Thermal Instability Originating from the Interface between Organic-Inorganic Hybrid Perovskite and Oxide Electron Transport layers

Jingsi Song,^{a#} Hongpeng Liu,^{a#} Wenhua Pu,^{b#} Yue Lu,^{a*} Zhixiang Si,^a Zeyu Zhang,^a Yang Ge,^a Nengxu Li,^c Huanping Zhou,^c Wei Xiao,^{b*} Ligen Wang,^b Manling Sui^{a*}

^aBeijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, China.

^bState Key Laboratory of Nonferrous Metals and Processes, GRIMAT Group Co., Ltd; GRIMAT Engineering Institute Co., Ltd., Beijing 100088, China

^cBeijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, BIC-ESAT, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China.

These authors are eco-contribution.

Fig. S1 X-Ray diffraction pattern analyses of the MAPbI₃ films on the SnO₂-ITO substrate after thermal treatment for different times. The black indexes correspond to the structure of the tetragonal perovskite and the orange indexes correspond to the structure of lead iodide. Magnified images for the regions of 12~15 degrees and 23~25 degrees were presented on the right side to show the peaks of CH₃I-like phase. The PbI₂ could be characterized as 2H-PbI₂ (space group: P^3m^1 , a=b=4.558Å, c=6.986Å).

Fig. S2 X-Ray diffraction pattern analyses of the MAPbI₃ films on ITO substrates after thermal treatment. The degradation process of MAPbI₃ film is very similar to the ones on SnO₂-ITO glasses.

Fig. S3 X-Ray diffraction pattern analyses of the thermal treated MAPbI₃ films on the bare glass. The degradation process from MAPbI₃ into PbI₂ is similar to the ones on SnO₂-ITO and ITO glasses, but there is no CH₃I-like phase generated.

Fig. S4 Evolution for the crystal structures of $FA_{0.9}Cs_{0.1}PbI_3$ films during thermal treatment on SnO₂-ITO, ITO and bare glass substrates, respectively. a-c) X-Ray diffraction patterns analyses on the $FA_{0.9}Cs_{0.1}PbI_3$ films on (a) SnO₂-ITO, (b) ITO and (c) bare glass substrates after thermal treatment for different times. The black indexes correspond to the structure of the cubic perovskite and the orange indexes correspond to the structure of lead iodide.

Fig. S5 SEM and TEM observation for the morphology, structure and elementary evolution of the annealed perovskite films on the different substrates. a-c) SEM characterizations of the morphology evolution of spin-coated $FA_{0.9}Cs_{0.1}PbI_3$ perovskite films before and after thermal treatment for 3 days on three different substrates of SnO₂-ITO glass (a), ITO glass (b) and bare glass (c), respectively. Insets show the optical images of the films. Yellow polygon areas indicate the PbI₂ grains. d, e) HAADF images of the perovskite films on the SnO₂-ITO glass after thermal degradation for 0 and 3 days, respectively. Red and yellow polygon areas indicate the $FA_{0.9}Cs_{0.1}PbI_3$ and PbI₂ grains. f, g) EDS mapping of the cross-sectional perovskite films on SnO₂-ITO glasses after thermal degradation for 0 and 3 days, respectively. h, i) NBD patterns of the perovskite films on SnO₂-ITO glass, which are captured at the areas I (red area) and II (yellow area) in d, e. j) The EDS line scan of the elementary distributions along the

red lines at the interfaces (insets of the HAADF images of the detail interface) between $FA_{0.9}Cs_{0.1}PbI_3$ and SnO_2 .

Fig. S6 SEM image of the MAPbI₃ film after thermal treatment of 8 days. Except for the appearance of flaky PbI₂ grains at the grain boundaries of perovskite, large number of fine lead iodide grains have been grown out of the surface of MAPbI₃ film, which are with a certain crystallographic angle of about 90 degree.

Fig. S7 Top-view back scattered electron (BSE) images of the annealed MAPbI₃ **films fabricated on the SnO**₂**-ITO and ITO glass substrates, respectively.** The contrast of the BSE images is proportional to the average atomic number of materials. So, as shown in **a** and **b**, the dark contrast of the nanograins (marked with white dash circles) indicates its containing of light elements, which corresponds to the CH₃I-like phase as shown in Figs. S1 and S2. While the flaky grains are PbI₂ (marked with yellow dash circles) and the other grains are with MAPbI₃ phase (marked with green dash circles). All the films were thermally treated at 85 °C for 8 days.

