Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supplemental Information for:

A high-rate and high-efficiency molten-salt sodium-oxygen battery

Yun Guang Zhu^{a, b}, Graham Leverick^{*a, c}, Alessandra Accogli^{a, d}, Kiarash Gordiz^{a, c}, Yirui Zhang^{a, c}, Yang Shao-Horn^{*a, b, c, e}

^a Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

^b Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

^c Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

^{*d*} Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, 20131 Milano, Italy

^e Department of Material Science, Massachusetts Institute of Technology, Cambridge, MA, USA

*Correspondence to: shaohorn@mit.edu, leverick@mit.edu

Contents:

Energy density calculation of alkali metal-oxygen batteries	2
Calculation of equilibrium potentials of Na-O ₂ batteries	4
Supplementary Figures and Tables	6
Supplemental References	17

Energy density calculation of alkali metal-oxygen batteries

1) Li-O₂ battery

Battery reaction: $2Li + O_2 = Li_2O_2$ (E° = 2.96 V_{Li})

Electron transfer number: n = 2

We assume no binder, conductor or void in both Li metal negative and oxygen electrodes.

Charged state	Starting Materials	Density, g/cm³	Formula Weight, g/mole	Molar Volume, cm ³ /mole	Stoichiometry, Moles/F	Faradaic Volume, cm³/Ah	Faradic Weight, g/Ah
Negative							
electrode	Li	0.53	6.94	13.09	1.00	0.49	0.26
Positive							
electrode	O ₂	0.00	0.00	0.00	1.00	0.00	0.00

Discharged state	Starting Materials	Density, g/cm³	Formula Weight, g/mole	Molar Volume, cm ³ /mole	Stoichiometry, Moles/F	Faradaic Volume, cm³/Ah	Faradic Weight, g//Ah
Negative							
electrode	-	0.00	0.00	0.00	1.00	0.00	0.00
Positive							
electrode	Li ₂ O ₂	2.31	45.88	19.86	0.50	0.37	0.86

We used the smaller Faradaic volume and weight values to calculate the Specific energy (E_m) and volumetric density (E_{vol}) :

E_m = 3458 Wh/kg E_{vol} = 6059 Wh/L

2) Na-O₂ battery

Battery reaction: $Na + O_2 = NaO_2$ (E^o = 2.26 V_{Na})

Electron transfer number: n = 1

We assume no binder, conductor or void in both Li metal negative and oxygen electrodes.

Charged state	Starting Materials	Density, g/cm³	Formula Weight, g/mole	Molar Volume, cm ³ /mole	Stoichiometry, Moles/F	Faradaic Volume, cm³/Ah	Faradic Weight, g/Ah
Negative	Na	0.97	23.00	23.71	1.00	0.88	0.86
electione							
Positive	O ₂	0.00	0.00	0.00	1.00	-	-
electrode							

Discharged state	Starting Materials	Density, g/cm³	Formula Weight, g/mole	Molar Volume, cm ³ /mole	Stoichiometry, Moles/F	Faradaic Volume, cm ^{3/} Ah	Faradic Weight, g/Ah
Negative electrode	-	0.00	0.00	0.00	1.00	0.00	0.00
Positive electrode	NaO ₂	2.20	55.00	25.00	1.00	0.93	2.05

We used the smaller Faradaic volume and weight values to calculate the Specific energy (E_m) and volumetric density (E_{vol}) :

E_m = 1103 Wh/kg E_{vol} = 2427 Wh/L

3) K-O₂ battery

Battery reaction: $K + O_2 = KO_2$ ($E^\circ = 2.48 V_k$)

Electron transfer number: n = 1

We assume no binder, conductor or void in both Li metal negative and oxygen electrodes.

Charged state	Starting Materials	Density, g/cm³	Formula Weight, g/mole	Molar Volume, cm ³ /mole	Stoichiometry, Moles/F	Faradaic Volume, cm³/Ah	Faradic Weight, g/Ah
Negative electrode	К	0.89	39.00	43.82	1.00	1.63	1.46
Positive electrode	O ₂	0.00	0.00	0.00	1.00	0.00	0.00

Discharged state	Starting Materials	Density, g/cm³	Formula Weight, g/mole	Molar Volume, cm ³ /mole	Stoichiometry, Moles/F	Faradaic Volume, cm³/Ah	Faradic Weight, g/Ah
Negative electrode	-	0.00	0.00	0.00	1.00	0.00	0.00
Positive electrode	KO ₂	2.14	71.10	33.22	1.00	1.24	2.65

We used the smaller Faradaic volume and weight values to calculate the Specific energy (E_m) and volumetric density (E_{vol}) :

