Supporting Information

Three-Dimensional Porous Platinum-Tellurium-Rhodium Surface/Interface Achieve Remarkable Operating Fuel Cell Catalysis

Lingzheng Bu,^{a,*} Fandi Ning,^b Jing Zhou,^c Changhong Zhan,^a Mingzi Sun,^d Leigang Li,^a Yiming Zhu,^e Zhiwei Hu,^f Qi Shao,^e Xiaochun Zhou,^b Bolong Huang,^{d,*} and Xiaoqing Huang^{a,*}

Figure S1. (a-c) HAADF-STEM images, (d) diameter distribution, (e) length distribution, and (f) SEM-EDS of Pt₃Te₃Rh₂ NRs.

Figure S2. (a) TEM image, (b) PXRD pattern, (c) crystal structure, (d) enlarged TEM image and (e) corresponding rainbow-colored TEM image, (f) HRTEM image and related FFT pattern, (g) HAADF-STEM image and (h) corresponding line-scans, (i) HAADF-STEM image and (j) corresponding rainbow-colored HAADF-STEM image, and (k) HAADF-STEM-EDS elemental mappings of Pt₃Te₃Rh₂ NRs. The equalized rainbow colors ranging from red (high) to green (low) in (e) and the equalized rainbow colors ranging from blue (high) to yellow (low) in (j) obviously display the thickness difference of Pt₃Te₃Rh₂ NRs. The white and yellow dotted lines in (f) clearly reveal the presence of uneven surface and partially amorphized area for Pt₃Te₃Rh₂ NRs, respectively.

Figure S3. TEM images of (a) $Pt_3Te_3Rh_1$ NRs and (b) $Pt_3Te_3Rh_3$ NRs. (c) SEM-EDS and (d) PXRD patterns of $Pt_3Te_3Rh_1$ NRs and $Pt_3Te_3Rh_3$ NRs.

Figure S4. (a-c) HAADF-STEM images, (d) diameter distribution, (e) length distribution, and (f) TEM-EDS of PtTe NRs.

Figure S5. (a) PXRD pattern, (b) crystal structure, (c) HRTEM image and related FFT pattern, (d) HAADF-STEM image and corresponding line-scans, and (e) HAADF-STEM-EDS elemental mappings of PtTe NRs. The white dotted lines in (c) clearly reveal the presence of irregular facet boundaries.

Figure S6. (a, b) TEM images and (c) SEM-EDS of initial $Pt_3Te_3Rh_2$ NRs/C. (d, e) TEM images and (f) SEM-EDS of $Pt_3Te_3Rh_2$ NRs/C after HAc washing. (g, h) TEM images and (i) SEM-EDS of $Pt_3Te_3Rh_2$ NRs/C after HAc washing and further annealing at 200 °C in air atmosphere for 1 h.

Figure S7. HAADF-STEM image of porous Pt₆₁Te₈Rh₃₁ NRs/C.

Figure S8. (a) TEM image and (b) SEM-EDS of porous $Pt_{69}Te_7Rh_{24}$ NRs/C. (c) TEM image and (d) SEM-EDS of porous $Pt_{62}Te_{15}Rh_{23}$ NRs/C.

Figure S9. (a, b) TEM images and (c) SEM-EDS of initial PtTe NRs/C. (d, e) TEM images and (f) SEM-EDS of PtTe NRs/C after HAc washing. (g, h) TEM images and (i) SEM-EDS of PtTe NRs/C after HAc washing and further annealing at 200 °C in air atmosphere for 1 h.

Figure S10. (a, b) TEM images and (c) SEM-EDS of PtTe NRs/C after HAc washing and further annealing at 200 °C in air atmosphere for 1 h and then electrochemical sweeping in 0.1 M HClO₄ solution for 1000 CV cycles (i.e. porous $Pt_{95}Te_5$ NRs/C). (d, e) TEM images and (f) SEM-EDS of porous $Pt_{95}Te_5$ NRs/C after 30000 potential cycles between 0.6 V and 1.1 V vs. RHE.

Figure S11. TEM images of commercial Pt/C (a, b) before and (c, d) after 30000 potential cycles between 0.6 and 1.1 V *vs.* RHE.

Figure S12. CVs of different catalysts in 0.1 M HClO₄ solutions. The colored symbols of ①, ②, ③, ④, and ⑤ represent commercial Pt/C, porous $Pt_{95}Te_5$ NRs/C, porous $Pt_{69}Te_7Rh_{24}$ NRs/C, porous $Pt_{61}Te_8Rh_{31}$ NRs/C, and porous $Pt_{62}Te_{15}Rh_{23}$ NRs/C, respectively.

Figure S13. (a) CVs and (b) ORR polarization curves of commercial Pt/C before and after different potential cycles between 0.6 and 1.1 V *vs*. RHE. (c) CVs and (d) ORR polarization curves of porous $Pt_{95}Te_5$ NRs/C before and after different potential cycles between 0.6 and 1.1 V *vs*. RHE. (e) CVs of porous $Pt_{61}Te_8Rh_{31}$ NRs/C before and after different potential cycles between 0.6 and 1.1 V *vs*. RHE.

Figure S14. (a) CVs and (b) ORR polarization curves of porous $Pt_{69}Te_7Rh_{24}$ NRs/C before and after different potential cycles between 0.6 and 1.1 V vs. RHE. (c) CVs and (d) ORR polarization curves of porous $Pt_{62}Te_{15}Rh_{23}$ NRs/C before and after different potential cycles between 0.6 and 1.1 V vs. RHE.