Fig. S8 UV-vis absorbance spectra of the thermally treated MAPbI₃ Perovskite film on SnO₂-ITO, ITO and glass substrates, respectively. The absorption characteristics of perovskite MAPbI₃ is at 750 nm and lead iodide is at 500 nm, all of these data exhibit the transformation from perovskite into lead iodide.

Fig. S9 The EDS spectra of the MAPbI₃ layer before and after the nanomill treatment. The FIB-SEM prepared perovskite samples were ion cleaned by Fischione's Model 1040 Nanomill, which can effectively eliminate the damage of Ga ion on the sample surface layer. After slicing the samples, the thickness of them is about $0.25 \mu m$.

Fig. S10 NBD patterns of the MAPbI₃ film. a, b) The NBD pattern could be identified as tetragonal perovskite along [¹¹0] zone axis. However, comparing with the simulation result, (110) and (002) diffraction spots become dimmer. c, d) Another NBD pattern should be tetragonal perovskite along [¹⁰⁰] zone axis, but with the extinction of (110) diffraction spot. All the dim diffraction spots maybe resulted by beam damage of defect generation⁶³. It should point out that, all the NBD patterns could not be characterized as 6H-PbI₂ (space group: R³m, a =b = 4.557 Å, c = 20.937 Å) or 2H-PbI₂ (space group: P^{3m1} , a=b=4.558 Å, c=6.986 Å).

Fig. S11 Representative EDS spectra at I-III areas. **a-c**) EDS spectra for I-III areas (I CH_3I -like solid phase, II MAPbI₃, III PbI₂) of Fig. 2e. **d**) Table for the element concentration at the regions I-III in the HAADF images of Fig. 2d and Fig. 2e. Region I marked the amorphous CH_3I region, which contained extremely high concentration of iodine, carbon and oxygen elements. Region II marked the perovskite grains for element mapping. Region III shows a flaky lead-iodine grains with the content ratio close to 1:2 for lead and iodine elements.

Fig. S12 Micro-structures of the PSC devices after heating treatment at 85 °C in N_2 gas (in dark) for different times. a, b) SEM images for the top surface morphology of the gold electrodes on the PSC devices before (as pristine) and after annealing 120 hours (as failure). c, d) SEM images of cross-sectional morphology of the pristine and the failure PSC device after thermal treatment for 120 hours, respectively. The thickness of the samples is larger than 2 um. e) Magnified SEM image for the cross-sectional morphology of PSC device in d (red square area). Yellow arrows indicate pinholes at the interface between Spiro-OMeTAD and gold electrode. Red arrow presents the fault at the MAPbI₃-SnO₂ interface.

Fig. S13 The cross-sectional morphology and elementary distribution in the PSC device. High-angle annular dark-field (HAADF) image of the PSC and the corresponding EDS mapping of the Au, C, Pb, Pt, In, Sn and I elements in the PSC device. The thickness of the sample is about 0.25 um.

Fig. S14 Evolution for the morphology and elements in PSCs. a-c) HAADF images for the cross-section of annealed PSCs. **d-f)** the corresponding elementary distribution at the longitudinal direction of the annealed perovskite films. The thickness of the samples is about 0.25 um.

Fig. S15 The XPS survey spectra of pristine and annealed SnO₂ layers.

Fig. S16 The initial a) and final b) structures as removing oxygen atom to form a vacancy, corresponding to site-B in Fig. 4e. An oxygen atom was removed to form a vacancy near the interfaces. The neighboring I atom has been affected by moving toward to the SnO_2 slab by 0.81 Å.

Fig. S17 Schematic diagram of the reaction process at the MAPbI₃/SnO₂ interface, for a) Pb-I terminated interface and for b) MA-I terminated interface. Dash blue circles present the oxygen vacancies, dash green ovals indicate the diffusion pathway of oxygen.

Fig. S18 X-Ray diffraction pattern analyses of the MAPbI₃ films on TiO_2 -FTO and FTO substrates after thermal treatment for different times. The black indexes correspond to the structure of the tetragonal perovskite and the orange indexes correspond to the structure of lead iodide.

