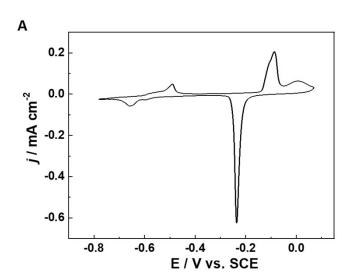
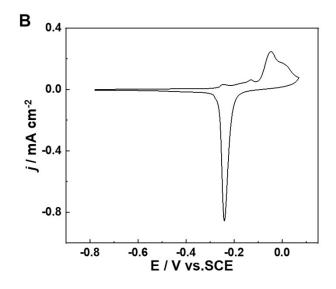
Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

# **Supplementary information**


- 2 Elucidating electrochemical CO<sub>2</sub> reduction reaction processes on
- 3 Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy
- 4 Yu Zhao,‡a Xia-Guang Zhang,‡b Nataraju Bodappa,‡a Wei-Min Yang,a Qian Liang,a Petar M.
- 5 Radjenovica,<sup>a</sup> Yao-Hui Wang,<sup>a</sup> Yue-Jiao Zhang,<sup>ac</sup> Jin-Chao Dong,\*ac Zhong-Qun Tian<sup>ac</sup> and Jian-Feng
- 6 Li\*acd


- 7 a State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and
- 8 Chemical Engineering, College of Energy, College of Physical Science and Technology, Xiamen
- 9 University, Xiamen 361005, China.
- 10 b Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative
- 11 Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of
- 12 Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- 13 c Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province
- 14 (IKKEM), Xiamen 361005, China.
- 15 d College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
- 16 ‡ These authors contributed equally.

#### **Supplementary Methods**

#### Chemicals

4 Chloroauric acid (HAuCl<sub>4</sub>) (99.99%), (3-aminopropyl) trimethoxysilane (APTMS) (97%), sodium 5 citrate (99.0%) and ethylene glycol (>99.0%) were purchased from Alfa-Aesar; H<sub>2</sub>SO<sub>4</sub> (95%), 6 H<sub>3</sub>PO<sub>4</sub> (85%), and Acetic acid (99%) were purchased from Sinopharmsodium; silicate solution 7 (27% SiO<sub>2</sub>) were purchased from Sigma-Aldrich. potassium hydroxide (99.99%) was purchased 8 from Aladdin. KHCO<sub>3</sub> (≥ 99.99%), KOH (99.99%) were purchased from Aladdin. KClO<sub>4</sub> (99.9%) 9 and D<sub>2</sub>O (for NMR atom % 99.9 D) were purchased from Innochem. Argon (99.999%), <sup>12</sup>CO<sub>2</sub> (99.99%), <sup>13</sup>CO<sub>2</sub>, and <sup>12</sup>CO (99.9%) was purchased from Linde. CO<sub>2</sub> saturated KHCO<sub>3</sub> electrolyte 11 was prepared by purging CO<sub>2</sub> into KOH for 20 min. Milli Q water (18.2 MΩ.cm) was used 12 throughout the experiment.





-0.8

2

1

3 Fig. S1. Electrochemical characterization of Cu(hkl) and Cu(poly) electrodes. CVs of Cu(111)

-0.6

-0.4

E / V vs.SCE

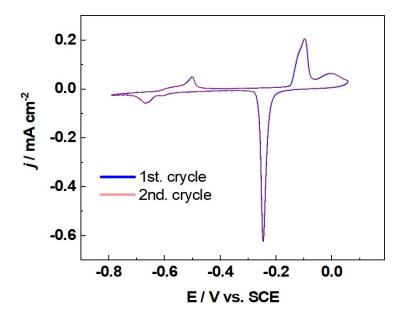
0.0

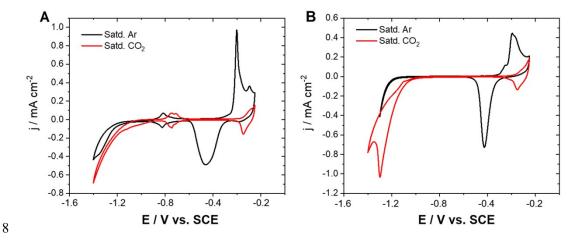
-0.2

- 4 (A), Cu(110) (B) single crystals and Cu(poly) (C) surfaces in 0.1 M KOH saturated with argon, v =
- $5 \quad 0.05 \ V \ s^{-1}$ .

6

- 7 The electrochemical behaviors of Cu(111), Cu(110) and Cu(poly) were tested by CV in 0.1 M KOH
- 8 solution (Fig. S1). Compared with the literature<sup>1</sup>, it was determined that the properties of the single
- 9 crystal used in the experiment were relatively intact.