Figure S15. (a, b) HAADF-STEM images, (c) TEM-EDS, (d) TEM image, and (e, f) HRTEM images of porous $Pt_{61}Te_8Rh_{31}$ NRs/C after 30000 potential cycles between 0.6 and 1.1 V vs. RHE. The white and yellow dotted lines in (e, f) clearly reveal the presence of irregular facet boundaries and partially amorphized areas, respectively, further demonstrating the structure stability of porous $Pt_{61}Te_8Rh_{31}$ NRs/C in ORR medium. (g) Energy survey, (h) Pt 4f, (i) Te 3d, and (j) Rh 3d XPS spectra of porous $Pt_{61}Te_8Rh_{31}$ NRs/C after 30000 potential cycles between 0.6 and 1.1 V vs. RHE. The surface molar ratio of Pt/Te/Rh was 80.4/5.9/13.7 for porous $Pt_{61}Te_8Rh_{31}$ NRs/C after 30000 potential cycles between 0.6 and 1.1 V vs. RHE, as determined by the XPS.

Figure S16. PEMFC polarization curves and power density curves of different cathodic catalysts in (a) H_2/air and (b) H_2/O_2 media at 150 kPa BP. (c) Histogram of maximum power densities for different catalysts in H_2/air and H_2/O_2 media at 150 kPa BP. The colored symbols of (1) and (4) represent commercial Pt/C and porous $Pt_{61}Te_8Rh_{31}$ NRs/C, respectively.

Figure S17. PEMFC polarization curves and power density curves of porous $Pt_{61}Te_8Rh_{31}$ NRs/C in (a) H₂/air and (c) H₂/O₂ media at 50/100/150 kPa BP. Histogram of maximum power densities for porous $Pt_{61}Te_8Rh_{31}$ NRs/C in (b) H₂/air and (d) H₂/O₂ media at 50/100/150 kPa BP.

Figure S18. (a) The AST and (b) enlarged initial 60 s AST characterizations by square wave between 0.6 and 0.95 V at 3 s at each potential for 30000 cycles. The time-dependent current density curves of (c) commercial Pt/C and (d) porous $Pt_{61}Te_8Rh_{31}$ NRs/C during the AST for 30000 cycles. The AST was run at 200/200 mL min⁻¹ H₂/N₂, 80/80 °C, 100/100% RH and 100/100 kPa BP in the order of anode/cathode.

Figure S19. PEMFC polarization curves and power density curves of different cathodic catalysts before and after 30000 cycles at 100/150 kPa BP in (a, c) H_2/air and (b, d) H_2/O_2 media. The colored symbols of ① and ④ represent commercial Pt/C and porous $Pt_{61}Te_8Rh_{31}$ NRs/C, respectively.

Figure S20. (a) Energy survey, (b) Pt 4f, (c) Te 3d, and (d) Rh 3d XPS spectra of initial $Pt_3Te_3Rh_2$ NRs/C. The surface molar ratio of Pt/Te/Rh was 36.2/36.1/27.7 for initial $Pt_3Te_3Rh_2$ NRs/C, as determined by the XPS.

Figure S21. (a) Pt L₃-edge XANES profiles of Pt foil, PtTe NRs/C, and PtTeRh NRs/C with different compositions. The inset in (a) is the magnified near-edge structures of different catalysts. (b) Pt L₃-edge EXAFS spectra in R space for Pt foil, PtTe NRs/C, and PtTeRh NRs/C with different compositions. The dotted lines indicate the experiment data, and the solid lines represent the simulation data.

Figure S22. Rh K-edge EXAFS spectra in R space for Rh foil, Rh_2O_3 powder, and PtTeRh NRs/C with different compositions. The dotted lines indicate the experiment data, and the solid lines represent the simulation data.

Figure S23. Wavelet transform analyses of the Pt L₃-edge EXAFS data for (a) Pt foil, (b) PtO₂, (c) PtTe NRs/C, (d) Pt₃Te₃Rh₁ NRs/C, (e) Pt₃Te₃Rh₂ NRs/C, and (f) Pt₃Te₃Rh₃ NRs/C.

Figure S24. Wavelet transform analyses of the Rh K-edge EXAFS data for (a) Rh foil, (b) Rh₂O₃ powder, (c) Pt₃Te₃Rh₂ NRs/C, and (f) porous Pt₆₁Te₈Rh₃₁ NRs/C.

Figure S25. Calibration of SCE and conversion to RHE. The reference electrode calibration of SCE was performed in a standard three-electrode system with polished Pt plates $(1 \times 1 \text{ cm}^2)$ as the working and counter electrodes, and the SCE as the reference electrode. The electrolyte was pre-purged and saturated with high purity H₂. Linear scanning voltammetry (LSV) was then run at a scan rate of 0.1 mV s⁻¹, and the potential at which the current crossed zero was taken to be the thermodynamic potential (*vs.* SCE) for the hydrogen electrode reaction. In the 0.1 M HClO₄ solution, the zero current point was at -0.309 V *vs.* SCE, so E (RHE) = E (SCE) + 0.309 V.

Table S1. ECSAs and ORR activities of different catalysts at 0.90 V vs. RHE. ORR measurements were performed at room temperature in O_2 -saturated HClO₄ solution at a sweep rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm. The activities were calculated based on several parallel measurements after Ohmic drop correction.