E_m = 935 Wh/kg E_{vol} = 1517 Wh/L

Calculation of equilibrium potentials of Na-O₂ batteries

Citations for all thermodynamic values can be found in Table S3. $\Delta_f G^{443K}$ was calculated using:

 $\Delta_{\rm f}G^{443} = \Delta_{\rm f}H^0 + (145 \text{ K})C_{\rm p} - (443 \text{ K})(S^0 + C_{\rm p} \ln(443 \text{ K}/298 \text{ K}))$

Reaction: Na + 1/2O₂ = 1/2Na₂O₂

Electron transfer number n = 1 Faraday constant F = 96485 C/mol $\Delta_f G^{443K} (Na_2O_2) = -553.0 \text{ kJ/mol}$ $\Delta_f G^{443k} (Na) = -22.7 \text{ kJ/mol}$ $\Delta_f G^{443k} (O_2) = -90.9 \text{ kJ/mol}$ $\Delta G^{443k} = -208.4 \text{ kJ/mol}$ $E^{443k} = \Delta G^{443k} / (n*F) = 2.16 V_{Na}$

Reaction: $2Na + 1/2O_2 = Na_2O$

Electron transfer number n = 2 Faraday constant F = 96485 C/mol $\Delta_f G^{443k}$ (Na₂O) = -449.6 kJ/mol $\Delta_f G^{443k}$ (Na) = -22.7 kJ/mol $\Delta_f G^{443k}$ (O₂) = -90.9 kJ/mol ΔG^{443k} = -358.7 kJ/mol E^{443k} = ΔG^{443k} / (n*F) = 1.86 V_{Na}

Reaction: $Na + O_2 = NaO_2$

Electron transfer number n = 1 Faraday constant F = 96485 C/mol $\Delta_f G^{443K}$ (NaO₂) = -313.7 kJ/mol $\Delta_f G^{443k}$ (Na) = -22.7 kJ/mol $\Delta_f G^{443k}$ (O₂) = -90.9 kJ/mol ΔG^{443k} = -200.1 kJ/mol E^{443k} = ΔG^{443k} / (n*F) = 2.07 V_{Na}

Reaction: $NaNO_3 + 2Na^+ + 2e^- = Na_2O + NaNO_2$

Electron transfer number n = 2 Faraday constant F = 96485 C/mol $\Delta_f G^{443K}$ (Na₂O) = -447.5 kJ/mol $\Delta_f G^{443K}$ (NaNO₂) = -404.7 kJ/mol $\Delta_f G^{443K}$ (Na) = -22.7 kJ/mol $\Delta_f G^{443K}$ (NaNO₃) = -519.5 kJ/mol E^{443k} = ΔG^{443k} (n*F) = 1.49 V_{Na}

Reaction: NaNO₃ + Na⁺ + e⁻ = NaNO₂ + 1/2Na₂O₂ Electron transfer number n = 1 Faraday constant F = 96485 C/mol $\Delta_{\rm f}G^{443K}$ (Na₂O₂) = -553.0 kJ/mol $\Delta_{\rm f}G^{443K}$ (NaNO₂) = -404.7 kJ/mol $\Delta_{\rm f}G^{443K}$ (NaNO₂) = -404.7 kJ/mol $\Delta_{\rm f}G^{443K}$ (NaNO₃) = -519.5 kJ/mol E^{443k} = ΔG^{443k} (n*F) = 1.44 V_{Na}

Reaction: Na₂O₂ + 2KNO₃ = K₂O₂ + 2NaNO₃ $\Delta_{f}G^{0}$ (Na₂O₂) = -447.7 kJ/mol $\Delta_{f}G^{0}$ (NaNO₃) = -367.0 kJ/mol $\Delta_{f}G^{0}$ (K₂O₂) = -428.4 kJ/mol $\Delta_{f}G^{0}$ (KNO₃) = -394.9 kJ/mol Δ G = 75.1 kJ/mol (at 298.15 K)

```
Reaction: Na<sub>2</sub>O<sub>2</sub> + 2CsNO<sub>3</sub> = Cs<sub>2</sub>O<sub>2</sub> + 2NaNO<sub>3</sub>

\Delta_{f}G^{0} (Na<sub>2</sub>O<sub>2</sub>) = -447.7 kJ/mol

\Delta_{f}G^{0} (NaNO<sub>3</sub>) = -367.0 kJ/mol

\Delta_{f}G^{0} (Cs<sub>2</sub>O<sub>2</sub>) = -327.0 kJ/mol

\Delta_{f}G^{0} (CsNO<sub>3</sub>) = -406.5 kJ/mol

\Delta G = 199.7 kJ/mol (at 298.15 K)
```

Supplementary Figures and Tables

Figure S1. The comparison of capacity-voltage plot for alkali metal-oxygen batteries (Li- O_2 ¹⁻⁶, Na- O_2 ^{7, 8}, K- O_2 ⁹⁻¹¹ batteries). The detailed information on the reported performance was shown in Table S1.