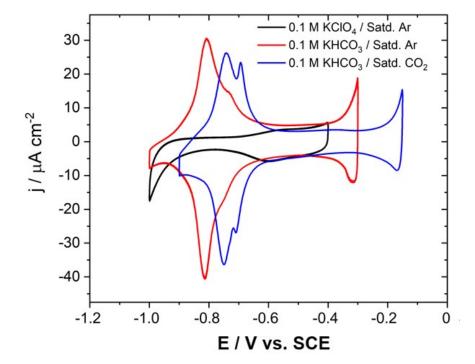




Fig. S2. Investigation on the stability of Cu(111) surface structure. First and second cycles of
 CV of Cu(111) single crystal surfaces in 0.1 M KOH saturated with argon, v = 0.05 V s<sup>-1</sup>.

4

12

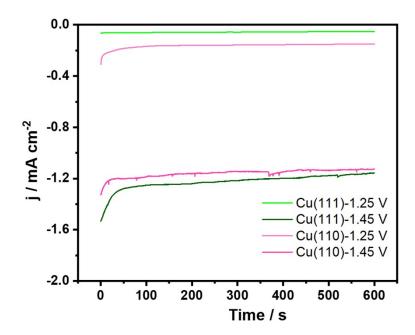
13


The electrochemical behavior of the first and second cycles of Cu(111) surface in0.1 M KOH solution is consistent, which proves that the performance of Cu(111) can be maintained after the redox process.



9 Fig. S3. The control experiment of Cu(hkl) in argon and CO<sub>2</sub> atmosphere, respectively. CVs of (A) Cu(111) and (B) Cu(110) in 0.1 M KHCO<sub>3</sub> saturated with Ar (black curve) and saturated with CO<sub>2</sub> (red curve), v = 0.05 V s<sup>-1</sup>.

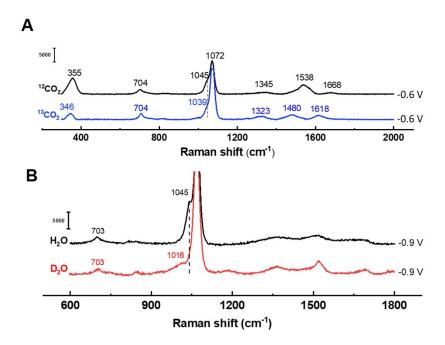
In Fig. S3, we found that the electrochemical peak of Cu-oxygen species on the Cu(hkl) surface


- 1 at -0.4 V was obviously suppressed by the presence of CO<sub>2</sub> in the 0.1 M KHCO<sub>3</sub> solution (sat. Ar),
- 2 indicating that CO<sub>2</sub> was adsorbed on the Cu(hkl) surface at this potential.



6 Fig. S4. CVs of Cu(111) in different solution. CVs of Cu(111) in 0.1 M KClO<sub>4</sub> saturated with Ar

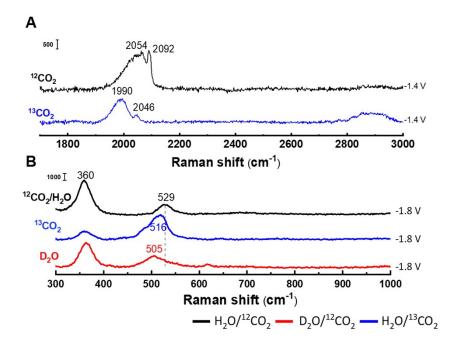
- 7 (black curve), 0.1 M KHCO<sub>3</sub> saturated with Ar (red curve) and 0.1 M KHCO<sub>3</sub> saturated with CO<sub>2</sub>
- 8 (blue curve),  $v = 0.05 \text{ V s}^{-1}$ .
- 9 Control CVs of Cu(111) were carried out in different solutions as shown in Fig. S4, the broad CV
- 10 feature peak around -0.8 V remains the same in Ar sat. 0.1 M KHCO<sub>3</sub>, but this feature was absent
- 11 in Ar sat. 0.1 M KClO<sub>4</sub> solution. These results reveal that the peaks around -0.8 V should arise from
- 12 the HCO<sub>3</sub>-or CO<sub>2</sub> interaction with the Cu(111) surface.


13



2 Fig. S5. i-t curves of Cu(111) and Cu(110) Chronoamperometric curves of Cu(111) and Cu(110)

3 single crystals at various potentials.