Catalyst	Loading of metal Pt (µg)	ECSA (m ² g ⁻¹)	Mass activity at RT (A mg ⁻¹ Pt)	Specific activity at RT (mA cm ⁻²)
commercial Pt/C	2.0	68.9	0.17	0.25
porous Pt ₉₅ Te ₅ NRs/C	2.0	52.7	1.41	2.68
porous Pt ₆₉ Te ₇ Rh ₂₄ NRs/C	2.0	53.5	2.05	3.83
porous Pt ₆₁ Te ₈ Rh ₃₁ NRs/C	2.0	54.3	2.40	4.42
porous Pt ₆₂ Te ₁₅ Rh ₂₃ NRs/C	2.0	54.1	0.42	0.78

Table S2. Acidic ORR activities of porous $Pt_{61}Te_8Rh_{31}$ NRs/C and state-of-the-art Pt-based nanocatalysts from recent 5 years-published works at 0.90 V/0.95 V vs. RHE. The ORR measurements were performed at room temperature in O₂-saturated HClO₄ solution at a sweep rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Catalyst	$J_{\rm m}$ (A mg ⁻¹ _{Pt})	J _s (mA cm ⁻²)	Ref.	
Demons D4 To Dh ND-/C	2.40/1.22 @ 0.90	4.42/2.24 @ 0.90		
Porous Pt ₆₁ 1 e ₈ Kn ₃₁ NKs/C	V/0.95 V VS. KHE	V/0.95 V VS. RHE	This Work	
Porous Pt ₆₁ Te ₈ Rh ₃₁ NRs/C-ADT	V/0.95 V vs. RHE	5.99/1.00 @ 0.90 V/0.95 V vs. RHE		
PtCu Octopod Nanoframes/C	3.26	5.98	Adv. Mater. 2017, 29, 1601687	
PtCuBiMn Nanosheets/C	0.69	2.41	Adv. Mater. 2017, 29, 1604994	
Pt Nanowires/C	0.71	2.20	Adv. Mator 2017 20 1702460	
Pt _{1.3} Ni Nanowires/C	1.52	3.58	Aav. Maler. 2017, 29, 1703400	
Rh-Doped Pt Nanowires/C	1.41	1.63	J. Am. Chem. Soc. 2017, 139, 8152	
PtPb _{1.12} Ni _{0.14} Octahedra/C	1.92	5.16	J. Am. Chem. Soc. 2017, 139, 9576	
PtCo@HGS	0.97	0.92	Adv. Energy Mater. 2017, 7, 1700835	
Pt-Ni Nanocage/C	0.50	0.70	Appl. Catal. B: Environ. 2017, 203, 927	
PtCuPd Cubic Nanoskeletons/C	1.04	2.41	Nano Energy 2017 , <i>39</i> , 532	
PtCo Excavated Octahedra/C	~ 0.35	1.85	News Energy 2017, 20, 592	
Pt ₂ Co Excavated Octahedra/C	~ 0.32	2.41	Nano Energy 2017, 39, 582	
PtCu Dendrites@PtCuNi Frames/C	2.48	7.34	ACS Nano 2017, 11, 10844	
Porous PtAgBiCo Nanoplates/C	0.81	1.95	Chem. Sci. 2017, 8, 4292	
PtNi Nanoporous Nanowires/C	0.33	0.99	J. Mater. Chem. A 2017, 5, 23651	
RD-CuPt Nanoframes/C	0.92	1.70		
Spiny RD-CuPt Nanoframes/C	0.86	2.19	Chem. Mater. 2017, 29, 5681	
B-Doped Pt ₃ Ni Nanoparticles/C	0.60	1.35		
Pt ₃ Ni Nanoparticles/C	0.35	1.00	<i>Electrochim. Acta</i> 2017 , <i>246</i> , 242	
Pt Nanoparticles/C	0.20	0.23	- 242	
L1 ₂ -Pt ₃ Fe Nanoparticles/C	0.45	1.36	ACS Appl. Mater. Interfaces	
Pt-Fe Nanoparticles/C	0.19	0.51	2017 , <i>9</i> , 31806	
PtCo Concave Nanocubes/C	0.24	0.44	ACS Appl. Mater. Interfaces 2017, 9, 36164	
PtCo+Co@Graphene+Co-N _x -C _y	8.64/2.68	7.86/2.44		
Pt ₃ Co+Co@Graphene+Co/Zn-N _x -C _y	12.36/3.95	10.66/3.41	Science 2018, 362, 1276	
Pt ₃ Co/ZC	2.98/0.91	NA		
L10-FePt/Pt Nanoparticles/C	0.70	NA	J. Am. Chem. Soc. 2018, 140, 2926	
Pt Nanowires/C	0.88	1.23		
Pt ₃ Ni Nanowires/C	2.10	2.34	J. Am. Chem. Soc. 2018 , 140, 16159	
Pt ₃ NiRh _{0.26} Nanowires/C	2.88	2.71		
Pt-Skin Pt ₃ Fe z-Nanowires/C	2.11	4.34	<u> </u>	
Pt ₃ Fe z-Nanowires/C	1.11	2.06	Aav. Mater. 2018, 30, 1705515	
Rhombic Dodecahedral PtCuCo Nanoskeletons/C	1.56	2.69	<i>Adv. Funct. Mater.</i> 2018 , <i>28</i> , 1706440	
Ga-Doped PtNi Octahedra/C	1.24	2.53	Nano Lett. 2018, 18, 2450	

