The insensitive cation effect on single atom Ni catalyst allows selective electrochemical conversion of captured CO₂ in universal media

Jae Hyung Kim,^{‡ab} Hyunsung Jang,^{‡a} Gwangsu Bak,^{‡a} Woong Choi,^c Hyewon Yun,^a Eunchong Lee, ^a Dongjin Kim,^{c,d} Jiwon Kim, ^{c,e} Si Young Lee,^a and Yun Jeong Hwang^{*af}

^aDepartment of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.

^bClean Fuel Research Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro,

Yuseong-gu, Daejeon 34129, Republic of Korea.

^cClean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

^d Department of Material Science and Engineering, Korea University, Seoul 02841, Republic of Korea

^eDepartment of Chemical and Biomolecular Engineering, and Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea.

^fCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.

*e-mail: yjhwang1@snu.ac.kr

Catalyst	Capturing media	Additive	CO ₂ flow	Product	Max F. E. (%)	$\frac{\text{Max } j}{(\text{mA cm}^{-2})}$	Ref.
Ni–N/C	5 M MEA	X	X	СО	65	-50	This work
	5 M MEA	X	Х	СО	78	-2.6	
	1 M KHCO3	Х	X	СО	91	-4.0	
Ag	2 M MEA	Х	Х	СО	5	-0.1	26
Ag	5 M MEA	2 M KCl	Х	СО	72	-50	20
Pb	2 M 2- amino-2- methyl-1- propanol	0.7 M tetraethylammo nium chloride + propylene carbonate	Х	HCOO-	50	-25	27
Au	2 M 2- amino-2- methyl-1- propanol	0.7 M tetraethylammo nium chloride + propylene carbonate	Х	СО	45	-10	21
Ag	5 M MEA	Х	Ο	CO	39	N/A	24
	5 M MEA	0.1 wt% CTAB	Ο	СО	38	N/A	
Bi	5 M MEA	Х	Ο	HCOO-	18	N/A	
Pb	5 M MEA	0.1 wt% CTAB	Ο	HCOO ⁻	61	N/A	
Cu	Ethylenedia mine	Х	0	СО	58	-18.4	25
Hg	1 M NaHCO3	Х	Х	HCOO-	N/A	$j_{\rm HCOO}^{=:}-1$	15
Pd	2.8 M KHCO ₃	Х	Х	HCOO-	88	$j_{\rm HCOO}^{-:}-3.5$	16
Ag	3 M KHCO ₃	Х	Х	СО	81	-25	17
Ag	2 M KOH	Х	Х	СО	28	-100	18
Ag	3 M KHCO ₃	X	X	СО	80	-20	19
Bi	3 M KHCO ₃	X	Х	HCOO-	82	-100	20
Ag	3 M CsHCO ₃	Х	Х	СО	80	-100	21
Ag	3 M KHCO ₃	X	Х	СО	59	-100	22

Table S1 | Comparison of the cCO_2RR performance of Ni–N/C with those of previously reported catalysts.

Fig. S1 | a,b, Low- (a) and high-magnification (b) SEM images of ZIF-8.

Fig. S2 | a-d, SEM (a), TEM (b) and HAADF-STEM images (c,d) of Ni–N/C.

Fig. S3 | **a**, HAADF-STEM image of Ni–N/C. **b–f**, EDS elemental mapping images of Ni–N/C: carbon (**b**), nitrogen (**c**), oxygen (**d**), nickel (**e**), mixed image (**f**).

Fig. S4 | H_2 partial current density (j_{H2}) of Ni–N/C and cAg.

Fig. S5 | a-d, HAADF-STEM images of Mn- (a), Fe- (b), Co- (c) and Cu-based (d) single atom catalysts.

Fig. S6 | \mathbf{a} , \mathbf{b} j_{CO} or j_{H2} (\mathbf{a}) and CO F.E. (\mathbf{b}) of various types of single atom catalysts. Solid and dashed lines indicate j_{CO} and j_{H2} , respectively, in \mathbf{a} .

Fig. S7 | Ni K-edge in situ XANES spectra of Ni–N/C taken with applying potential from -0.2 V to -1.2 V vs. reversible hydrogen electrode (RHE).

Fig. S8 $|_{j_{CO}}$ of Ni–N/C and cAg at applied constant current density in the membrane electrode assembly test. The solid and dashed lines indicate jco when BPM and AME was used, respectively.

Fig. S9 | CO F. E. changes of Ni–N/C at -50 mA cm^{-2} for 10 h.

Fig. S10 | ¹H NMR spectra of 5 M MEA before and after the electrochemical stability test.

Fig. S11 | ¹H NMR spectra of CO₂-adsorbed MEA (1–5 M) solutions.

Fig. S12 | \mathbf{a} , \mathbf{b} j_{CO} (\mathbf{a}) and CO F.E. (\mathbf{b}) of Ni–N/C and cAg for the cCO₂RR in CO₂-adsorbed MEA (1–5 M) solutions.

Fig. S13 | a, b CO F. E. of Ni–N/C (a) and cAg (b) for the cCO₂RR in CO₂-adsorbed 5 M MEA in different temperatures.

Fig. S14 | \mathbf{a} - \mathbf{f} , j_{CO} of Ni–N/C and cAg for the direct electrochemical conversion of captured CO₂ in CO₂-adsorbed 1 M KHCO₃ (\mathbf{a}), 1 M MEA (\mathbf{b}), 1 M 3-amino-1-propanol (\mathbf{c}), 1 M 2-(methylamino)ethanol (\mathbf{d}), 1 M 2-amino-2-methyl-1-propanol (\mathbf{e}) and 1 M diethanolamine (\mathbf{f}) solutions.

Fig. S15 | **a**–**d**, Differential capacity of Ni–N/C and cAg in 0.05 M Li_2CO_3 (**a**), Na₂CO₃ (**b**), K_2CO_3 (**c**) and Cs_2CO_3 (**d**) solutions.

Fig. S16 | \mathbf{a} - \mathbf{d} , Differential capacity of AuAg, cPd, and cAu in 0.05 M Li₂CO₃ (\mathbf{a}), Na₂CO₃ (\mathbf{b}), K₂CO₃ (\mathbf{c}) and Cs₂CO₃ (\mathbf{d}) solutions.

Fig. S17 | \mathbf{a} - \mathbf{e} , j_{CO} and CO F. E. of Ni–N/C (**a**), cAg (**b**), cAu (**c**), cPd (**d**), and AuAg (**e**) in 0.05 M Li₂CO₃ and Cs₂CO₃ solutions. The scattering plot and bar graph indicate j_{CO} and CO F. E., respectively.

Fig. S18 | a,b Relationship between cation sensitivity and capacitance of electrode (a) and cation sensitivity and CO F. E. (b).

Fig. S19 | a-e, Photographs of assembled custom-designed membrane electrode assembly electrolyzer cell (a), flow plates of anode (b) and cathode (c), gaskets and electrode of anode (d) and cathode (e).