Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Energy & Environmental Science

Supporting Information

A highly tailored gap-like structure for excellent thermoelectric performance

Xiao Xu^{1,#}, Yi Huang^{1,#}, Xixi Liu^{1,#}, Baohai Jia¹, Juan Cui¹, Ran He², Jinghan Wang¹, Yiyuan Luo¹, Kornelius Nielsch² and Jiaqing He^{1,*}

¹Department of physics, Southern University of Science and Technology, Shenzhen, 518055, China.

²Institute for Metallic Materials, IFW-Dresden, Dresden, 01069, Germany.

[#]These authors contributed equally

*Correspondence: he.jq@sustech.edu.cn

Contents

- 1. Figures S1–S13
- 2. Calculation of Debye-Callaway model/ Calculation of Lorenz number
- 3. Table S1-S2

Figures

Figure S1. The high magnified STEM-HAADF images of Sb₂Te₃(GeTe)₉ sample.

Figure S2. The high magnified STEM-HAADF images of Sb₂Te₃(GeTe)₁₇ sample.

Figure S3. The high magnified STEM-HAADF images of Sb₂Te₃(GeTe)₃₄ sample.

Figure S4. The temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity, and (f) *ZT* value of $Sb_2Te_3(GeTe)_n$, n equal to 9, 17, and 34, respectively.

Figure S5. The temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, and (d) ZT value of Sb₂Te₃(Ge_{1-x}Yb_xTe)₉.

Figure S6. The XRD pattern of Sb₂Te₃(Ge_{1-x}Yb_xTe)₁₇ samples.

Figure S7. The temperature dependence of (a) diffusivity, (b) Lorenz number, and (c) carrier thermal conductivity of $Sb_2Te_3(Ge_{1-x}Yb_xTe)_{17}$

Figure S8. The repeatability test of $Sb_2Te_3(Ge_{0.995}Yb_{0.005}Te)_{17}$ sample. The temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity, and (f) *ZT* value.

Figure S9. The cycle test of $Sb_2Te_3(Ge_{0.995}Yb_{0.005}Te)_{17}$ sample. The temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) total thermal conductivity, and (d) *ZT* value.

Figure S10. The temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) total thermal conductivity, and (d) *ZT* value of p- and n-type leg materials.

Figure S11. (a) The low magnitude SEM image and (b) the selected area SEM image of the p-type joint. (c) The EDS mapping of the corresponding area.

Figure S12. (a) The scheme of four probe method and (b) the resistance of p-type joint interfaces tested by four probe method.

Figure S13. The current dependent (a) voltage, (b)power, and (c) efficiency of another module.

Calculation of Debye-Callaway model

To understand the phonon scattering mechanisms in this $Sb_2Te_3(GeTe)_9$ system, theoretical calculation based on the modified Callaway's model is carried out. According to Callaway's model, the lattice thermal conductivity is expressed as ^[1,2]:

$$\kappa_{lat} = \frac{k_B}{2\pi^2 v_{avg}} (\frac{k_B T}{\hbar})^3 \int_0^{\theta_D/T} \frac{x^4 e^x}{\tau_C^{-1} (e^x - 1)^2} dx$$
 Equation (S1)

where $x = \hbar \omega / k_B T$ is the reduced phonon frequency, *w* is the phonon frequency, k_B is the Boltzmann constant, \hbar is the reduced Planck constant, w_D is the Debye temperature, and τ_C is the overall phonon scattering relaxation time. Normally, there are several scattering mechanisms can be considered. When only considering the point defect scattering (τ_{PD}), the contributions due to mass and strain contrasts are token into account. For the Sb₂Te₃(Ge₁. _xYb_xTe)₉ sample, thr ratio of κ_{lat} with disorder to that without disorder (κ_{lat0}) can be defined in terms of the scattering parameter (Γ)as,

$$\frac{\kappa_{lat}}{\kappa_{lat0}} = \frac{\tan^{-1}(\mu)}{\mu}$$
Equation (S2)
$$\mu^{2} = \frac{\pi^{2}\Omega\theta_{D}}{\kappa_{L}} \kappa_{L} \kappa_{D} \Gamma$$

$$\mu = \frac{1}{hv_s^2} \kappa_{lat0^1}$$
 Equation (S3)

Where μ , Ω , and ν_s are the disorder scaling parameter, the average volume per atom and the average sound velocity, respectively. As Γ can be calculated as Γ_M plus Γ_S due to mass and strain fluctuations. Then, considering Yb doped Sb₂Te₃(Ge_{1-x}Yb_xTe)₉, Γ can be calculated as,

$$\Gamma_{(Ge,Yb)} = \frac{9}{23} x (1-x) [(\Delta M/M_{(Ge,Yb)})^2 + \varepsilon (\Delta \delta/\delta_{(Ge,Yb)})^2] \qquad \text{Equation (S4)}$$
$$\varepsilon = \frac{2}{9} [\frac{6.4\gamma (1+V_p)}{1-V_p}]^2 \qquad \text{Equation (S5)}$$

Here ${}^{M}_{(Ge, Yb)}$ is the average mass of the (Ge, Yb) sites and δ is the radius of atoms of Sb₂Te₃(Ge_{1-x}Yb_xTe)₉ samples. ${}^{V_{p}}$ is the Poisson's ratio^[3] and γ is the Grüneisen parameter^[4].