Pt Nanoparticles/40Co-NC-900	~ 0.25	1.15	Nano Lett. 2018, 18, 4163
Ultrathin Pt Nanoplates/C	1.62	5.30	Chem. Sci. 2018, 9, 398
Pt ₃ Ni(Pt-skin)/Pd ₂₀ Nanoparticles/C	14.20	16.70	Chem. Sci. 2018, 9, 6134
PtCo/Co@NHPCC	0.57	NA	Appl. Catal. B. 2018, 225, 496
Pt-o-Cu ₃ Pt Nanoparticles/C	0.64	1.73	ACS Appl. Mater. Interfaces
Pt-d-Cu ₃ Pt Nanoparticles/C	0.57	1.32	2018 , <i>10</i> , 38015
Rhombic Dodecahedral PtCuNi Nanoskeletons/C	0.86	1.65	J. Power Sources 2018, 406, 42
PtCu Dodecahedral Nanoskeletons/C	0.79	2.03	Chemcatchem 2018, 10, 931
Pt-Ni Bunched Nanocages/C	3.52	5.16	
Pt-Ni Bunched Nanospheres/C	1.89	4.34	Science 2019, 366, 850
Pt Nanowires/C	1.02	2.20	
L1 ₀ -CoPt/Pt Nanoparticles/C	2.26	8.26	Louis 2019 3 124
Etched A1-CoPt Nanoparticles/C	0.15	0.70	<i>Joure</i> 2019 , <i>5</i> , 124
SnO _x /Pt-Cu-Ni (5) Nanoparticles/C	NA	1.60	J. Am. Chem. Soc. 2019, 141, 9463
Pt _{4.31} Ga Nanowires/C	1.89	3.28	J. Am. Chem. Soc. 2019, 141, 18083
C-L10-PtNi0.8Co0.2 Nanoparticles	2.28	4.38	Adv. Energy Mater. 2019, 9, 1803771
H-PtCo@Pt1N-C	1.20	2.39	Adv. Funct. Mater. 2019, 29, 1807340
Ordered PtCo ₃ H600	0.72	NA	Adv. Funct. Mater. 2019, 29, 1902987
L10-W-PtCo Nanoparticles/C	2.21	3.60	Angew. Chem. Int. Ed. 2019,
L10-PtCo Nanoparticles/C	1.17	1.92	58, 15471
Pt Nanoplates/C	3.43	5.76	Nano Latt 2010 10 2720
4.6%Pd-Doped Pt Nanoplates/C	~ 3.79	6.01	Nano Lett. 2019, 19, 5750
Pt/Se Nanoparticles/C	0.75	0.32	Nano Lett. 2019, 19, 4997
Pt ₂ Ni ₂ Nanoparticles/C	0.89	2.31	
Pt ₂ In _{0.2} Ni _{1.8} Nanoparticles/C	0.76	1.96	ACS Catal. 2019, 9, 11431
Pt ₂ In ₁ Ni ₁ Nanoparticles/C	0.27	0.60	
5 nm-Pt Nanoparticles/C	0.09	0.18	Cham Matar 2010 21 9205
6.2 nm-Pt ₂ P Nanoparticles/C	0.92	1.86	<i>Chem. Maler.</i> 2019 , <i>51</i> , 8205
Pd@PtNi Nanowires/C	1.75	3.18	Small 2010 15 1000299
PdPtNi Nanoparticles/C	0.71	1.25	
PtNi Nanoparticles@C-2 Composites	0.84	1.54	ACS Appl. Energy Mater. 2019, 2, 2769
Pt ₃ Co Nanoparticles/C	~ 1.13	~ 2.25	ACS Appl. Mater. Interfaces 2019 , <i>11</i> , 26789
Pt _{0.7} Fe _{0.3} Nanoparticles/C	0.17	0.25	
Pt _{0.7} Co _{0.3} Nanoparticles/C	0.18	0.26	ACS Sustainable Chem. Eng. 2019 7 6541
Pt _{0.7} Ni _{0.3} Nanoparticles/C	0.28	0.37	2019, 7, 0541
Pt _{0.78} Ni _{0.22} Rough Nanowires/C	1.07	1.02	N. D. 2010 10 1701
Pt Rough Nanowires/C	0.67	0.62	Nano Res. 2019, 12, 1721
37 wt%-FePt Nanoparticles/rGO	1.96	NA	J. Am. Chem. Soc. 2020, 142, 14190
V _{Cu} -PtCu Nanowire Networks	3.15	4.97	Angew. Chem. Int. Ed. 2020 , 59, 13778
L1 ₀ -PtZn Nanoparticles/C	1.02	1.68	Adv. Energy Mater. 2020 , 10, 2000179
Pt-Co Concave Nanocubes@C	0.26	2.34	ACS Appl. Energy Mater. 2020, 3, 5077
Ordered PtCu Nanoskeletons/C	2.47	4.69	Nano Lett. 2020, 20, 7413

