Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Novel Low-Carbon Energy Solutions for Powering Emerging Wearables, Smart Textiles, and Medical Devices - A Panoramic Review

Brindha Ramasubramanian^{1,2}, Subramanian Sundarrajan¹, Rayavarapu Prasada Rao¹, M.V. Reddy³, Vijila Chellappan^{2*}, Seeram Ramakrishna^{1*}

*1Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore

*2Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore, 138634 Singapore

³Nouveau Monde Graphite, 481 Rue Brassard, Saint-Michel-de-Saints, QC J0K 3B0, Canada

Corresponding author: Seeram Ramakrishna (<u>seeram@nus.edu.sg</u>), Vijila Chellappan (<u>c-vijila@imre.a-star.edu.sg</u>)

Fig. 1 Global energy consumption (2020 to 2050), reported by EIA, 2021. (Datase obtained from EIA, Outlook, October, 2021, © EIA).

Fig. 2 Energy consumption of non-OECD countries, 2020 – 2050, reported by EIA, 2021. (OECD: Organisation for Economic Co-operation and Development, datasets obtained from EIA, Outlook, 2021, © EIA)

Fig. 3 Global Annual CO2 emission in metric tons per capita, from 1960 to 2017 (datasets obtained from IEA, 2018).

Fig. 4 Zero carbon emission targets for committed countries, according to UN Climate Action Summit, 2019.

Component	Device structure	Jsc	Voc	FF	PCE	Ref
		(mA cm ⁻²)	(V)		(%)	
Graphene						
Anode	FTO/c-TiO ₂ /MAPbI _{3-x} Cl _x /spiro- OMeTAD/PEDOT:PSS/GR(PDMS/PMMA/G R film)	17.7	0.94	0.72	12	1
Anode	GR/MoO ₃ /PEDOT:PSS/MAPbI ₃ /C ₆₀ /BCP/Li F/Al	21.1	1.03	0.72	16.1	2
Anode	GR/c-TiO ₂ /mp-TiO ₂ /MAPbI _{3-x} Cl _x /spiro- OMeTAD/Au	2.55	0.69	0.35	0.62	3
Anode	PEN/GR/MoO ₃ /PEDOT:PSS/MAPbI ₃ /C ₆₀ /BC P/LiF/Al	21.7	1	0.78	16.8	4
Interfacial layer	FTO/c-TiO ₂ /GRflakes+mp-TiO ₂ /GO- Li/MAPbI ₃ /spiro-OMeTAD/Au		8.57	0.65	12.6	5
EDS layer	N-GQD EDS/FTO/TiO ₂ / ^y -CsPbI ₃ /PTAA/Au	19.2	1.11	0.76	16.2	6
ESL	ITO/PEDOT:PSS/MAPbI ₃ /PCBM/GNPs/A1	18.5	0.98	0.78	14.3	7
In ESL	FTO/c-TiO ₂ /mp-GR/SrTiO ₃ /MAPbI ₃ /spiro- MeOTAD/Ag	20	1.03	0.72	14.5	8
In ESL	ITO/SnO ₂ :NDI- GR/FA _{0.75} MA _{0.15} Cs _{0.1} PbI _{2.65} Br _{0.35} /spiro- OMeTAD/Au	22.7	1.08	0.82	20.2	9
Electrode and in ESL	GR/PCBM:GQDs/MAPbI ₃ /PTAA/Au	20.8	1.07	0.74	16.4	10
ESL	FTO/GQD@SnO ₂ /Cs _{0.05} ((FAPbI ₃) _{0.83} (MAPb Br ₃) _{0.17}) _{0.95} /spiro-OMeTAD/Au	23.5	1.08	0.77	19.6	11