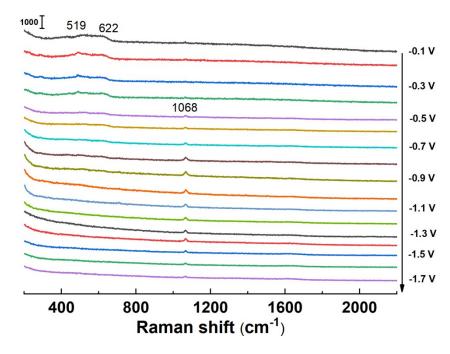

#### 1 In situ Raman of CO<sub>2</sub>RR on the Cu(hkl) and Spectral peak attribution



3 Fig. S6. The isotope experiments of \*CO<sub>2</sub>- and \*COOH species. Comparison of in situ SERS

4 spectra of CO<sub>2</sub>RR on Cu(poly) at -0.6 V(a) and -0.9 V(b) in 0.5 M KHCO<sub>3</sub>/satd. CO<sub>2</sub> (black curve);

5 0.5 M NaH<sup>13</sup>CO<sub>3</sub>/bubbling <sup>13</sup>CO<sub>2</sub> (blue curve); 0.5 M K<sub>2</sub>CO<sub>3</sub>/CO<sub>2</sub>/D<sub>2</sub>O (red curve).




7 Fig. S7. The isotope experiments of \*CO, \*OCCO and \*CH<sub>2</sub>CHO species. comparison of in situ

SERS spectra of CO<sub>2</sub>RR on Cu(poly) at -1.4 V(A) and -1.8 V(B) in 0.5 M KHCO<sub>3</sub>/sat. CO<sub>2</sub> (black

9 curve); 0.5 M NaH<sup>13</sup>CO<sub>3</sub> bubbling <sup>13</sup>CO<sub>2</sub> (blue curve); 0.5 M K<sub>2</sub>CO<sub>3</sub>/CO<sub>2</sub>/D<sub>2</sub>O (red curve).

6



3 Fig. S8. The control experiment of K<sub>2</sub>CO<sub>3</sub> solution. In situ SERS spectra of Cu(poly) in 0.8 M

 $K_2CO_3$  solution without  $CO_2$ .

To investigate the adsorption of CO<sub>3</sub><sup>2-</sup> on the copper electrode surface, we investigated the electrochemical process of the Cu electrode surface in 0.8 M K<sub>2</sub>CO<sub>3</sub> solution (Fig. S8). Except for the Raman peaks of Cu<sub>2</sub>O around 519 cm<sup>-1</sup> and 622 cm<sup>-1</sup> and the Raman peak of CO<sub>3</sub><sup>2-</sup> at 1068 cm<sup>-1</sup>

9 <sup>1</sup> appeared, no other obvious Raman peak around 1554 cm<sup>-1</sup> was observed.

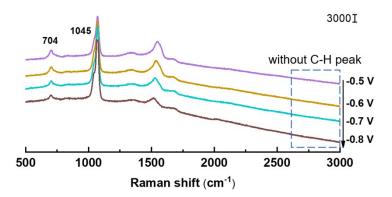
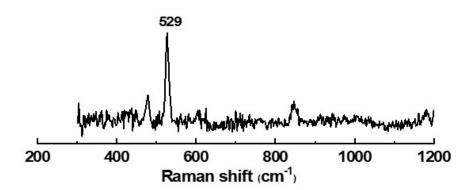




Fig. S9. The low and high wavenumber spectral of CO<sub>2</sub>RR on Cu(poly) surface. In situ SERS

13 of Cu(poly) in 0.5 M KHCO<sub>3</sub> solution sat. CO<sub>2</sub>.

- 1 The in-situ Raman spectral results of CO<sub>2</sub>RR on the Cu(poly) electrode surface show that no obvious
- 2 C-H stretching vibration peak information is observed at high wavenumber (Fig. S9), which
- 3 indicates that the 1045 cm<sup>-1</sup> peak should not be attributed to the HCOO species.



5

6 Fig. S10. The Raman spectra of CH<sub>3</sub>CHO. Raman spectra of 10% acetaldehyde acid sample.

7

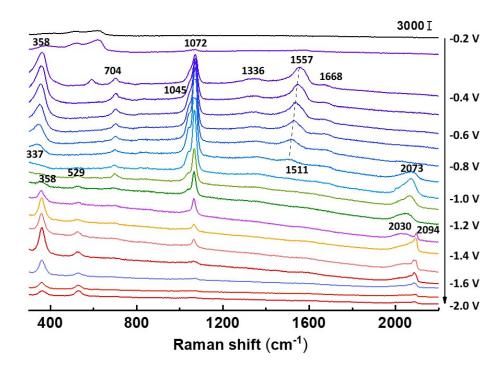
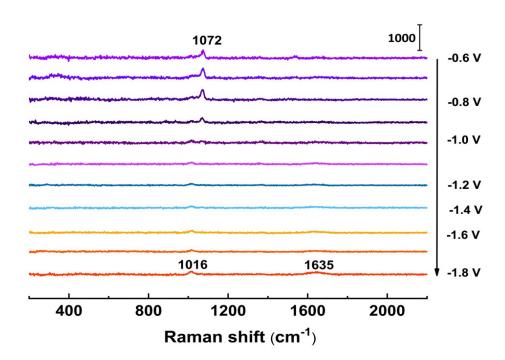