PtNi Nanoparticles/C-3.28	0.52	0.82		
Hollow PtNi Nanoparticles/C-2.60	0.75	1.16	ACS Appl. Mater. Interfaces	
Hollow PtNi Nanoparticles/C-2.30	0.85	1.49	2020 , <i>12</i> , 16286	
Hollow PtNi Nanoparticles/C-2.05	0.62	1.19		
Pt _{ML} /Pd _{NS} /WNi/C	2.96	NA	ACE Catal 2020 10 4200	
Pt _{ML} /Pd _{NS} /C	2.53	NA	- ACS Catal. 2020, 10, 4290	
Dealloyed 5.1 nm PtCo ₃ Nanoparticles/C	NA	1.51	ACS Catal. 2020, 10, 4361	
Int-PtNiN Nanoparticles/KB	1.83	2.92		
D-PtNiN Nanoparticles/KB	0.58	1.25		
D-PtNi Nanoparticles/KB	0.46	1.10	ACS Catal. 2020, 10, 10637	
46.4% Commercial Pt/C TKK	0.18	0.38		
Pd@Pt Nanoparticles/C-As- Synthesized	0.99/0.10	NA		
Pd@Pt Nanoparticles/C-As- Synthesized + Melamine	1.95/0.37	NA	ACS Catal. 2020 , 10, 14567	
Pd@Pt Nanoparticles/C-After HAP	1.46/0.14	NA		
Pd@Pt Nanoparticles/C-After HAP + Melamine	3.63/0.54	NA		
Highly Distorted Pt Nanorods/C	2.77	4.70		
Weakly Distorted Pt Nanorods/C	0.49	1.02	CCS Chem. 2020 , 2, 401	
20% Commercial Pt/C JM	0.17	0.25	_	
Pt/PtP2 Nanoparticles@NPC	0.72	0.51		
PtP ₂ Nanoparticles@NPC	0.47	0.44	J. Mater. Chem. A 2020, 8, 20463	
Pt Nanoparticles@NPC	0.15	0.18	20405	
PtCo ERD Nanocrystals/C	0.94	2.68		
PtCo RD Nanocrystals/C	0.54	1.43	- Nanoscale Adv. 2020, 2, 4881	
N-Doped Pt Nanoparticles/C	0.102	0.148		
N-Doped Pt Nanoparticles/C-H ₂	0.096	0.146	J. Catal. 2020 , 382, 247	
60% Commercial Pt/C JM	0.095	0.132	_	
Pt Nanoparticles/p-BN	1.06	1.24	Chem. Eng. J. 2020 , 399,	
20% Commercial Pt/C HPT020	0.17	0.27	125827	
PtFe/Pt-i-Nanoparticles/C	~ 2.20	~ 1.80		
PtCo/Pt-i-Nanoparticles/C	~ 2.50	~ 2.75	_	
PtNi/Pt-i-Nanoparticles/C	~ 2.40	~ 3.30	Science 2021 , 374, 459	
PtCu ₃ /Pt-i-Nanoparticles/C	4.18	3.80	_	
PtZn/Pt-i-Nanoparticles/C	~ 1.90	~ 1.20	_	
Pt-CoO 1 Network	4.60	4.57/0.52		
Pt-CoO 2 Network	5.19	4.52/0.51	_	
Pt-CoO 3 Network	5.74	3.77/0.49	Nat. Mater. 2021, 20, 208	
Pt-CoO Heat 1 Network	6.75	4.59/0.59	-	
Pt-CoO Heat 2 Network	8.37	5.38/0.62	_	
L12-Pt3Co Nanoparticles/FeN4-C	1.34	3.98		
Pt Nanoparticles/FeN ₄ -C	0.57	0.79	<i>Energy Environ. Sci.</i> 2021 , <i>14</i> ,	
Commercial Pt/C TKK-TEC10V20E	0.24	0.44	4948	
PdPt Tesseracts/C	1.86	2.09	J. Am. Chem. Soc. 2021 , 143, 496	
Coplanar Pt/C NMs	1.01	NA	Angew. Chem. Int. Ed. 2021, 60, 6533	
H-Pt Superstructures/C	2.24	4.52	Nano Lett 2021 21 5075	
M-Pt Superstructures/C	1.92	NA	<i>Ivano Lett.</i> 2021 , <i>21</i> , 50/5	

L-Pt Superstructures/C	0.77	NA		
Ru-Pt ₃ Co Octahedra/C	1.05	2.32		
Pt ₃ Co Octahedra/C	1.07	2.16	Nano Lett. 2021, 21, 6625	
20% Commercial Pt/C JM	0.14	0.21		
1.1 nm-Pt Nanowires/C	1.00	1.20		
1.5 nm-Pt Nanowires/C	0.77	0.95	Name Latt 2021 21 0254	
2.4 nm-Pt Nanowires/C	0.51	0.68	Nuno Lett. 2021, 21, 9554	
20% Commercial Pt/C HISPEC3000	0.17	0.26		
Pt _{NS} -PtNi ₃ Nanoparticles/C	4.40	9.08		
Pt _{NS} -Pt Nanoparticles/C	1.00	1.81	ACS Catal. 2021, 11, 355	
20% Commercial Pt/C JM	0.14	0.20		
Pt ₁ @Pt/N-Doped Active Carbon	0.24	0.62		
Pt ₁ @Pt/Active Carbon	0.08	0.42	ACS Catal. 2021, 11, 466	
20% Commercial Pt/C TKK	0.075	0.08		
PtFe@NC/SWCNHs (H ₂ -9 h)	1.53	3.61	ACS Catal 2021 11 0255	
Pt-Fe@NC/SWCNHs	0.75	1.92	ACS Catal. 2021, 11, 9555	
Pt@Co SAs-ZIF-NC	0.48	0.64	Name Energy 2021 88 106221	
20% Commercial Pt/C JM	0.16	0.21	Nuno Energy 2021, 88, 106221	
PtCoNi Nanoparticles@NCNTs	3.46	4.61	Sci. Bull. 2021, 66, 2207	
h-PtNiCo Branched Nanocages/C	1.03	2.75	J. Mater. Chem. A 2021, 9,	
h-PtNi Branched Nanocages/C	0.37	1.39	23444	
Pt ₃ Co@Pt Nanoparticles/C	0.71	2.75	ChemCatChem 2021, 13, 1587	
700-Pt ₁ Co ₁ -IMC@Pt/C-2.5	0.53	1.11	<i>Energy Environ. Sci.</i> 2022 , <i>15</i> , 278	
PtCo Nanoparticles@NGNS	1.29	1.70	Angew. Chem. Int. Ed. 2022,	
20% Commercial Pt/C	0.15	0.20	<i>61</i> , e202115835	
PtCu Nested Skeleton Cubes/C	3.86	7.40		
PtCu A-Nested Skeleton Cubes/C	5.13	7.20	1 d. Soi 2022 0 2104027	
PtCu Octahedral Stars/C	0.59	1.70	<i>Aav. Sci.</i> 2022 , <i>9</i> , 2104927	
PtCu A-Octahedral Stars/C	1.02	2.14		
Pt-Skin Pt ₇₈ Zn ₂₂ Nanocubes/KB	1.18	3.64	Adv. Sci. 2022, 9, 2200147	
Pd@Pt _{3L} Nanoparticles/C	0.58	0.71	Nano Res. 2022, 15, 1892	
PtFe (0.9) Nanoparticles/C	0.69	0.71		
PtFe (5) Nanoparticles/C	0.21	0.88	<i>Chem. Eng. J.</i> 2022 , <i>428</i> , 131569	
20% Commercial Pt/C JM	0.30	0.26	131309	

