm’!
and -OH stretching vibration at ~3412 cm™! are marked.

b

w/ Spiro-PPU w/ Spiro-PPU

Fig. S29. (a) Top-view AFM and (b) SEM image of Spiro-PPU. (¢) Water contact angles on the
surface of Spiro-PPU.
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Fig. S30. The statistical distributions of 20 devices based-CH3;NH;Pbl;, and 30 devices based on
CS0.05FAO.85MAO.10Pb(BI‘0.03IO.97)3 with Sper-PPU Of (a) PCE, (b) Voc, (C) FF, and (d) JSC.

Table S5. The average J-V performance of PSCs based on CH;NH;Pbl; or
Cs0.05FAg.gsMAg 10Pb(Brg o310.97); with Spiro-PPU. (The values are obtained from 20 devices for
CH3NH3PbI3, 30 devices for CS0.05FAO.85MAO.]on(Br0.03IO.97)3)

Device (w/ Spiro-PPU) Voc (¥) Jsc (mA/cm?) FF (%) PCE (%)
CH;NH;PbI, 1.134+0.017 22.84840.448 77.309+1.807 20.058+0.899
Cs.05FA0 8sMAg 10Pb(Brooslo.07)s 1.161£0.008 24.709£0.308 77.673£1.518 22.285+0.526
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Fig. S31. J-V curves of the champion devices with Spiro-PPU based

CS0.05FAO.85MAO.10Pb(BI‘0.03IO.97)3 and CH3NH3PbI3 absorbers, respectively.
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Fig. S32. The steady-state output at maximum power point for PSCs based on CH;NH;Pbl; or

CS0.05FAO.85MAO.10Pb(BI‘0.03IO.97)3 with SplI'O-PPU IEL.
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Fig. S35. (a) Steady-state PL and (b) TRPL spectra of the glass/CH;NH;Pbl;,
glass/CH;NH;Pbl;/Spiro-PPU, glass/ CH;NH;Pbl3/Spiro-OMeTAD, and glass/
CH;NH;Pbl3/Spiro-PPU/ Spiro-OMeTAD.
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7. TH NMR, 3C NMR and HR-MS spectra.
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Fig. S36. 'H NMR of compound (2).
_..;"r_
.'I;: !
.f"ll J’;
> J P e
75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00
ppm

Fig. S37. 'TH NMR of compound (3).
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Fig. S39. 'H NMR of compound (4).
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Fig. S43. '"H NMR of compound (Spiro-OH).
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