ESL	FTO/ZnO/GR/LHP/spiro-OMeTAD/Au	22.7	1.12	0.78	19.8	12
ESL	FTO/c-TiO ₂ :GNRs/mp- TiO ₂ :GNRs/MAPbI ₃ /spiro-OMeTAD/Ag	23	1.05	0.73	17.7	13
Graphene oxide						
In HSL	ITO/PEDOT:PSS:AgOTf-doped GO/MAPbI ₃₋ _x Cl _x /PCBM/Au	19.2	0.88	0.71	11.9	14
HSL	ITO/ammonia-treated GO/MAPbI ₃₋ _x Cl _x /PC ₆₁ BM/Ag	18.4	1.00	0.77	14.14	15
Interlayer	FTO/c-TiO ₂ /mp-TiO ₂ /GO-Li/MAPbI ₃ /spiro- OMeTAD/Au	19.6	0.86	0.70	11.8	16
In LHP	FTO/spiro-biflurene/GO- MAPbI ₃ /PC ₆₁ BM/Au	18.8	1.07	0.71	14.3	17
HSL	ITO/GO/MAPbI _{3-x} Cl _x /PCBM/ZnO/Al	17.5	1	0.71	12.4	18
HSL	ITO/GO/MAPbI _{3-x} Cl _x /PCBM/BCP/LiF/Al	14.5	0.92	0.72	9.6	19
In LHP	ITO/GO/MAPbI ₃ :GO/PCBM/Ag	20.7	0.93	0.65	15.2	20
Interfacial layer	ITO/PEDOT:PSS-GO:NH ₃ /MAPbI ₃ . _x Cl _x /PC ₆₁ BM/Bphen/Ag	21.7	1.03	0.70	16.1	21
Interfacial layer	FTO/c-TiO ₂ /mp-TiO ₂ /MAPbI ₃₋ _x Cl _x /GO/P3HT/Au	24.4	0.93	0.58	13.2	22
Reduced graphe	ne oxide					
Interfacial layer	FTO/c-TiO ₂ /mp-TiO ₂ /FAMACsPbI ₃₋ _x Br _x /CuSCN/RGO/Au	23.2	1.11	0.78	20.4	23
In ESL	FTO/c-TiO ₂ /RGO-mp-TiO ₂ nanocomposite/MAPbI ₃ /spiro-OMeTAD/Ag	22	0.93	0.71	14.5	24
In ESL	FTO/ZnO-RGO/MAPbI ₃ /spiro-OMeTAD/Au	21.7	1.03	0.68	15.2	25
In ESL	FTO/c-TiO ₂ /mp-TiO ₂ :RGO(Li treated)/(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} /spiro- OMeTAD/Au	22	1.11	0.80	19.5	26

In ESL,LHP and HSL	FTO/RGO-TiO ₂ /RGO-MAPbI ₃ /RGO-spiro- MeOTAD/Ag	22.9	1.00	0.72	16.5	27
ESL	FTO/c-TiO ₂ :RGO/mp- TiO ₂ :RGO/MAPbI ₃ /spiro-MeOTAD/Au	16.5	0.84	0.68	9.3	28
In LHP	FTO/c-TiO ₂ /mp- TiO ₂ /(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} :N- RGO/spiro-OMeTAD/Au	21.8	1.15	0.74	18.7	29
In LHP	$FTO)/SnO_X/((Cs_{0.05}(FA_{0.85}MA_{0.15})_{0.95}Pb(I_{0.85}B r_{0.15})_{3}: oxo-RGO/DA/spiro-OMeTAD/Au$	23.1	1.13	0.81	21.1	30
HSL and anode	FTO/c-TiO ₂ /mp-TiO ₂ /MAPbI ₃ /RGO	16.7	0.94	0.73	11.5	31
HSL	ITO/RGO/MAPbI ₃ /PC ₆₁ BM/BCP/Ag	14.8	0.95	0.71	10.8	32
Interfacial layer	ITO/c-TiO ₂ /MAPbI ₃ Cl _{3-x} /RGO/spiro- OMeTAD/Au	21.5	1.11	0.78	18.8	33
In HSL	FTO/TiO ₂ /MAPbI ₃ /spiro-OMeTAD/RGO/Au	16.7	0.91	0.006	10.6	34
HSL	ITO/RGO/MAPbI ₃ /PCBM/Ag	21.3	0.96	0.79	16	35
Transparent electrode	RGO/c-TiO ₂ +GR/mp-TiO ₂ +GR/MAPbI ₃₋ _x Cl _x /spiro-OMeTAD/Au	2.9	0.69	0.38	0.81	36
CNT						
	SWCNTs/PEDOT:PSS/MoO ₃ /MAPbI ₃ /C ₆₀ /B CP/Al	19.9	0.98	0.78	15.3	37
	SWCNTs/MoO ₃ /PEDOT:PSS/MAPbI ₃ /C ₆₀ /B CP/Al	17.5	0.96	0.76	12.8	37
Transparent	SWCNTs/PEDOT:PSS/MAPbI3/PCBM/Al	14.9	0.79	0.54	6.3	38
conductive electrode	DWCNTs/PTAA/MA _{0.6} FA _{0.4} PbI _{2.9} Br _{0.1} /C ₆₀ /B CP/Cu	21.4	1.05	0.77	17.2	39
	CNTS-PEDOT:PSS/ZnO/MAPbI ₃ /spiro- OMeTAD/MoO ₃ /Ag	19.4	1.07	0.64	13.3	40
	SWCNTs/PEDOT:PSS/MAPbI3/PCBM/A1	18.3	0.81	0.66	9.8	41