Fig. S11. In situ Raman spectra of CO<sub>2</sub>RR reaction on Cu(poly). In situ SERS spectra of

- 10 Cu(poly) in 0.5 M KHCO<sub>3</sub> saturated with CO<sub>2</sub>. pH = 6.8 (vs. SCE).
- In order to accurately identify the attribution of the spectral Raman peaks of the CO<sub>2</sub>RR-related
- 12 intermediate species, and the results on Cu (poly) are similar to those on Cu(110) surface(Fig. S11),
- 13 we conducted a systematic isotope substitution experiment on Cu (poly) surface during the CO<sub>2</sub>RR

process. To compare the offset of relative Raman peak in <sup>13</sup>C and D<sub>2</sub>O experiments more accurately, we have selected different potentials for comparison as shown in Fig. S5-6. We found that the peak ~355 cm<sup>-1</sup> shifts to around 346 cm<sup>-1</sup> in <sup>13</sup>C experiment. Thus, this peak should be correlated with the "C" atom. The peak ~1045 cm<sup>-1</sup> shifts to around 1039 cm<sup>-1</sup> and 1016 cm<sup>-1</sup> in <sup>13</sup>C and D<sub>2</sub>O experiments, respectively. So Thus, this peak should be correlated with "C" and "H" atoms. The peak of 1345 cm<sup>-1</sup>, 1538 cm<sup>-1</sup> and 1668 cm<sup>-1</sup> shift to lower wavenumber around 1323 cm<sup>-1</sup>, 1480 cm<sup>-1</sup> and 1618 cm<sup>-1</sup> in <sup>13</sup>CO<sub>2</sub>, respectively. The peak of 2054 cm<sup>-1</sup> and 2092 cm<sup>-1</sup> shift to 1990 cm<sup>-1</sup> and 2046 cm<sup>-1</sup> respectively. The peak of 529 cm<sup>-1</sup> shift to lower wavenumber in both D<sub>2</sub>O and <sup>13</sup>CO<sub>2</sub>.



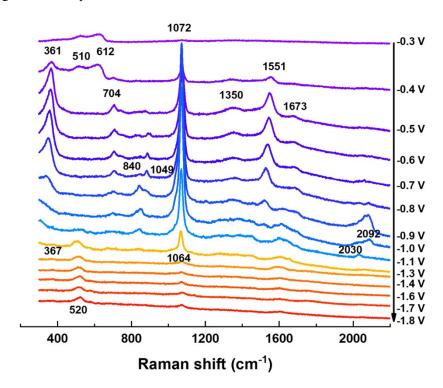


11

Fig. S12. In situ Raman spectra of CO<sub>2</sub>RR process on Cu surface. In situ Raman spectra of Cu(poly) in 0.5 M KHCO<sub>3</sub>/H<sub>2</sub>O (sat. CO<sub>2</sub>) without Cu<sub>2</sub>O in the initial potential.

14

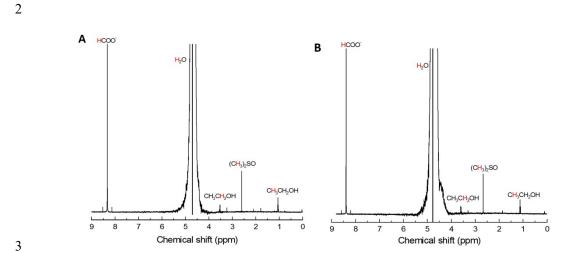
13


After we first reduce the Cu(poly) electrode at very negative potential and then conduct *in situ*Raman study of the CO<sub>2</sub>RR from -0.6 V (Fig. S12), no other characteristic Raman peaks appeared
except for the Raman peaks of HCO<sub>3</sub><sup>-</sup> and CO<sub>3</sub><sup>2-</sup> around 1016 cm<sup>-1</sup> and 1072 cm<sup>-1</sup>, indicating that
the presence of Cu<sub>2</sub>O or Cu oxides in the initial potential range has an important effect for activating