Fig. S19 The EDS mapping and line scan elementary distribution of the MAPbI₃/TiO₂/FTO sample after thermal treatment. a) EDS mapping reveals the elementary distribution on cross-sectional MAPbI₃ perovskite films, which is deposited on the TiO₂-FTO glass and thermally treated at 85 °C for 45 days. b) The EDS line scan of the elementary distribution along the red lines at the interfaces between MAPbI₃ and TiO₂ (inset shows the HAADF images of the detail interface, and line scan is selected at the red line area). The thickness of the sample is about 0.25 um.

Fig. S20 a) The initial, intermediate, and final structures as one oxygen atom was released into the interfacial core. **b)** The structural changes after H is captured by the oxygen atom at the MAI/TiO₂ interfaces. **c)** The initial and relaxed structures for different layers as an iodine vacancy (red cycle for the iodine atom) was formed and an oxygen atom (blue cycle for the oxygen atom) at the interface diffused into the iodine vacancy. **d)** Diagram for the migration energy of oxygen from the oxygen-deficientTiO₂ surface into the different states of perovskite lattice.

Fig. S21 Thermal stability of $FA_{0.9}Cs_{0.1}PbI_3$ films on the H₂, O₂ and no plasma treated SnO₂ layers. After annealing the perovskite films at 100 °C for 240 hours, the yellow phase of PbI₂ generates from the black phase of FA_{0.9}Cs_{0.1}PbI₃ films.

Fig. S22 Evolution for the normalized-PCE of $FA_{0.9}Cs_{0.1}PbI_3$ -based PSCs was analyzed under the thermal annealing condition at 85 °C for different times, all the PSC devices were fabricated on different plasma treated SnO_2 layer.

Table S1 Calculated net atomic charges (NACs), sum of bond orders (SBOs), and vacancy formation energy $(E_f^{\nu o})$ at different sites (sites A-F) of SnO₂/perovskite interfaces.

	Site A	Site B	Site C	Site D	Site E	Site F
NAC	-0.89	-0.90	-0.96	-0.92	-0.89	-0.96
SBO	2.05	1.83	2.01	1.93	1.67	2.04
${}^{a}E_{f}{}^{vo}$	3.18	1.72	1.91	2.20	1.66	2.21
${}^{b}E_{f}{}^{vo}$		1.68	0.22 0.4	42 0.71	0.16	0.71

 ${}^{a}E_{f}{}^{yo}$ and ${}^{b}E_{f}{}^{yo}$ indicates the vacancy formation energy in O-rich and O-poor SnO₂. The vacancy formation energy is much lower in the oxygen-poor SnO₂ layer (${}^{b}E_{f}{}^{yo}$).

	Site A	Site B	Site C	Site D	Site E	Site F
${}^cE_f{}^{vo}$	3.54	2.62	2.89	2.68	2.85	3.11
${}^{d}E_{f}{}^{vo}$	1.12	0.20	0.47	0.26	0.43	0.69

Table S2 Calculated E_f^{yo} at different sites (sites A-F) of TiO₂/perovskite interfaces.

 ${}^{c}E_{f}{}^{yo}$ and ${}^{d}E_{f}{}^{yo}$ indicates the vacancy formation energy in O-rich and O-poor TiO₂. The vacancy formation energy is much lower in the oxygen-poor TiO₂ layer (${}^{d}E_{f}{}^{yo}$).

	Time (h)	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
	0	$0.97{\pm}0.04$	21.3±1.0	63.0±3.5	13.0±0.1
	6	$1.00{\pm}0.03$	21.5±1.0	66.8±4.0	14.4±0.1
	15	1.01 ± 0.02	22.1±0.7	68.7±3.0	15.4±0.1
O ₂	24	$0.98{\pm}0.04$	19.9±1.9	66.8±3.5	12.8±0.1
	33	$0.95 {\pm} 0.03$	19.7±0.8	59.6±2.8	11.1±0.2
	48	$0.94{\pm}0.03$	18.5±1.0	57.6±3.0	10.0±0.1
	65	$0.92{\pm}0.03$	17.1±1.8	57.4±6.7	8.9±0.2
	80	$0.90{\pm}0.05$	16.7±3.1	56.9±11.1	8.3±0.1
	100	0.85 ± 0.04	15.4±2.0	52.6±6.1	6.8±0.3
	120	0.73 ± 0.04	6.1±0.7	43.5±4.9	1.9±0.3

Table S3 The photovoltaic performance of V_{oc} , J_{sc} , FF and PCE of O₂-plasma treated MAPbI₃-based PSCs after thermal annealing at 85 °C for different time (each condition contains 10 samples).