Electron transport layer	FTO/c-TiO ₂ /SWCNTs-m- TiO ₂ /MAPbI ₃ /spiro-OMeTAD/Au	21.4	0.98	0.78	15.3	42
	FTO/c-TiO ₂ /SWCNTs-m- TiO ₂ /MAPbI ₃ /spiro-OMeTAD/Au	21.9	1.04	0.70	16.1	43
	FTO/c-TiO ₂ /SWCNTs-m- TiO ₂ /MAPbI ₃ /spiro-OMeTAD/Au	24.5	1.08	0.73	19.3	44
	FTO/c-TiO ₂ /SWCNTs-m- TiO ₂ /MAPbI ₃ /PTAA/Au	23.6	1.1	0.79	20.4	45
	FTO/c-TiO ₂ /MWCNTs-m- TiO ₂ /MAPbI ₃ /spiro-OMeTAD/Au	27.9	1.08	0.73	21.7	46
	FTO/c-TiO ₂ /MWCNTs-Graphene-m- TiO ₂ /Cs _{0.05} (FA _{0.83} MA _{0.17}) _{0.95} Pb(I _{0.83} Br _{0.17}) ₃ /sp iro-OMeTAD/Au	24.8	0.90	0.62	13.9	47
	ITO/CNTs-SnO ₂ /MAPbI ₃ /spiro-OMeTAD/Au	23.2	1.12	0.78	20.3	48
	ITO/PTAA/MAPbI ₃ /CNTs-PCBM/Ag	23.5	1.04	0.78	19.3	49
Perovskite layer	ITO/SnO ₂ /MAPbI ₃ +SWCNTs/spiro- OMeTAD/Au	23.7	1.14	0.72	19.5	50
	FTO/c-TiO ₂ /m- TiO ₂ /MAPbI ₃ +MWCNTs/spiro- OMeTAD/Au/	20.8	0.97	0.75	15.1	51
	FTO/c-TiO ₂ /m- TiO ₂ /MAPbI ₃ +MWCNTs/spiro- OMeTAD/Au/	23.6	0.97	0.76	17.4	52
	ITO/PEDOT:PSS/MA _x FA ₁₋ _x PbI ₃ +MWCNTs/PCBM/Ca/Al	18.2	0.97	0.72	12.9	53
	ITO/SnO ₂ /MAPbI ₃ +s-SWCNTs/spiro- OMeTAD/Au	24.0	1.09	0.79	20.7	54
	FTO/c- TiO ₂ /SnO ₂ /MA _{0.85} FA _{0.15} PbI ₃ +CNTs/spiro- OMeTAD/Ag	23.5	1.09	0.82	21.0	55