Figure S2. Photo of a β -Al₂O₃ membrane after 2 hours of resting in a Na-O₂ cell.

Figure S3. UV-Vis spectra (a) and calibration curve (b) for nitrite (NO_2^-) titration via the Griess method². The standard NO_2^- solutions (0, 0.01, 0.02, 0.05, 0.1, 0.5, 1 mM) were used for obtaining the calibration curve (b).

Figure S4. UV-Vis spectra (a) and (b) calibration curves of the titration of H_2O_2 with a standardized Ti⁴⁺oxysulfate solution. The detailed information of standard samples is shown in the method section.

Figure S5. The differential scanning calorimetry (DSC) result of the eutectic salts (NaNO₃ 26.4 w%, KNO₃ 27.3 w%, and CsNO₃ 46.3 w%). The onset of the melting point of the eutectic salts was ~417 K.

Figure S6. The discharge profiles of molten-salt Na-O₂ batteries with Ni/salts electrodes with the different ratios of Ni/salts (2/1, 8/5, and 4/3). The discharge current is $0.2 \text{ mA/cm}^2_{geo}$. The operation temperature was 443 K. The O₂ pressure in the cell is ~280 kPa at room temperature. The salts were the mixture of NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%).

Figure S7. The change of the areal capacities and plateau voltages with increasing discharge currents (0.2, 1.0, 2.0, 10.0 mA/cm²_{geo}).

Figure S8. (a). Electrochemical impedance spectroscopy (EIS) measurements of a molten-salt Na-O₂ battery, including the contact resistance and the resistance from β -Al₂O₃ and the interface between β -Al₂O₃ and liquid Na or Ni/NaNO₃/CsNO₃/CsNO₃/SS oxygen electrode. (b) Fitting details from the electrochemical impedance spectroscopy (EIS) spectra in (a). R1: ohmic resistance, R2: charge transfer resistance, R3: ionic resistance of β -Al₂O₃ membrane, W3: Warburg constant, Li⁺ diffusion in β -Al₂O₃ membrane.

Figure S9. The voltage profiles of a molten-salt Na-O₂ cell using the galvanostatic intermittent titration technique (GITT) measurement. (a) The voltage profiles with time in galvanostatic intermittent titration technique (GITT) measurements. The two selected steps from discharge (b) and charge (c) in the GITT process. The scenario of GITT in the discharge was 30 min of discharge at a current density of 0.2 mA/cm²_{geo} and then 30 min of rest. The scenario of GITT in the charge at a current density of 0.2 mA/cm²_{geo} was 30 min of charge and then 30 min of rest. The molten-salt Na-O₂ cell were tested at 443 K. The salts were a mixture of NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%).

Figure S10. (a) Charge-discharge profiles of a molten-salt Na-O₂ battery at a current density of 5 mA/cm²_{geo} (1st, 10th, 20th, 50th, and 100th cycles) with a limited discharge capacity of 1.0 mAh/cm²_{geo}. (b) The Coulombic (CE) and energy efficiencies (EE) of a molten-salt Na-O₂ battery at a current density of 5 mA/cm²_{geo} for 100 cycles. The Na-O₂ cell were tested at 443 K. The salts were a mixture of NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%).

Figure S11. The Raman spectra of Ni/salts electrodes (8/5 in weight) with the addition of Na₂O before and after reaction in 280 kPa (RT) of ${}^{32}O_2$ at 443 K. The cells were cooled down with fast (~20 K/min) and slow rates (1 K/min).

Figure S12. The Raman spectra of Ni/NaNO₃/KNO₃/CsNO₃/SS electrode after discharge with different washing procedures. Raman spectra of commercial Na₂O₂, Na₂O, Na₂CO₃ and eutectic salts (Na/K/CsNO₃) were used as the references

Figure S13. The CV of a molten salt Na-O₂ cell in O₂ atmosphere ranging from 1.8 to 2.8 V. The scanning rate was set as 0.2 mV/s. The molten-salt Na-O₂ cell contains liquid Na negative electrode, β -Al₂O₃ membrane, Ni/salts positive electrode, 280 kPa O₂ (RT), Stainless steel (SS) plate. The salts are a mixture of NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%).