Table S4 The photovoltaic performance of V_{oc} , J_{sc} , FF and PCE of normal MAPbI₃based PSCs after thermal annealing at 85 °C for different time (each condition contains 10 samples).

	Time (h)	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
Normal	0	0.97±0.03	21.0±0.4	61.4±3.0	12.3±0.2
	6	0.98±0.03	21.4±0.7	64.3±2.8	13.5±0.2
	12	$1.00{\pm}0.02$	22.0±1.0	66.8±2.5	14.7±0.1
	24	0.98 ± 0.04	19.6±1.2	60.7±4.8	11.6±0.1
	33	$0.94{\pm}0.07$	18.8±2.8	56.4±7.5	9.8±0.2
	48	0.93±0.05	17.7±2.5	53.2±8.9	8.6±0.3
	65	0.86 ± 0.04	15.8±3.3	52.9±10.9	6.9±0.3
	80	0.86±0.12	14.8±4.4	50.8±12.9	6.0±0.3
	100	$0.77 {\pm} 0.05$	9.6±1.5	46.0±5.3	3.3±0.2
	120	0.73±0.04	6.1±0.7	43.5±4.9	1.9±0.3

	Time (h)	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
H ₂	0	$0.95 {\pm} 0.05$	19.7±1.2	61.2±2.8	11.5±0.3
	6	$0.96 {\pm} 0.05$	20.8±1.0	64.1±4.0	12.7±0.2
	10	0.97 ± 0.03	21.3±0.7	65.4±2.4	13.6±0.2
	24	$0.97 {\pm} 0.02$	18.6±1.4	59.7±3.4	10.8±0.3
	33	$0.92{\pm}0.04$	17.6±2.8	53.1±9.8	8.4±0.2
	48	0.87±0.12	17.4±3.8	47.5±12.9	6.7±0.3
	65	$0.80{\pm}0.22$	14.9±4.4	44.8±13.7	4.6±0.4
	80	$0.67 {\pm} 0.07$	6.3±1.3	43.3±4.7	1.7±0.3

Table S5 The photovoltaic performance of V_{oc} , J_{sc} , FF and PCE of H₂-plasma treated MAPbI₃-based PSCs after thermal annealing at 85 °C for different time (each condition contains 10 samples).

Table S6 The photovoltaic performance of open-circuit voltage (V_{oc}), current density (J_{sc}), fill factor (FF) and PCE of FA_{0.9}Cs_{0.1}PbI₃-based PSCs after thermal annealing at 85 °C for different time (each condition contains 10 samples). Here, the "O₂", "normal" and "H₂" indicates the PSCs fabricating on different plasma treated SnO₂ layers.

	Time (h)	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
0	0	1.03±0.04	23.4±0.6	71.7±3.6	18.0±0.2
	200	1.03±0.02	23.0±0.6	71.7±2.2	17.3±0.1
	400	1.02 ± 0.01	22.4±0.4	71.5±2.1	16.4±0.1
\mathbf{O}_2	600	0.99 ± 0.04	$22.2{\pm}0.2$	69.6±3.6	15.3±0.1
	800	0.99±0.02	21.8±1.3	64.8±3.8	13.9±0.1
	1000	0.98±0.03	20.6±1.5	61.8±5.3	12.3±0.2
	0	1.02 ± 0.02	22.5±0.3	71.4±2.4	16.5±0.2
	200	1.02 ± 0.02	21.9±1.2	67.3±3.0	15.6±0.2
Normal	400	0.99 ± 0.04	21.8±0.6	67.0±3.2	14.7±0.2
INOFILIAL	600	0.96 ± 0.05	21.3±1.1	64.5±4.0	13.2±0.2
	800	0.93±0.05	21.7±1.1	57.7±4.7	11.1±0.4
	1000	0.91±0.03	18.5±1.7	54.7±5.3	9.1±0.4
	0	0.99 ± 0.04	22.1±1.1	66.3±2.9	14.7±0.2
	200	0.97 ± 0.04	21.1±3.2	64.4±4.7	13.7±0.2
ц	400	0.97 ± 0.04	20.5±1.4	61.7±5.0	12.2±0.2
Π2	600	0.95 ± 0.07	19.1±2.3	56.8±6.0	10.1±0.3
	800	0.89±0.01	13.5±1.0	54.0±6.6	8.1±0.3
	1000	0.84±0.03	11.2±1.6	53.5±11.4	5.0±0.2