	FTO/c- TiO ₂ /SiO ₂ /MAPbI ₃ +MWCNTs/Carbon	21.3	0.92	0.59	11.6	56
	FTO/SnO ₂ /(FA _{0.83} MA _{0.17}) _{0.95} Cs _{0.05} Pb(I _{0.83} Br _{0.1} 7) ₃ +SWCNTs/spiro-OMeTAD/Au	20.7	1.13	0.69	16.1	57
Hole transport layer	FTO/c-TiO ₂ /Al ₂ O ₃ /MAPbI _x Cl _{3-x} /SWCNTs/PMMA/Ag	17.7	0.97	0.60	10.6	58
	FTO/c-TiO ₂ /Al ₂ O ₃ /MAPbI _x Cl ₃₋ _x /P3HT/SWCNTs-spiro-OMeTAD/Ag	21.4	1.02	0.71	15.4	59
	FTO/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /SWCNTs- GO/PMMA/Au	20.1	0.95	0.61	11.7	60
	FTO/c-TiO ₂ /m-TiO ₂ /MAPbBr ₃ /CNTs- PMMA/Au	5.8	1.31	0.75	5.8	61
	FTO/SnO ₂ /FA _{0.83} Cs _{0.17} Pb(I _{0.83} Br _{0.1}) ₃ /SWCNT s-spiro-OMeTAD/Ag	22.4	1.10	0.69	16.8	62
	FTO/SnO ₂ /FA _{0.83} Cs _{0.17} Pb(I _{0.83} Br _{0.1}) ₃ /MWCN Ts-spiro-OMeTAD/Ag	22.0	1.07	0.72	17.1	62
	FTO/SnO ₂ /(FA _{0.83} MA _{0.17} Pb(I _{0.83} Br _{0.17}) ₃ /SWC NTs-PMMA/Ag	22.4	1.05	0.74	17.4	63
	FTO/SnO ₂ /(FA _{0.83} MA _{0.17} Pb(I _{0.83} Br _{0.17}) ₃ /SWC NTs-spiro-OMeTAD/Ag	22.1	1.23	0.77	20.9	63
	FTO/c-TiO ₂ /MAPbI ₃ /spiro- OMeTAD/MWCNTs-spiro-OMeTAD/Au	21.6	1.13	0.69	15.1	64
	FTO/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /CNTs- P3HT/Au	18.7	0.86	0.52	8.3	65
	FTO/c-TiO ₂ /m-TiO ₂ /CsPbI ₂ Br/MWCNTs- P3HT/carbon	13.3	1.21	0.62	10.1	66
	ITO/SWCNTs- PEDOT:PSS/MAPbI ₃ /PCBM/Ag	18.0	0.98	0.71	12.5	67
	ITO/SWCNTs- PEDOT:PSS/MAPbI ₃ /PCBM/Ag	20.3	1.04	0.75	16.0	68

	ITO/s-SWCNTs-NiO _x /MAPbI ₃ /PCBM/Ag	22.0	1.01	0.73	16.9	69
	FTO/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /SWCNTs- C ₂ uZnSnS ₄ /Au	20.5	1.05	0.70	15.2	70
	FTO/c-TiO ₂ /MAPbI ₃ /SWCNTs-spiro- OMeTAD/Ag	20.8	1.07	0.73	16.1	71
	FTO/c-TiO ₂ /m-TiO ₂ /SWCNTs/MAPbI _x Cl ₃₋ _x /P3HT/Au	22.8	0.85	0.70	13.6	72
Interlayer	FTO/c-TiO ₂ /MAPbI ₃ /SWCNTs/spiro- OMeTAD/Ag	20.8	1.07	0.73	16.1	71
	FTO/c-TiO ₂ /m-TiO ₂ /CsPbI ₃ /CNTs/Carbon	18.6	0.80	0.71	10.6	73
	FTO/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /NiO/MWCNTs	22.8	0.91	0.76	15.8	74
	FTO/c-TiO ₂ /m- TiO ₂ /MAPbI ₃ /CuSCN/MWCNTs	23.7	1.10	0.73	17.5	75
	FTO/c-TiO ₂ /m-TiO ₂ /Al ₂ O ₃ /SWCNTs-NiO (MAPbI ₃)	20.7	0.94	0.64	12.7	76
	FTO/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /MWCNTs- P3HT	22.7	0.91	0.65	13.4	77
Paak alaatrada	FTO/c-TiO ₂ /m- TiO ₂ /Cs _{0.5} (MA _{0.1} FA _{0.83}) _{0.95} Pb(I _{0.83} Br _{0.17}) ₃ /SW CNTs-spiro-OMeTAD	21.0	1.12	0.71	16.6	78
	ITO/C ₆₀ /MAPbI ₃ /SWCNTs-P3HT	21.7	0.94	0.67	13.6	79
	ITO/C ₆₀ /MAPbI ₃ /SWCNTs-PTAA	23.0	0.98	0.68	15.3	79
	ITO/C ₆₀ /MAPbI ₃ /SWCNTs-spiro-OMeTAD	23.8	1.08	0.66	17.0	79
	ITO/SnO ₂ /MAPbI ₃ /SWCNTs-MoS ₂ -spiro- MeOTAD	23.8	1.00	0.63	15.0	80
	ITO/SnO ₂ /FA _x Cs _{1-x} PbI ₃ /SWCNTs-spiro- MeOTAD	24.2	1.00	0.72	17.5	81
	ITO/SnO ₂ /MAPbI ₃ /CNTs-spiro-MeOTAD	22.7	1.12	0.73	18.8	82