#### 1 CO<sub>2</sub> during the CO<sub>2</sub>RR process.

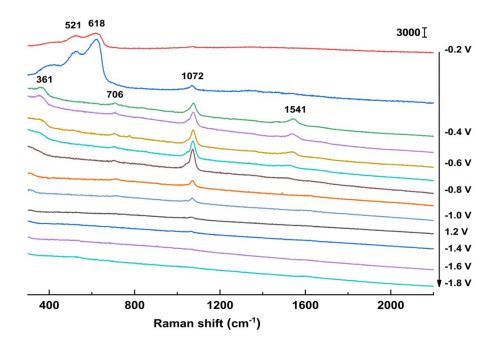
2

5

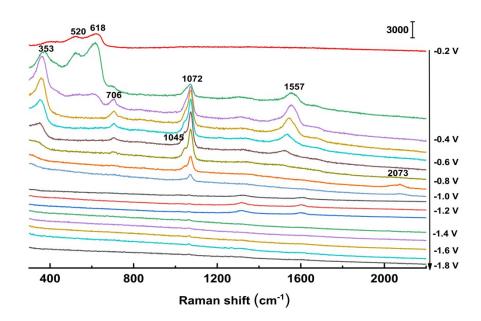

6



3 Fig. S13 In situ Raman spectra of CO<sub>2</sub>RR reaction on Cu(100). In situ SHINERS of Cu(100)


4 in 0.5 M KHCO<sub>3</sub> saturated with CO<sub>2</sub>. pH = 6.8 (vs. SCE).

### 1 Detection of CO<sub>2</sub>RR liquids products

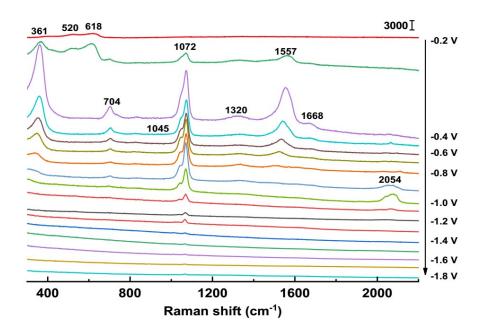



- 4 Fig. S14. NMR for liquid product analysis. <sup>1</sup>H NMR spectrum obtained on the Cu(111) (A),
- 5 Cu(110) (**B**) electrode at -1.65 V in 0.5 M KHCO<sub>3</sub> CO<sub>2</sub> saturated for liquid product analysis. DMSO
- 6 and phenol were added as internal standards.

#### 1 The concentration effect of KHCO<sub>3</sub>

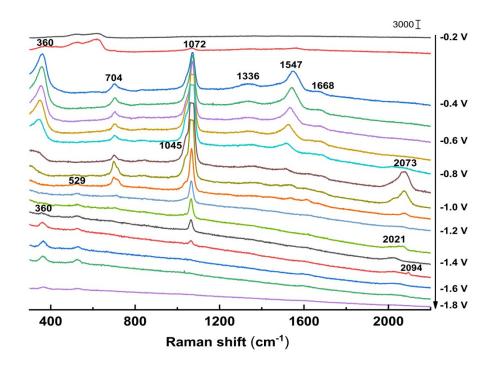


- 3 Fig. S15. In situ Raman spectra of Cu(poly) in 0.2 M KHCO<sub>3</sub>. In situ SERS spectra of Cu(poly)
- 4 in 0.2 M KHCO<sub>3</sub>/H<sub>2</sub>O without CO<sub>2</sub> gas.




- 7 Fig. S16. In situ Raman spectra of Cu(poly) in 0.3 M KHCO<sub>3</sub>. In situ SERS spectra of Cu(poly)
- 8 in 0.3 M KHCO<sub>3</sub>/H<sub>2</sub>O without CO<sub>2</sub> gas.

9

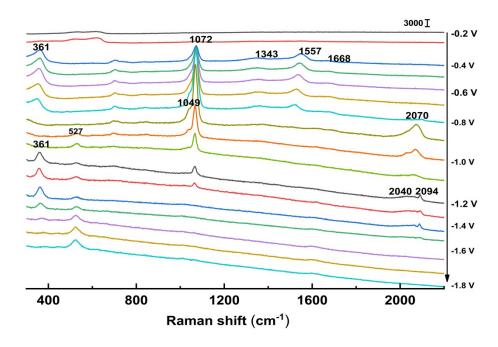

6

2



2 Fig. S17. In situ Raman spectra of Cu(poly) in 0.4 M KHCO<sub>3</sub>. In situ SERS spectra of Cu(poly)

3 in 0.4 M KHCO<sub>3</sub>/H<sub>2</sub>O without CO<sub>2</sub> gas.