The required physical parameters are shown in Table S1.

Calculation of Lorenz number

On the basis of single parabolic band (SPB) model, the Lorenz number can be further calculated from the following equations^{5,6}:

$$S = \pm \frac{k_B}{e} \left(\frac{\left(\lambda + \frac{5}{2}\right) F_{\lambda + \frac{3}{2}}(\eta)}{\left(\lambda + \frac{3}{2}\right) F_{\lambda + \frac{1}{2}}(\eta)} - \eta \right)$$
Equation (S6)

$$F_n(\eta) = \int_0^{\infty} \frac{x^n}{1 + e^{x - \eta}} dx$$

Equation (S7)

$$L = \left(\frac{k_B}{e}\right)^2 \left\{ \frac{\left(\lambda + \frac{7}{2}\right)F_{r+\frac{5}{2}}(\eta)}{\left(\lambda + \frac{3}{2}\right)F_{r+\frac{1}{2}}(\eta)} - \left[\frac{\left(\lambda + \frac{5}{2}\right)F_{r+\frac{3}{2}}(\eta)}{\left(\lambda + \frac{3}{2}\right)F_{r+\frac{1}{2}}(\eta)}\right]^2 \right\}$$
Equation (S8)

where λ is the scattering parameter which equals -0.5 for acoustic phonon scattering, $F_n(\eta)$ is the n-th order Fermi integral and η is the reduced Fermi energy, which can be calculated from the experimental *S* values.

Parameters	Values
Debye temperature $\theta_D(K)$	155 ^[3]
Longitudinal sound velocity $v_L(ms^{-1})$	3573 ^[3]
Transverse sound velocity v_T (ms ⁻¹)	1730 ^[3]
Sound velocity v(ms ⁻¹)	1944 ^[3]
Poisson's ratio V_p	0.24 ^[3]
Grüneisen parameter γ	2.19 ^[4]
The average lattice parameter $a_{lat}(\text{\AA})$	6.02

Table S1. Physical properties used to calculate κ_{lat}

Table S2. Mass densities $\rho(g/cm^3)$ of all samples

Compositions	$\rho(g/cm^3)$	Compositions	ρ(g/cm ³)
Sb ₂ Te ₃ (GeTe) ₉	6.2507	Sb ₂ Te ₃ (Ge _{0.97} Yb _{0.03Te}) ₉	6.2895
Sb ₂ Te ₃ (GeTe) ₁₇	6.2243	$Sb_2Te_3(Ge_{0.997}Yb_{0.003Te})_{17}$	6.1937
Sb ₂ Te ₃ (GeTe) ₃₄	6.2041	$Sb_2Te_3(Ge_{0.995}Yb_{0.005Te})_{17}$	6.1927
$Sb_2Te_3(Ge_{0.995}Yb_{0.005Te})_9$	6.2437	$Sb_2Te_3(Ge_{0.993}Yb_{0.007Te})_{17}$	6.2065
$Sb_2Te_3(Ge_{0.99}Yb_{0.01Te})_9$	6.2453	$Sb_2Te_3(Ge_{0.991}Yb_{0.009Te})_{17}$	6.1959
$Sb_2Te_3(Ge_{0.98}Yb_{0.02Te})_9$	6.2686		

References

- 1. J. Callaway, Phys. Rev. 1959, 113, 1046.
- 2. B. Abeles, Phys. Rev. 1963, 131, 1906.
- Y. Gelbstein, J. Davidow, E. Leshem, O. Pinshow, S. Moisa, *Phys. Status Solidi B* 2014, 251, 1431.
- J. Li, Y. Xie, C. Zhang, K. Ma, F. Liu, W. Ao, Y. Li, C. Zhang, ACS Appl. Mater. Inter. 2019, 11, 20064.
- 5. M. Zhou, Z. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, G. Snyder, *Phys. Chem. Chem. Phys.* 2014, **16**, 20741.
- 6. G. Tan, F. Shi, J. Doak, H. Sun, L. Zhao, P. Wang, C. Uher, C. Wolverton, V. Dravid, M. Kanatzidis, *Energy Environ. Sci.* 2015, **8**, 267.