	ITO/PEDOT:PSS/MAPbI3/PCBM/SWCNTs	18.1	0.79	0.73	11.0	83
	SWCNTs/PEDOT:PSS/MAPbI ₃ /SWCNTs- PCBM	15.9	0.80	0.57	7.3	83
	PET/SWCNTs- MoO ₃ /PEDOT:PSS/MAPbI ₃ /C ₆₀ /BCP/A1	18.8	0.90	0.65	11.0	84
	Ti/TiO ₂ /MAPbI ₃ /CNTs-spiro-OMeTAD	14.3	0.99	0.68	8.3	85
	PET/SWCNTs- P3HT/PEDOT:PSS/MAPbI ₃ /SWCNTs- PCBM	16.0	0.79	0.56	7.1	86
2D flexible PSCs	PET/SWCNTs/PEDOT:PSS/MAPbI ₃ /PCBM/ Al	16.4	0.80	0.55	7.2	86
	PEN/ITO/NiO/Al ₂ O ₃ /SnO ₂ @MWCNTs(MAP bI ₃)	19.2	0.91	0.60	10.5	87
	PET/graphene/TiO ₂ /PCBM/MAPbI ₃ /MWCN Ts-spiro-OMeTAD	20.2	0.89	0.65	11.9	88
	PET/graphene/TiO ₂ /PCBM/MAPbI ₃ /MWCN Ts	18.9	0.82	0.53	8.4	88
1D flexible PSCs	Stainless steel/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /spiro- OMeTAD/CNTs	10.2	0.66	0.48	3.3	89
	Ti/TiO ₂ /MAPbI ₃ /CNTs	14.5	0.87	0.56	7.1	90
	PEN/ITO/c-TiO ₂ /MAPbI ₃ /CNTs	15.9	0.91	0.65	9.4	91
	CNTs/c-TiO ₂ /m-TiO ₂ /MAPbI ₃ /spiro- OMeTAD/CNTs	2.1	0.82	0.35	0.6	91
	CNTs/c-TiO ₂ /m-TiO ₂ /MAPbI ₃₋ _x Cl _x /SWCNTs/CNTs	8.7	0.61	0.56	3.0	92