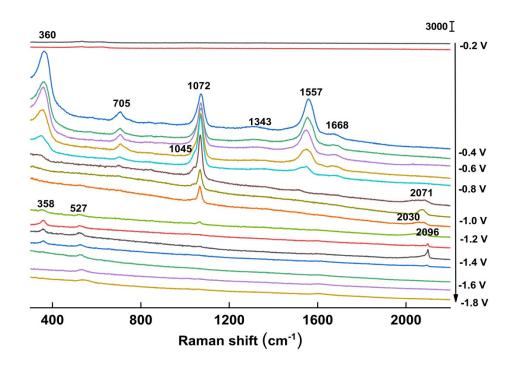

5 Fig. S18. In situ Raman spectra of Cu(poly) in 0.6 M KHCO<sub>3</sub>. In situ SERS spectra of Cu(poly)

6 in 0.6 M KHCO<sub>3</sub>/H<sub>2</sub>O without CO<sub>2</sub> gas.

7

4

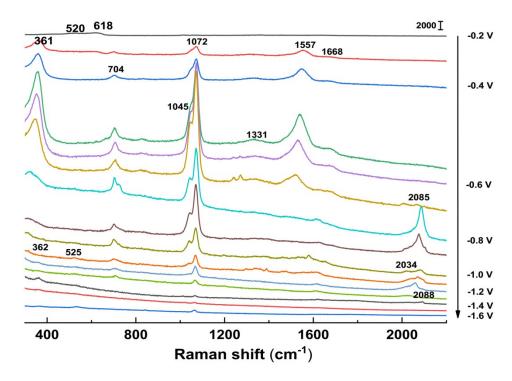



- 2 Fig. S19. In situ Raman spectra of Cu(poly) in 0.8 M KHCO<sub>3</sub>. In situ SERS spectra of Cu(poly)
- 3 in  $0.8 \text{ M KHCO}_3/\text{H}_2\text{O}$  without  $\text{CO}_2$  gas.

4

5

8


9



- Fig. S20. In situ Raman spectra of Cu(poly) in 1.0 M KHCO<sub>3</sub>. In situ SERS spectra of Cu(poly)
- 7 in 1.0 M KHCO<sub>3</sub>/H<sub>2</sub>O without CO<sub>2</sub> gas.

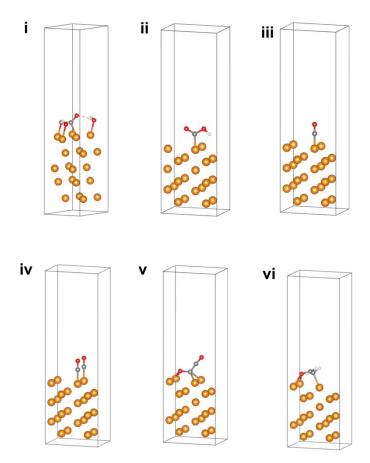
10 Results of different concentrations of KHCO3 on Cu(poly) surface. In order to investigate the

- 1 concentration effect of the KHCO<sub>3</sub> electrolyte, we have investigated the reaction process of Cu
- 2 (poly) surface under different concentration conditions. As the concentration increases, we found
- 3 that the characteristic Raman peaks of CO<sub>2</sub>RR-related intermediate species gradually become
- 4 apparent. (Fig. S15-S20)



7 Fig. S21. In situ Raman spectra of Cu(poly) in 0.4 M KHCO<sub>3</sub> solution CO<sub>2</sub>-saturated. In situ

8 SERS spectra of Cu(poly) in 0.4 M KHCO<sub>3</sub>/H<sub>2</sub>O with CO<sub>2</sub> gas.

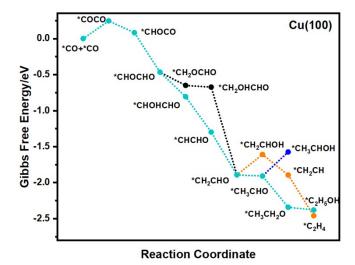

9

- 0 After introduced CO<sub>2</sub> gas into the 0.4 M KHCO<sub>3</sub> solution, we found that the peaks of CO<sub>2</sub>RR related
- 11 intermediate species became more obvious, and the characteristic peaks of \*OCCO (2088 cm<sup>-1</sup>) and
- 12 \*CH<sub>2</sub>CHO (525 cm<sup>-1</sup>) appeared in low potential range.

#### Computational results:

- 2 In this study, different adsorption structures of CO<sub>2</sub>RR intermediates which adsorbs at Cu(hkl)
- 3 surface have been calculated as following.

