Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Low-Coordinated Cobalt Arrays for Efficient Hydrazine Electrooxidation

Qian Liu^a, Xiaobin Liao^b, Yuanhao Tang^a, Jianghao Wang^a, Xiangzhou Lv^a, Xuelei Pan^d, Ruihu Lu^b,

Yan Zhao^{b, c, *}, Xin-Yao Yu^{e, f, *}, Hao Bin Wu^{a, *}

^aInstitute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China ^bState Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China ^cThe Institute of Technological Sciences, Wuhan University, Hubei, Wuhan 430072, P. R. China ^dState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

^eInstitutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China

^fEnergy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei 230601, P. R. China

Email: yan2000@whut.edu.cn (Y. Zhao), yuxinyao@ahu.edu.cn (X.-Y. Yu), hbwu@zju.edu.cn (H. B. Wu)

Supplementary Fig. 1, XRD patterns of Co(OH)F/CF and p-Co/CF.

Supplementary Fig. 2 Magnified HRTEM images of p-Co.

Supplementary Fig. 3, F 1s XPS spectra of Co(OH)F and p-Co/CF.

Supplementary Fig. 4 a-e, Energy dispersive spectroscopy (EDS) mapping of Co(OH)F/CF; **f**, Element concentration of Co(OH)F/CF.

а	10 µm	D	<u>10 µт</u>	a strange	Co		um	¢
d		е	Atom Co O F	ic percenta <u>c</u> 13.88 % 13.26 %	је 72	.86 %		
	Part Andrews and Andrews		Element	Element	Element	Atomic	Weight	
			Number	Symbol	Name	Conc.	Conc.	
	and the second		27	Co	Cobalt	72.86	90.06	
	AND A DESCRIPTION OF A		8	0	Oxygen	13.88	4.66	
			9	F	Fluorine	13.26	5.28	
	TO print							

Supplementary Fig. 5 a-d, Energy dispersive spectroscopy (EDS) mapping of p-Co/CF; e, Element concentration of p-Co/CF.

Supplementary Fig. 6, XRD patterns of Co nanoparticles (Co np) and p-Co nanoparticles (p-Co np).

Supplementary Fig. 7 CV curves of **a**, p-Co/CF, **b**, Co(OH)F/CF, and **c**, Cu foam, **d**, PtC/CP, **e**, Co np/CP, **f**, p-Co np/CP at different scan rates.

Supplementary Fig. 8 ECSA normalized polarization curves in 1 M KOH with 0.05 M N₂H₄.

Supplementary Fig. 9 a, XRD pattern of p-Co(OH)F after electrolysis. **b,** Normalized Co K-edge spectra. **c,** Fourier-transform spectra from EXAFS.

Supplementary Fig. 10 a, FESEM image of p-Co after electrolysis. **b**, TEM image of p-Co after electrolysis. **c**, HRTEM image of cubic structure of p-Co after electrolysis. **d**, HRTEM image of nanoneedle structure of p-Co after electrolysis. **e**, TEM image and SAED pattern of nanoneedle structure of p-Co after electrolysis. **f**, TEM image and SAED pattern of cubic structure of p-Co after electrolysis.

Supplementary Fig. 11 a, Co 2p XPS of p-Co/CF after 1h and 20 h chronopotentiometry test, **b**, O 1s XPS of p-Co/CF after 1h and 20 h chronopotentiometry test, **c**, F 1s XPS of p-Co/CF after 1h and 20 h chronopotentiometry test.

Supplementary Fig. 12 a-e, Gibbs free energy diagram of HzOR. a b, At zero cell potential¹ (U = 0 eV). c-e, At the equilibrium potential (U = Ueq). f, Computational model for d-Co.

Supplementary Fig. 13 a-f, Computational model of Co(111) and different adsorption configurations of intermediate species. **h-m,** Computational model of Pt(111) and different adsorption configurations of intermediate species.

Supplementary Fig. 14 a, b DOS for Co(111) and Pt(111) surfaces before and after hydrazine adsorption. **c,** PDOS and total DOS for free hydrazine molecule.

Supplementary Fig. 15 Differential charge density of N_2H_4 adsorbed on **a**, d-Co(111) and **b**, Co(111). Cyan and yellow represent charge depletion and accumulation, respectively.

Supplementary Fig. 16 Schematic diagrams of a, MEA set up and b, device operation.

Sample	Path	Ν	R (Å)	O ' ² (10 ⁻³ Å ²)	ΔE_0 (eV)
Co foil theoretical	Co-Co	12.0	2.51		
p-Co	Co-Co	9.2	2.49	6.479	-5.2

Supplementary Table 1 Fitted Parameters of Co K-Edge EXAFS Curves for p-Co.

Supplementary Table 2 Comparison of HzOR onset potential (potential at 1 mA cm-1) and Tafel slope with other catalysts.