Figure S14. The Raman spectra of commercial Na₂O₂, NaNO₃, KNO₃, CsNO₃ and eutectic salts (Na/K/CsNO₃). The eutectic salts were prepared by mixing the NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%) salts at 473 K for 12 h in an Ar-filled glove box. All these Raman spectra were collected at room temperature in an air-tight cell with Ar environment.

Figure S15. Discharge profiles of molten salt Na-O₂ and Na-Ar cells for quantifications in Figure 4a.

Figure S16. The discharge profile of a molten-salt Na-Ar battery at a current of 0.4 mA/cm²_{geo} for 1.6 mAh/cm²_{geo}.

Figure S17. Discharge of a molten-salt Na-Ar cell with increasing discharge currents from 0.2 mA/cm²_{geo} to 10.0 mA/cm²_{geo}.

Figure S18. The Coulombic efficiencies of a molten-salt Na-Ar battery at a current density of 1 mA/cm^2_{geo} for 5 cycles with a limited discharge capacity of 2.0 mA/cm $^2_{geo}$ at the temperature of 443 K.

Figure S19. The CV of a molten-salt Na-Ar cell at scanning rate of 0.2 mV/s in the potential range from 1.2 to 3.0 V. The molten-salt Na-Ar cell contains liquid Na negative electrode, β -Al₂O₃ membrane, Ni/salts positive electrode, Stainless steel (SS) plate. The salts are a mixture of NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%).

Figure S20. (a) The Raman spectra of pristine and discharged electrode of a molten-salt Na-O₂ cell in ${}^{32}O_2$ and the standard samples (Na₂CO₃, K₂CO₃, NaTFSI, and KTFSI). (b) The charge/discharge profiles of a molten-salt Na-O₂ cell in ${}^{32}O_2$ at current density of 0.2 mA/cm²_{geo}. All the above cells were tested at 483 K. The salts in the above cells were a mixture of NaTFSI (31.9 w%)/KTFSI (68.1 w%).

Figure S21. The O₂ pressure tracking of the cell after the symmetric molten-salt Na-He battery was discharged for ~6 mAh. The negative electrode was a Ni/salts electrode discharged in Ar for 8 mAh. The cathode was a pristine Ni/salts electrode. After discharging, the cell was evacuated and purged O₂. The inset showed that the linear fitting of the O₂ consumption rate in the first 3 mins. The electrode geometric area was 0.785 cm²_{geo}. The fitting function is y (mmol) = 0.367 - 0.184*x. Note: salts are the mixture of NaNO₃ (26.4 w%), KNO₃ (27.3 w%), and CsNO₃ (46.3 w%).

System	Discharge	Current	Capacity	Energy density	Power density	Reference
	voltage (V)	(mA/cm ² geo)	(mAh/cm² _{geo})	(mWh/cm ² geo)	(mW/cm ² geo)	
	2.7	0.2	10.6	28.62	0.54	1
	2.65	1	4	10.6	2.65	1
	2.6	2	2.4	6.24	5.2	1
	2.78	0.1	11	30.58	0.278	2
LI-O ₂	2.8	0.32	5.2	14.56	0.896	3
	2.5	2.5	1.6	4	6.25	4
	2.55	0.129	0.57	1.4535	0.32895	5
	2.7	1.142	1.142	3.0834	3.0834	6
	2.2	0.12	3.3	7.26	0.264	7
	2.13	0.2	1.48	3.1524	0.426	7
Na-O ₂	2.1	0.1	11.2	23.52	0.21	8
	2.05	0.2	9	18.45	0.41	8
	1.95	0.5	6.5	12.675	0.975	8
	2.1	0.2	1.76	3.696	0.42	9
ĸo	2.4	0.16	0.96	2.304	0.384	11
K-U2	2.4	0.0885	2.77	6.648	0.2124	10
	2.2	0.664	0.84	1.848	1.4608	10
	1.9	10	5.09	9.671	19	
*This	2.06	2	7.75	15.965	4.12	
work	2.09	1	10	20.9	2.09	
	2.07	0.2	15.7	32.499	0.414	

Table S1. The detailed performance of reported $Li-O_2$, $Na-O_2$, and $K-O_2$ batteries.