4



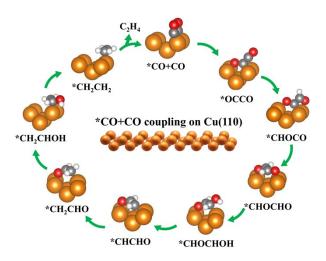

5

6 Fig. S22. The model of different intermediates at Cu(110) crystal facet. The side view of

7 (i)\*CO<sub>2</sub><sup>-</sup>; (ii)\*COOH; (iii)\*CO; (iv) \*CO-\*CO; (v) \*OCCO and (vi) \*CH<sub>2</sub>CHO.

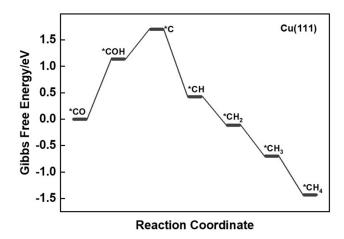
8




2 Fig. S23. The possible mechanism of CO<sub>2</sub>RR on Cu(100). The possible mechanism of CO<sub>2</sub>RR

4

7


8

3 mechanism to CH<sub>4</sub> on Cu(100) surface and relevant Gibbs free energy of different intermediates.



5 Fig. S24. The possible mechanism of \*CO coupling to produce C2 product on Cu(110). The

6 possible mechanism of  $CO_2RR$  mechanism to  $C_2H_4$  on Cu(110) surface.



2 Fig. S25. The possible mechanism of CO<sub>2</sub>RR on Cu(111). The possible mechanism of CO<sub>2</sub>RR

3 mechanism to CH<sub>4</sub> on Cu(111) surface and relevant Gibbs free energy of different intermediates.

5 Table 1. Vibrational frequencies of stable intermediates on Cu(110) surface.

1

6

8

|                      | <sup>12</sup> CO <sub>2</sub> /H <sub>2</sub> O | <sup>12</sup> CO <sub>2</sub> /D <sub>2</sub> O | <sup>13</sup> CO <sub>2</sub> /H <sub>2</sub> O |
|----------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| *CO <sub>2</sub>     | 1698/1527/698                                   | 1669/1157/711                                   | 1665/1519/688                                   |
| *CO <sub>2</sub> H   | 1039/1705                                       | 1058/1698                                       | 1017/1696                                       |
| *COCO                | 2051                                            | -                                               | 1992                                            |
| *CH <sub>2</sub> CHO | 519                                             | 444                                             | 513                                             |
| *CO                  | 2029                                            | -                                               | 1982                                            |
| Two *CO              | 2067/1986                                       | -                                               | 2019/1941                                       |

7 Table 2. Vibrational frequencies of stable intermediates on Cu(100) surface.

|                      | $^{12}\mathrm{CO}_2/\mathrm{H}_2\mathrm{O}$ | <sup>12</sup> CO <sub>2</sub> /D <sub>2</sub> O | $^{13}\mathrm{CO}_2/\mathrm{H}_2\mathrm{O}$ |
|----------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------|
| *CO <sub>2</sub> H   | 1482/1220/1150                              | 1458/1188/904                                   | 1448/1209/1132                              |
| *COCO                | 2090                                        | -                                               | 2031                                        |
| *CH <sub>2</sub> CHO | 516                                         | 447                                             | 511                                         |
| *CO                  | 2027                                        | -                                               | 1981                                        |
| Two *CO              | 2066/1977                                   | -                                               | 2019/1933                                   |