Catalyst	Onset	Tafel slope	Stability	$C(N_2H_4)$	<i>E</i> (at 0.2 A cm ⁻²)
Catalysi	potential (V)	(mV dec ⁻¹)	(h)	(M)	(V)
This work	-0.15	8.83	29	0.05	-0.068
Co ₃ Ta/C ²	-0.1	56.9	3.3	0.2	
Co/LaCoO _x @ N-C ³	-0.17	80	20	0.1	
Ni-Zn/rGO ⁴	0	33.5	10	0.5	0.14
PW-Co ₃ N/NF ⁵	-0.05	14	10	0.1	0.025
Ni-Co/NF ⁶	-0.16	14.5	10	0.5	-0.01
V-Ni ₃ N ⁷	0.002	31	10	0.1	0.07
P-CoCO ₃ /CF ⁸	-0.055	27.78	18	0.3	-0.025
NiCo- MoNi4/NF ⁹	-0.05	37.9	40	0.1	0.11
Ni NCNAs ¹⁰	-0.026	32.6	20	0.3	
A-Ru-KB ¹¹	-0.01	12.9	20	0.1	
Ni-Zn ¹²	-0.05	44.58	10	0.1	
RP-CPM ¹³	-0.1	47.6	20	0.3	
Ni ₃ N-Co ₃ N PNAs/NF ¹⁴	-0.1	21.6	40	0.1	

	Co(111)	Pt(111)	d-Co(111)
ΔG_{1}	-1.06	-0.53	-0.79
ΔG_2	0.11	0.58	-0.1
ΔG_{3}	0.11	-0.41	-0.16
ΔG_{4}	-0.48	-0.92	-0.23
ΔG_{total}	-1.32	-1.28	-1.28

Supplementary Table 3 The free-energy change (eV) of each elementary reaction for alternating pathway (path1) of HzOR on the surfaces at U = 0 V.

Supplementary Table 4 The free-energy change (eV) of each elementary reaction for distal pathway (path2) of HzOR on the surfaces at U = 0 V.

	Co(111)	Pt(111)	d-Co(111)
ΔG_{1}	-1.06	-0.53	-0.79
ΔG_{2}	0.11	0.15	-0.19
ΔG_{3}	0.11	0.02	-0.07
ΔG_{4}	-0.48	-0.92	-0.23
ΔG_{total}	-1.32	-1.28	-1.28

Eads	N_2H_4 *	N ₂ H ₃ *	N ₂ H ₂ * (path 1)	$N_2H_2^*$ (path 2)	N ₂ H*
Co(111)	-1.34	-2.63	-2.24	-3.82	-2.36
Pt(111)	-1.63	-2.28	-1.43	-3.46	-2.12
d-Co(111)	-1.86	-2.49	-2.37	-4.05	-2.77

Supplementary Table 5 The adsorption energies of intermediates on d-Co(111), Co(111) and Pt(111).

Supplementary Table 6 Performance comparison of homemade DHzFCs.

Catalyst	OCV (V)	<i>P</i> _{max} (mW cm ⁻²)	J (A cm ⁻²)	$C(N_2H_4)(M)$	Temp. (°C)
This work	1.1	185.9	0.36	1.5	25
PW-Co ₃ N/NF ⁵	0.98	46.3	0.1	0.5	25
Nanostructured -Cu film ¹⁵	1	160.8	0.4	6.25	80
Ni3N-C03N PNAs/NF ¹⁴	1	60.3	0.14	0.5	25
RP-CPM ¹³	1.01	64.77	0.175	0.5	25

Supplementary References

- 1. G. Tomaschun and T. Kluner, *Phys. Chem. Chem. Phys.*, 2019, **21**, 18227-18239.
- G. Feng, L. An, B. Li, Y. Zuo, J. Song, F. Ning, N. Jiang, X. Cheng, Y. Zhang and D. Xia, *Nat. Commun.*, 2019, 10, 4514.
- L. Gao, J. Xie, S. Liu, S. Lou, Z. Wei, X. Zhu and B. Tang, ACS Appl. Mater. Interfaces, 2020, 12, 24701-24709.
- 4. Z. Feng, H. Zhang, B. Gao, P. Lu, D. Li and P. Xing, *Int. J. Hydrogen Energy*, 2020, **45**, 19335-19343.
- 5. Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu and G. Zhang, *Nat. Commun.*, 2020, **11**, 1853.
- P.-P. Tang, X. Lin, H. Yin, D.-X. Zhang, H. Wen, J.-J. Wang and P. Wang, ACS Sustainable Chem. Eng., 2020, 8, 16583-16590.
- J. Zhang, Y. Liu, J. Li, X. Jin, Y. Li, Q. Qian, Y. Wang, A. El-Harairy, Z. Li, Y. Zhu, H. Zhang, M. Cheng, S. Zeng and G. Zhang, ACS Appl. Mater. Interfaces, 2021, 13, 3881-3890.
- F. Liu, H. Li, Y. Li, Q. Cao, X. Geng, C. Gu, W. Sun and J. Wang, *Sustainable Energy Fuels*, 2021, 5, 2257-2265.
- 9. Q. Qian, Y. Li, Y. Liu, Y. Guo, Z. Li, Y. Zhu and G. Zhang, Chem. Eng. J., 2021, 414, 128818.
- Y. Li, J. Li, Q. Qian, X. Jin, Y. Liu, Z. Li, Y. Zhu, Y. Guo and G. Zhang, *Small*, 2021, 17, 2008148.
- F. He, N. Xia, Y. Zheng, Y. Zhang, H. Fan, D. Ma, Q. Liu and X. Hu, ACS Appl. Mater. Interfaces, 2021, 13, 8488–8496.
- 12. H. Zhang, Z. Feng, L. Wang, D. Li and P. Xing, *Nanotechnol.*, 2020, **31**, 365701.
- Q. Q. Yapeng Li; Jihua Zhang; Yi Liu, Ziyun Li, Yin Zhu, Genqiang Zhang, *Sci. Adv.*, 2020, 6, 4197.
- Y. Xie, Q. Qian, J. Zhang, J. Li, Y. Li, X. Jin, Y. Zhu, Y. Liu, Z. Li, A. El-Harairy, C. Xiao and G. Zhang, *Angew Chem Int Ed Engl*, 2020, 60, 5984-5993.
- Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun and L. Jiang, *Adv. Mater.*, 2015, 27, 2361-2366.