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High voltage output (> 1.8 V) and large cell capacity (~ 2.45 mAh) with small cell size (~ 0.5 cm length 

* 0.5 cm width * 0.19 cm height) are achieved. The calculations are listed below.  

 

Areal capacity (𝑚𝐴ℎ 𝑐𝑚−2) =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴𝑟𝑒𝑎
=

2.45

0.5 ∗ 0.5
= 9.8 

 

Areal energy (𝑚𝑊ℎ 𝑐𝑚−2) =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝐴𝑟𝑒𝑎
=

2.45 ∗ 1.8

0.5 ∗ 0.5
= 17.7 

 

Volumetric energy (𝑚𝑊ℎ 𝑐𝑚−3) =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑉𝑜𝑙𝑢𝑚𝑒
=

2.45 ∗ 1.8

0.5 ∗ 0.5 ∗ 0.19
= 93 

 

Areal power (𝑚𝑊 𝑐𝑚−2) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝐴𝑟𝑒𝑎
=

0.4 ∗ 1.8

0.5 ∗ 0.5
= 0.72 

 

Volumetric power (𝑚𝑊 𝑐𝑚−3) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑉𝑜𝑙𝑢𝑚𝑒
=

0.4 ∗ 1.8

0.5 ∗ 0.5 ∗ 0.19
= 3.8 
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Supplementary Figure 1. Optimization of the polyanhydride encapsulation structure. Results 

correspond to configurations with different numbers and sizes of holes for (green) dual-electrolyte and 

(grey) fully encapsulated cell architectures. In the latter, both the cathode and anode are encapsulated. The 

areal capacity of each group corresponds to the percentage of the value obtained with the optimized cell 

configuration. n=3 cells per group.  



S5 

 

 

 

 

 

 

 

Supplementary Figure 2. Effect of incubation time in PBS on areal capacity for cells with 100 μm 

and 200 μm thick Mg anodes and 300 μm Ag/AgCl cathodes. Cells are immersed in chicken breast and 

PBS (pH 7.4) at 37 ℃ for 0, 1, 2, 3, and 7 days. n=3 cells per day. Setting: 4 mA cm-2.  
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Supplementary Figure 3. Characteristics of the battery. a, Optical image of a cell vertically stacked. 

b, Fabrication schematic of the Mg/I2 cell.   
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Supplementary Figure 4. a, Effect of cell architecture on performance. Cross-sectional schematic 

illustration of cells assembled with (left) dual-electrolyte and a (Right) conventional configuration. The 

dual-electrolyte cell architecture features an encapsulated iodine cathode surrounded by ionic liquid. The 

conventional version does not feature encapsulation or ionic liquid. b, LPKF cutting design of electrode 

current collector. c, Optical image of a cell with conductive wires. d, Effect of ionic liquid in a dual-

electrolyte assembly observed through the cumulative release of a dye over time. The dye represents the 

iodine cathode. (Left) Cross-sectional schematic illustration of dye and ionic liquid and (right) only dye, 

without ionic liquid. e, Cumulative release of a dye over time. f, Plots of discharge behaviors of the Mg/I2 

cell after immersion in PBS (pH 7.4) at 37 °C. g, Linear sweep voltammetry (LSV) curves for the 

eco/bioresorbable cell in PBS. n=3 cells.   
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Supplementary Figure 5. Radar plot comparison of performance characteristics of the battery 

technology reported here and other non-bioresorbable, implantable cells (Mg-Cu1, Zn-Cu1, AZ31-

Air (Au-SF)2, Na(AC)-MnO2
3, Na(NatMel)-MnO2

4, Na(Pyroprotein carbon)-NFP5).  
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Supplementary Figure 6. Surgical preparations for in vivo studies of the capacities of implanted cells. 

Surgical procedure for implanting a cell inside a small animal (rat) model. a, Rat shaved at the target site 

and cleaned with iodine. b, Location for implantation is identified and the cell, wires, and headcap are 

approximately positioned. A tunnel along the fascial tissue from the head to the back forms a route for 

wires that tunnel from head to back. c, Sutures are applied along the head and back to finish the procedure. 

d, Image of rat post-surgical procedure.  
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Supplementary Figure 7. 5 grade scoring system after 1 week of implantation. Severity Score: 0 = 

finding not observed, 1 = minimal, 2 = mild, 3 = moderate, 4 = marked, 5 = severe. Distribution modifier: 

D = diffuse, F = focal, M = multifocal. P = non-gradable finding is present, NP = tissue/slide not present, 

NA = not available. Microscopic findings identified in control animals are common spontaneous 

observations that occur in toxicologic pathology studies.   
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Supplementary Figure 8. 5 grade scoring system after 4 weeks of implantation. Severity Score: 0 = 

finding not observed, 1 = minimal, 2 = mild, 3 = moderate, 4 = marked, 5 = severe. Distribution modifier: 

D = diffuse, F = focal, M = multifocal. P = non-gradable finding is present, NP = tissue/slide not present. 