9 Table 3. Simulation parameters of Gibbs free energy calculated for CO<sub>2</sub>RR on Cu(110)

# 1 surface (eV)

| species                           | E <sub>DFT</sub> | $\mathrm{E}_{\mathrm{ZPE}}$ | $\int C_{\rm v} dT$ | TS    | G        |
|-----------------------------------|------------------|-----------------------------|---------------------|-------|----------|
| Cu(110)                           | -90.546          |                             |                     |       |          |
| *CO-CO                            | -121.560         | 0.406                       | 0.116               | 0.222 | -121.260 |
| *OCCO                             | -121.344         | 0.409                       | 0.123               | 0.245 | -121.057 |
| *CHOCO                            | -125.294         | 0.703                       | 0.124               | 0.234 | -124.701 |
| *СНОСНО                           | -129.643         | 0.998                       | 0.129               | 0.249 | -128.765 |
| *CH <sub>2</sub> OCHO             | -133.284         | 1.271                       | 0.141               | 0.259 | -132.131 |
| *CH <sub>2</sub> OHCHO            | -136.959         | 1.630                       | 0.138               | 0.250 | -135.441 |
| *СНОНСНО                          | -133.470         | 1.321                       | 0.145               | 0.283 | -132.287 |
| *СНСНО                            | -121.919         | 0.877                       | 0.098               | 0.176 | -121.120 |
| *CH <sub>2</sub> CHO              | -127.084         | 1.212                       | 0.108               | 0.202 | -125.966 |
| *CH <sub>2</sub> CHOH             | -130.272         | 1.500                       | 0.133               | 0.289 | -128.928 |
| *CH <sub>3</sub> CHO              | -130.345         | 1.474                       | 0.152               | 0.340 | -129.059 |
| *CH₃CHOH                          | -133.816         | 1.809                       | 0.133               | 0.253 | -132.127 |
| *CH <sub>2</sub> CH               | -119.049         | 1.078                       | 0.084               | 0.157 | -118.044 |
| *C <sub>2</sub> H <sub>5</sub> OH | -138.310         | 2.139                       | 0.160               | 0.373 | -136.384 |
| *C <sub>2</sub> H <sub>4</sub>    | -123.522         | 1.401                       | 0.101               | 0.223 | -122.243 |

2

# 3 Table 4. Simulation parameters of Gibbs free energy calculated for $CO_2RR$ on Cu(100)

## 4 surface (eV)

| species | $E_{DFT}$ | $E_{ZPE}$ | $\int C_{\rm v} dT$ | TS    | G        |
|---------|-----------|-----------|---------------------|-------|----------|
| Cu(100) | -94.229   |           |                     |       |          |
| *CO-CO  | -125.086  | 0.389     | 0.096               | 0.177 | -124.769 |
| *OCCO   | -124.827  | 0.418     | 0.119               | 0.234 | -124.524 |
| *CHOCO  | -128.652  | 0.680     | 0.137               | 0.269 | -128.104 |
| *СНОСНО | -132.968  | 1.010     | 0.123               | 0.235 | -132.070 |

| *CH <sub>2</sub> OCHO             | -136.829 | 1.309 | 0.145 | 0.295 | -135.670 |
|-----------------------------------|----------|-------|-------|-------|----------|
| *CH <sub>2</sub> OHCHO            | -140.665 | 1.658 | 0.127 | 0.230 | -139.110 |
| *СНОНСНО                          | -137.038 | 1.337 | 0.138 | 0.263 | -135.826 |
| *СНСНО                            | -126.124 | 0.924 | 0.093 | 0.167 | -125.274 |
| *CH <sub>2</sub> CHO              | -130.398 | 1.207 | 0.110 | 0.205 | -129.286 |
| *CH <sub>2</sub> CHOH             | -133.776 | 1.508 | 0.134 | 0.285 | -132.419 |
| *CH₃CHO                           | -133.972 | 1.465 | 0.140 | 0.351 | -132.718 |
| *СН₃СНОН                          | -137.458 | 1.803 | 0.141 | 0.287 | -135.801 |
| *CH <sub>2</sub> CH               | -122.659 | 1.077 | 0.088 | 0.167 | -121.661 |
| *C <sub>2</sub> H <sub>5</sub> OH | -141.958 | 2.133 | 0.160 | 0.358 | -140.023 |
| *C <sub>2</sub> H <sub>4</sub>    | -126.911 | 1.391 | 0.107 | 0.229 | -125.642 |

# $2\quad Table\ 5.\ Simulation\ parameters\ of\ Gibbs\ free\ energy\ calculated\ for\ CO_2RR\ on\ Cu(111)$

## 3 surface (eV)

1

| species         | $E_{DFT}$ | $E_{ZPE}$ | $\int C_{\rm v} dT$ | TS    | G        |
|-----------------|-----------|-----------|---------------------|-------|----------|
| Cu(111)         | -95.458   |           |                     |       |          |
| СОН             | -113.864  | 0.465     | 0.083               | 0.156 | -113.472 |
| C               | -101.955  | 0.093     | 0.018               | 0.026 | -101.870 |
| СН              | -106.898  | 0.352     | 0.030               | 0.042 | -106.558 |
| $CH_2$          | -111.054  | 0.581     | 0.062               | 0.103 | -110.514 |
| CH <sub>3</sub> | -115.335  | 0.909     | 0.063               | 0.153 | -114.516 |
| CH <sub>4</sub> | -119.769  | 1.194     | 0.063               | 0.154 | -118.666 |

### 1 Supplementary References

- 3 (1) Klaas Jan P. Schouten, Elena Pérez Gallent & Marc T.M. Koper. (2013). The electrochemical
- 4 characterization of copper single-crystal electrodes in alkaline media. J. Electroanal. Chem. 699, 6-
- 5 9.