 $J_{\rm m}$: Mass Activity $J_{\rm s}$: Specific Activity NA: not available

Table S3. Peak power density and lifetime of porous $Pt_{61}Te_8Rh_{31}$ NRs/C and commercial Pt/C for MEA catalysis under the self-breathing H₂-air fuel cell conditions.

Catalyst	Loading of metal Pt (mg _{Pt} cm ⁻²)	Peak power density (W g ⁻¹ Pt)	Lifetime Peak power density loss
commercial Pt/C	0.30	446.7	after 205 h, 89.6% loss
porous Pt ₆₁ Te ₈ Rh ₃₁ NRs/C	0.17	1023.8	after 240 h, 35.7% loss

Table S4. MEA performances of porous $Pt_{61}Te_8Rh_{31}$ NRs/C and state-of-the-art Pt-based nanocatalysts as the cathodic catalysts from other published works in self-breathing PEMFC medium (room temperature and atmospheric pressure).

Catalyst (Anode Side Cathode Side)	Peak Power Density (mW cm ⁻²)	Open Circuit Voltage in single cell (V)	Anodic/Cathodic Pt Loading Amounts (mg _{Pt} cm ⁻²)	Ref.
70% Commercial Pt/C (20% Nafion) # 11.2% Porous Pt ₆₁ Te ₈ Rh ₃₁ NRs/C (40% Nafion)	174.05	0.921	0.50/0.17	This Work
70% Commercial Pt/C (20% Nafion)	134.00	0.917	0.50/0.30	
30% Commercial PtRu/C 30% Commercial Pt/C with Flexible Porous CNT Membrane	145.2	~ 0.80	0.50/0.50	ACS Nano 2017 , 11, 5982
Pt Nanoparticles/Graphene Nanosheets I 70% Pt/C with Cone-Shaped Nafion Array-1.3 μm	139	~ 0.80	0.018/0.40	J. Mater. Chem. A 2020 , 8, 5489
70% Commercial Pt/C II 70% Commercial Pt/C with New GDL/Porous CNT Membrane	230	~ 0.95	0.50/0.50	J. Mater. Chem.
70% Commercial Pt/C 70% Commercial Pt/C with Commercial GDL/Porous CNT Membrane	145	~ 0.79	. 0.50/0.50	A 2020 , <i>8</i> , 5986
40% Commercial Pt/C 40% Commercial Pt/C with Circular Cathodic Opening Design	~ 275	~ 0.90	0.40/0.40	Int. J. Hydrogen Energy 2009 , 34,
40% Commercial Pt/C 40% Commercial Pt/C with Parallel Cathodic Opening Design	~ 210	~ 0.90		7761
Si Wafer-500 µm Pt Nanoparticles/Carbon Paper with 350 nm-sized Porous Si Surface	7.5	~ 0.90	0/0.38	Microsyst. Technol. 2017 .
Si Wafer-500 µm Pt Nanoparticles/Carbon Paper with 5 µm-sized Porous Si Surface	5.5	~ 0.97		23, 3257
60% Commercial Pt/C 60% Commercial Pt/C	~ 90	~ 0.92	0.10/0.15	Science 2019 ,
60% Commercial Pt/C Pt _{1.5} Ni- BNCs/C	~ 110	~ 1.10		366, 850

Catalyst		commercial Pt/C	porous Pt ₆₁ Te ₈ Rh ₃₁ NRs/C
Loading of metal Pt (mg _{Pt} cm ⁻²)		0.10	0.10
Peak nower density	50 kPa BP	/	682.8
in H ₂ /air medium	100 kPa BP	505.6	727.8
(mw cm ⁻²)	150 kPa BP	555.4	743.4
Dools now on donsity	50 kPa BP	/	1634.2
in H_2/O_2 medium	100 kPa BP	1017.5	1851.0
(mw cm ⁻)	150 kPa BP	1338.8	1976.1
Peak power density loss in H ₂ /air medium	150 kPa BP	20.1%	13.2%
Peak power density loss in H ₂ /O ₂ medium	eak power density loss in H ₂ /O ₂ medium		14.2%

Table S5. Peak power density and lifetime of porous $Pt_{61}Te_8Rh_{31}$ NRs/C and commercial Pt/C for MEA catalysis under the operating H₂-air/O₂ fuel cell conditions.

Table S6. MEA performances of porous $Pt_{61}Te_8Rh_{31}$ NRs/C and state-of-the-art Pt-based nanocatalysts as the cathodic catalysts from recent 5 years-published works in H₂-O₂ PEMFC medium (specific pressure, 80 °C and 100% relative humidity).