Microscopic findings identified in control animals are common spontaneous observations that occur in 

toxicologic pathology studies.  
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Supplementary Figure 9. Organ Weights at 1- and 4-week timepoints. Statistical analyses indicate no 

significant difference between cathodes, eco/bioresorbable cells, and controls at both 1- and 4-week 

timepoints (P = 0.9998 at 1-week and P = 0.9705 at 4-weeks). n=3 independent animals per group.   
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Supplementary Figure 10. No evidence of systemic toxicity was observed in sections of mouse brain, 

heart, lung, spleen or kidney (left to right) from any treated groups. HE, 400x.  
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Supplementary Figure 11. Utilization of cells for thermal therapy, temperature measurements and 

cardiac pacing. a, Overview of applications. b, Demonstration of two eco/bioresorbable cells in series 

powering a Bluetooth Low Energy (BLE) system that performs temperature measurements and 

communicates relevant information to a smartphone. (Left) Circuit of the system. (Center) Photograph of 

the integrated temperature sensor. (Right) Real-time temperature measurements on the forehead of a 

human subject. c, Demonstration of a single eco/bioresorbable cell powering a microcontroller. (Left) 

Circuit of the system. (Right) Photograph of LED lighting up, illustrating the system successfully powers 

on.  
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Supplementary Figure 12. Results of benchtop pacing experiments on a piece of chicken meat (top) 

and in PBS (bottom).  
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Supplementary Figure 13. Images of the surgical procedure for implanting the bioresorbable Mo 

electrodes. E1, E2: electrode 1 and electrode 2. The following occurs after the rodent is anesthetized 

and intubated. a, Skin on rodent is removed with clippers. Incision occurs with rodent under a microscope. 

Once ready, the chest retractor is inserted to open the space to the heart. b, Pericardial sac is cautiously 

moved with forceps, to enable the transient molybdenum electrodes to gently contact the left ventricle. 

Pacing electrodes are secured in place with sutures.  
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Supplementary Figure 14. Concept and circuits utilized in ex vivo demonstrations of a cell powered 

cardiac pacemaker on mouse hearts using a microcontroller approach. a, Microcontroller is 

programmed by a computer to pace at specified parameters of 2 ms on, 0.1 s off. b, Electrical stimulation 

set at 2 ms on, 0.1 s off.  
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Supplementary Figure 15. 3-axis accelerometer data captured by a system on a chip (SoC) powered 

by the eco/bioresorbable battery implanted in ground water and soil. Two test regions reflect the 

intentional perturbations generated near the SoC, demonstrating the potential for capturing vibrations in 

real time.  
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Supplementary Figure 16. Photographs of the Bluetooth Low Energy (BLE) system on a chip (SoC) 

connected to the eco/bioresorbable battery immersed in soil and ground water, delivering real-time 

measurements wirelessly to the graphical user interface (GUI).  
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Supplementary Figure 17. Schematic illustration of the process for fabricating the cathodes (top to 

bottom). a, A 3D mold is designed and printed. b, Mo foil is placed directly within the pocket of the mold. 

c, A 3D printed spatula is placed within the pocket of the mold to secure the Mo foil in place. d, The iodine 

composite is added thereafter to deliver cathode replications.    
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Supplementary Figure 18. Schematic illustration for the fabrication of PA films and encapsulation.  
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Supplementary Table 1. Comparison with reported eco/bioresorbable cells. 

 

Areal 

Capacity 

(mAh cm-2) 

Voltage 

(V) 

Areal energy 

(mWh cm-2) 

Areal power 

(mW cm-2) 

Volumetric 

energy 

(mWh cm-3) 

Volumetric 

power 

(mW cm-3) 

This work 9.81 1.80 17.67 0.72 92.98 3.79 

Mg-MoO3 
6 1.80 1.60 2.88 0.04 7.20 0.10 

Mg-FeMn 7 0.35 0.60 0.21 0.03 3.00 0.43 

Mg-Mo (1) 6 5.60 0.60 3.36 0.02 8.40 0.04 

Mg-Mo (2) 8 2.40 0.50 1.44 0.05 5.76 0.20 

Mg-Fe (1) 9 

(PCL, PBS) 
10.93 0.70 7.65 0.08 76.49 0.77 

Mg-Fe (2) 9 

(PCL, NaCl) 
9.93 0.40 3.97 0.04 39.74 0.44 

Mg-Fe (3) 9 

(PCL, MgCl2) 
5.41 0.50 2.70 0.06 27.04 0.55 

Mg-Fe (4) 8 2.40 0.80 1.92 0.08 7.68 0.32 

Mg-W 8 2.40 0.70 1.68 0.07 6.72 0.28 
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Supplementary Table 2. Comparison with reported non-bioresorbable, implantable cells. 

 
Voltage 

(V) 

Areal energy 

(mWh cm-2) 

Areal power 

(mW cm-2) 

Volumetric 

energy 

(mWh cm-3) 

Volumetric 

power 

(mW cm-3) 

This work 1.80 17.67 0.72 92.98 3.79 

Zn-Cu 1 0.18  38.64  0.12  89.86  0.27  

Mg-Cu 1 0.23  9.36  0.65  21.77  1.51  

AZ31-Air (Au-SF) 2 0.86  0.0013  0.02  0.08  1.01  

Na(AC)-MnO2 3 0.31  0.01  0.004  0.12  0.04  

Na(Pyroprotein carbon)-NFP 5 2.50  0.003  0.38  0.03  4.17  

Na(NatMel)-MnO2 4 0.43  0.08  0.0000043  0.76  0.000043 
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Supplementary Table 3. Comparison with commercial, non-degradable cells and batteries. 

 

Volumetric 

capacity 

(mAh cm-3) 

Voltage 

(V) 

Volumetric 

energy 

(mWh cm-3) 

Specific capacity 

(mAh g-1) 

Specific energy 

(mWh g-1) 

This work 51.65 1.80 92.98 52.49 94.49 

Alkaline 132.10 1.50 198.15 35.71 53.57 

Zn-Ag2O 160.21 1.55 248.33 36.67 56.83 

Zinc carbon 23.32 1.50 34.99 20.00 30.00 
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