Table S2. The potential nitrate eutectic salts used for $Na-O_2$ batteries

NaNO₃ (w%)	KNO₃ (mol%)	CsNO₃ (mol%)	Melting point (K)	Reference
45.7	54.3	-	494	12
35.7	-	64.3	464	12
26.4	27.3	46.3	427	12

Compound	Δ _f H ⁰ (kJ/mol)	S⁰ (J/mol·K)	C _p (J/mol·K)	Δ _f G ⁰ (kJ/mol)
Na	0 ¹³	51.3 ¹³	28.2 ¹³	0 ¹³
NaO ₂	-260.2 ¹³	115.9 ¹³	72.1 ¹³	-218.4 ¹³
Na ₂ O ₂	-510.9 ¹³	95.0 ¹³	89.2 ¹³	-447.7 ¹³
Na ₂ O	-414.2 ¹³	75.1 ¹³	69.1 ¹³	-375.5 ¹³
NaNO ₂	-358.7 ¹³	103.8 ¹³	NA	-284.6 ¹³
NaNO ₃	-467.9 ¹³	116.5 ¹³	92.9 ¹³	-367.0 ¹³
KNO ₂	-369.8 ¹³	152.1 ¹³	107.4 ¹³	-306.6 ¹³
KNO ₃	-494.6 ¹³	133.1 ¹³	96.4 ¹³	-394.9 ¹³
K ₂ O ₂	-495.4 ¹⁴	110.1 ¹⁴	95.8 ¹⁴	-428.4 ¹⁵
CsNO ₂	NA	NA	NA	-313.8 ¹⁶
CsNO₃	-506.0 ¹³	155.2 ¹³	NA	-406.5 ¹³
Cs ₂ O ₂	NA	NA	NA	-327.0 ¹⁷
NiO	-239.3 ¹⁸	38.0 ¹⁸	67.7 ¹⁸	-211.1 ¹⁸
O ₂	0 ¹³	205.2 ¹³	29.4 ¹³	0 ¹³
Ni	0 ¹³	29.9 ¹³	26.1 ¹³	0 ¹³

Table S3. Thermodynamic data used in the work

Supplemental References

- 1. X. Gao, Y. Chen, L. Johnson and P. G. Bruce, *Nat. Mater.*, 2016, **15**, 882-888.
- 2. C. Xia, C. Y. Kwok and L. F. Nazar, *Science*, 2018, **361**, 777-781.
- 3. V. Giordani, D. Tozier, H. Tan, C. M. Burke, B. M. Gallant, J. Uddin, J. R. Greer, B. D. McCloskey, G. V. Chase and D. Addison, *J. Am. Chem. Soc.*, 2016, **138**, 2656-2563.
- 4. Z. Peng, S. A. Freunberger, Y. Chen and P. G. Bruce, *Science*, 2012, **337**, 563-566.
- 5. Z. Zhu, A. Kushima, Z. Yin, L. Qi, K. Amine, J. Lu and J. Li, *Nat. Energy*, 2016, **1**, 16111.
- 6. Y. Qiao, K. Jiang, H. Deng and H. Zhou, *Nat. Catal.*, 2019, **2**, 1035-1044.
- 7. P. Hartmann, C. L. Bender, M. Vračar, A. K. Dürr, A. Garsuch, J. Janek and P. Adelhelm, *Nat. Mater.*, 2013, **12**, 228-232.
- 8. H. Yadegari, M. N. Banis, B. Xiao, Q. Sun, X. Li, A. Lushington, B. Wang, R. Li, T.-K. Sham, X. Cui and X. Sun, *Chem Mater*, 2015, **27**, 3040-3047.
- 9. G. Cong, W. Wang, N.-C. Lai, Z. Liang and Y.-C. Lu, *Nat. Mater.*, 2019, **18**, 390-396.
- 10. W. Wang, N.-C. Lai, Z. Liang, Y. Wang and Y.-C. Lu, *Angew. Chem. Int. Ed.*, 2018, **57**, 5042-5046.
- 11. X. Ren and Y. Wu, J. Am. Chem. Soc., 2013, **135**, 2923-2926.
- 12. S. M. Davison and A. C. Sun, *Ind Eng Chem Res*, 2011, **50**, 12617-12625.
- 13. D. R. Lide, *CRC handbook of chemistry and physics*, CRC press, 2004.
- 14. I. Barin, *Thermochemical data of pure substances*, 1989.
- 15. R. C. Weast, M. J. Astle and W. H. Beyer, *CRC handbook of chemistry and physics*, CRC press Boca Raton, FL, 1988.
- 16. J. Balej, Collect. Czech. Chem. Commun. , 2011, **76**, 407-414.
- 17. T. Livneh, A. Band and R. Tenne, *J Raman Spectrosc*, 2002, **33**, 675-676.
- 18. R. A. Robie and B. S. Hemingway, *Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures*, US Government Printing Office, 1995.