Catalyst (Anode Side Cathode Side)	Peak Power Density (mW cm ⁻²)	Anodic/Cathodic Pt Loading Amounts (mg _{Pe} cm ⁻²)	Ref.	
20% Commercial Pt/C 11.2% Porous Pt ₆₁ Te ₈ Rh ₃₁ NRs/C	1976.1	0.10/0.10	This West	
20% Commercial Pt/C 20% Commercial Pt/C	1338.8	0.10/0.10	- I his Work	
Pt-Based Catalyst Pt-Based Catalyst	> 1000	0.025/0.10	2025 U.S. DOE Target	
Pt-Based Catalyst Pt-Ni Nanocages/C	1280	0.20/0.20	Appl. Catal. B: Environ. 2017,	
Pt-Based Catalyst Pt/C	1210	0.30/0.30	203, 927	
20% Commercial Pt/C PtCo + Co@Graphene + Co-N _x -C _y	1050	0.35/0.033	_	
20% Commercial Pt/C Pt ₃ Co + Co@Graphene + Co/Zn-N _x -C _y	1420	0.35/0.035	Science 2018 , 362, 1276	
20% Commercial Pt/C Pt ₃ Co/ZC	740	0.35/0.043		
46% Commercial Pt/C Ga-PtNi Octahedra/C	~ 540			
46% Commercial Pt/C PtNi Octahedra/C	~ 490	0.15/0.15	Nano Lett. 2018, 18, 2450	
46% Commercial Pt/C 46% Commercial Pt/C	~ 420			
20% Commercial Pt/C L1 ₀ -W-PtCo/C	NA	0.10/0.11	Angew. Chem. Int. Ed. 2019, 58, 15471	
20% Commercial Pt/C Pt _{4.31} Ga Nanowires/C	~ 880	0.15/0.12	J. Am. Chem. Soc. 2019, 141,	
20% Commercial Pt/C 20% Commercial Pt/C	~ 720	0.15/0.14	18083	
NA L1 ₀ -CoPt/Pt Nanoparticles/C	NA	NA/0.105	Joule 2019, 3, 124	
Pt/C oh-PtNi(Mo)/C	NA	0.10/0.10	Nano Latt 2010 10 6976	
Pt/C d-PtNi/C	NA	0.10/0.10	Nuno Leu. 2019, 19, 0870	
Commercial PtRu/C PtCo@CNTs-MOF	1020	0.04/0.06	J. Mater. Chem. A 2019, 7, 19786	
20% Commercial Pt/C L10-PtZn/Pt-C	2000	0.10/0.104	Adv. Energy Mater. 2020 , 10.	
20% Commercial Pt/C 20% Commercial Pt/C	~ 1200	0.10/0.16	2000179	
70% Commercial Pt/C 70% Commercial Pt/C with New GDL/Porous CNT Membrane	840	0.50/0.50	J. Mater. Chem. A 2020 , 8,	
70% Commercial Pt/C 70% Commercial Pt/C with Commercial GDL/Porous CNT Membrane	634	0.50/0.50	5986	
20% Commercial Pt/C PtFe/Pt-i-NPs/C	NA			
20% Commercial Pt/C PtCo/Pt-i-NPs/C	NA	0.08/0.02		
20% Commercial Pt/C PtNi/Pt-i-NPs/C	NA	0.08/0.02	Science 2021, 374, 459	
20% Commercial Pt/C PtCu ₃ /Pt-i-NPs/C	NA		_	
20% Commercial Pt/C 20% Commercial Pt/C	NA	0.08/0.20		
Commercial Pt/C L1 ₂ -Pt ₃ Co/FeN ₄ -C	NA	0.10/0.10	Energy Environ. Sci. 2021, 14,	
Commercial Pt/C Pt/FeN ₄ -C	NA	0.10/0.10	4948	
60% Commercial Pt/C Sub-Pt ₃ Co-MC	~ 1750	0.20/0.20	Proc. Natl. Acad. Sci. U.S.A.	
60% Commercial Pt/C 60% Commercial	~ 1100	0.20/0.20	2021 , <i>118</i> , e2104026118	

Pt/C			
20% Commercial Pt/C Pt ₁ @Pt/NBP	844	0.10/0.045	
20% Commercial Pt/C 20% Commercial Pt/C	1140	0.10/0.13	<i>ACS Catal.</i> 2021 , <i>11</i> , 466
40% Commercial Pt/C Ru-Pt ₃ Co Octahedra/C	1140		
40% Commercial Pt/C Pt ₃ Co Octahedra/C	1164	0.30/0.05	Nano Lett. 2021, 21, 6625
40% Commercial Pt/C 40% Commercial Pt/C	1033		
Pt-Based Catalyst PtCoNi@NCNTs	700	0.21/0.07	S.: D. U 2021 66 2207
Pt-Based Catalyst Commercial Pt/C	594	0.21/0.40	- Sci. Bull. 2021, 00, 2207
46.4% Commercial Pt/C Pt-Fe-N-C	1080	0.10/0.015	
46.4% Commercial Pt/C Pt-N-C	320	0.10/0.10	Nat. Catal. 2022, 5, 503
Commercial Pt/C Commercial Pt/C-46.4%	1370	0.10/0.10	
40% Commercial Pt/C Pt ₁ Co ₁ -IMC@Pt/C	2300		Energy Environ Sci 2022 15
40% Commercial Pt/C 40% Commercial Pt/C	1990	0.10/0.20	278
20% Commercial Pt/C PtCo@NGNS	860	0.10/0.10	Angew. Chem. Int. Ed. 2022 , 61, e202115835
NA Pt ₇₈ Zn ₂₂ Nanocubes/KB	1449.5	NA /0.15	1 de Sai 2022 0 2200147
NA 20% Commercial Pt/C	1149	NA/0.13	Adv. Sci. 2022, 9, 2200147
30% Commercial Pt/C Pd@Pt _{3L} Nanoparticles/C	1261	0.099/0.152	Nano Pas 2022 15 1802
30% Commercial Pt/C 30% Commercial Pt/C	~ 1200	0.102/0.298	Ivano Res. 2022, 15, 1892

The specific pressure for fuel cell measurements is as shown in corresponding references.

NA: not available

Sample	Bond type	CN	R (Å)	σ ² (10 ⁻³ Å ²)	R-factor (%)
Pt foil	Pt-Pt	12	2.76 ± 0.01	4.4 ± 0.2	0.1
	Pt-Te	2.9 ± 0.3	2.64 ± 0.02	8.8 ± 1.0	2.2
PtTe NRs/C	Pt-Pt	8.3 ± 0.8	2.77 ± 0.02	10.6 ± 1.0	2.2
Dt T. Dl. ND./C	Pt-Te	2.0 ± 0.2	2.65 ± 0.02	5.2 ± 0.8	1.0
$Pt_3 Ie_3 Kn_1 NKS/C$	Pt-Pt	5.5 ± 0.7	2.73 ± 0.02	8.5 ± 1.1	1.8
Dt T. Dl. ND./C	Pt-Te	2.4 ± 0.2	2.65 ± 0.01	6.1 ± 0.7	1 1
$Pt_3 Ie_3 Kn_2 NKS/C$	Pt-Pt	6.7 ± 0.5	2.75 ± 0.02	8.2 ± 0.7	1.1
	Pt-Te	2.5 ± 0.2	2.65 ± 0.01	5.9 ± 0.6	0.0
Pt ₃ Te ₃ Rh ₃ NRs/C	Pt-Pt	6.9 ± 0.6	2.74 ± 0.02	9.2 ± 0.8	0.9
porous Pt ₉₅ Te ₅ NRs/C	Pt-Pt	9.1 ± 0.6	2.75 ± 0.01	6.2 ± 0.4	0.7
porous	Pt-Rh	0.7 ± 0.3	2.68 ± 0.02	4.6 ± 2.3	0.6
Pt ₆₉ Te ₇ Rh ₂₄ NRs/C	Pt-Pt	9.1 ± 0.5	2.75 ± 0.01	6.9 ± 0.4	0.6
porous	Pt-Rh	0.8 ± 0.2	2.70 ± 0.02	1.8 ± 1.2	0.0
$Pt_{61}Te_8Rh_{31}$ NRs/C	Pt-Pt	7.1 ± 0.5	2.73 ± 0.01	5.8 ± 0.6	0.9
porous	Pt-Rh	1.6 ± 0.2	2.71 ± 0.01	2.5 ± 0.8	1.4
$Pt_{62}Te_{15}Rh_{23}$ NRs/C	Pt-Pt	5.4 ± 0.5	2.72 ± 0.01	5.4 ± 0.8	1.4

Table S7. EXAFS parameters of Pt foil, PtTe NRs/C, porous Pt₉₅Te₅ NRs/C, PtTeRh NRs/C with different compositions, and porous PtTeRh NRs/C with different compositions.

R, radial distance between absorber and backscatter atoms.

CN, coordination number.

 $\sigma^2,$ Debye-Waller factor value.

The passive electron reduction factor (S_0^2) was fixed to 0.81, as determined from Pt foil fitting.

R-factor (%) indicates the goodness of the fit.

Table S8. EXAFS parameters of Rh foil, PtTeRh NRs/C with different compositions, and porous PtTeRh NRs/C with different compositions.

Sample	Bond type	CN	R (Å)	σ ² (10 ⁻³ Å ²)	R-factor (%)
Rh foil	Rh-Rh	12	2.69 ± 0.01	3.9 ± 0.3	0.9
Dt T. Dl. ND./C	Rh-Te	4.2 ± 0.2	2.58 ± 0.02	1.7 ± 0.7	1.5
$Pt_3 Ie_3Kh_1 NKS/C$	Rh-Pt	9.8 ± 0.4	2.72 ± 0.02	2.5 ± 0.5	1.5
Dt T. Dl. ND./C	Rh-Te	4.2 ± 0.4	2.52 ± 0.02	1.2 ± 1.2	2.0
$Pt_3 Ie_3Kn_2 NKS/C$	Rh-Pt	14.8 ± 1.1	2.68 ± 0.02	8.4 ± 1.3	2.0
Dt T. Dl. ND./C	Rh-Te	5.0 ± 0.2	2.53 ± 0.02	4.2 ± 2.5	1.2
Pt ₃ Te ₃ Rh ₃ NRs/C	Rh-Pt	8.2 ± 0.3	2.68 ± 0.02	3.1 ± 2.4	1.3
porous	Rh-Te	6.9 ± 0.3	2.63 ± 0.02	4.4 ± 1.3	0.7
Pt ₆₉ Te ₇ Rh ₂₄ NRs/C	Rh-Pt	6.3 ± 0.3	2.72 ± 0.02	11.1 ± 1.9	0.7
porous	Rh-Te	9.3 ± 0.6	2.71 ± 0.02	3.0 ± 0.7	2.1
$Pt_{61}Te_8Rh_{31}$ NRs/C	Rh-Pt	3.5 ± 0.3	2.73 ± 0.02	1.6 ± 1.0	2.1
porous	Rh-Te	5.7 ± 0.4	2.69 ± 0.02	5.2 ± 2.6	0.0
Pt ₆₂ Te ₁₅ Rh ₂₃ NRs/C	Rh-Pt	7.5 ± 0.3	2.73 ± 0.02	5.6 ± 1.4	0.9

R, radial distance between absorber and backscatter atoms.

CN, coordination number.

 $\sigma^2,$ Debye-Waller factor value.

The passive electron reduction factor (S_0^2) was fixed to 0.56, as determined from Rh foil fitting.

R-factor (%) indicates the goodness of the fit.