References

- 1 P. You, Z. Liu, Q. Tai, S. Liu and F. Yan, *Advanced Materials*, 2015, **27**, 3632–3638.
- 2 H. Sung, N. Ahn, M. S. Jang, J. K. Lee, H. Yoon, N. G. Park and M. Choi, *Advanced Energy Materials*, 2016, 6, 1501873.
- 3 M. Batmunkh, C. J. Shearer, M. J. Biggs and J. G. Shapter, *Journal of Materials Chemistry A*, 2016, 4, 2605–2616.
- 4 J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung and M. Choi, *Energy & Environmental Science*, 2017, **10**, 337–345.
- 5 A. Agresti, S. Pescetelli, A. L. Palma, A. E. del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis, F. Bonaccorso and A. di Carlo, *ACS Energy Letters*, 2017, 2, 279–287.
- 6 H. Bian, Q. Wang, S. Yang, C. Yan, H. Wang, L. Liang, Z. Jin, G. Wang and S. Liu, *Journal of Materials Chemistry A*, 2019, **7**, 5740–5747.
- 7 G. H. Kim, H. Jang, Y. J. Yoon, J. Jeong, S. Y. Park, B. Walker, I. Y. Jeon, Y. Jo, H. Yoon, M. Kim, J. B. Baek, D. S. Kim and J. Y. Kim, *Nano Letters*, 2017, **17**, 6385–6390.
- 8 C. Wang, Y. Tang, Y. Hu, L. Huang, J. Fu, J. Jin, W. Shi, L. Wang and W. Yang, *RSC Advances*, 2015, **5**, 52041–52047.
- 9 X. Zhao, L. Tao, H. Li, W. Huang, P. Sun, J. Liu, S. Liu, Q. Sun, Z. Cui, L. Sun, Y. Shen, Y. Yang and M. Wang, *Nano Letters*, 2018, 18, 2442–2449.
- 10 D. H. Shin, J. M. Kim, S. H. Shin and S. H. Choi, *Dyes and Pigments*, 2019, **170**, 107630.
- 11 Y. Zhou, S. Yang, X. Yin, J. Han, M. Tai, X. Zhao, H. Chen, Y. Gu, N. Wang and H. Lin, *Journal of Materials Chemistry A*, 2019, **7**, 1878–1888.
- 12 M. M. Tavakoli, R. Tavakoli, P. Yadav and J. Kong, *Journal of Materials Chemistry A*, 2019, 7, 679–686.
- 13 X. Meng, X. Cui, M. Rager, S. Zhang, Z. Wang, J. Yu, Y. W. Harn, Z. Kang, B. K. Wagner, Y. Liu, C. Yu, J. Qiu and Z. Lin, *Nano Energy*, 2018, **52**, 123–133.
- 14 T. Liu, D. Kim, H. Han, A. R. bin Mohd Yusoff and J. Jang, *Nanoscale*, 2015, 7, 10708–10718.
- 15 Y. Wang, Y. Hu, D. Han, Q. Yuan, T. Cao, N. Chen, D. Zhou, H. Cong and L. Feng, *Organic Electronics*, 2019, **70**, 63–70.
- 16 A. Agresti, S. Pescetelli, L. Cinà, D. Konios, G. Kakavelakis, E. Kymakis and A. di Carlo, *Advanced Functional Materials*, 2016, **26**, 2686–2694.
- 17 S. Ameen, M. S. Akhtar, M. Nazim, E. B. Kim, M. K. Nazeeruddin and H. S. Shin, *Electrochimica Acta*, 2019, **319**, 885–894.
- 18 Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin and B. Sun, *Nanoscale*, 2014, 6, 10505–10510.

- 19 Y. G. Kim, K. C. Kwon, Q. van Le, K. Hong, H. W. Jang and S. Y. Kim, *Journal of Power* Sources, 2016, **319**, 1–8.
- 20 C. C. Chung, S. Narra, E. Jokar, H. P. Wu and E. Wei-Guang Diau, *Journal of Materials Chemistry A*, 2017, **5**, 13957–13965.
- 21 S. Feng, Y. Yang, M. Li, J. Wang, Z. Cheng, J. Li, G. Ji, G. Yin, F. Song, Z. Wang, J. Li and X. Gao, *ACS Applied Materials and Interfaces*, 2016, **8**, 14503–14512.
- 22 Ç. Şahin, H. Diker, D. Sygkridou, C. Varlikli and E. Stathatos, *Renewable Energy*, 2020, **146**, 1659–1666.
- 23 N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin and M. Grätzel, *Science*, 2017, 358, 768–771.
- G. S. Han, Y. H. Song, Y. U. Jin, J. W. Lee, N. G. Park, B. K. Kang, J. K. Lee, I. S. Cho, D. H. Yoon and H. S. Jung, ACS Applied Materials and Interfaces, 2015, 7, 23521–23526.
- 25 M. M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U. S. Virk and Z. Fan, *Advanced Materials Interfaces*, 2016, **3**, 1500790.
- 26 K. T. Cho, G. Grancini, Y. Lee, D. Konios, S. Paek, E. Kymakis and M. K. Nazeeruddin, *ChemSusChem*, 2016, 9, 3040–3044.
- 27 N. Balis, A. A. Zaky, C. Athanasekou, A. M. Silva, E. Sakellis, M. Vasilopoulou, T. Stergiopoulos, A. G. Kontos and P. Falaras, *Journal of Photochemistry and Photobiology A: Chemistry*, 2020, **386**, 112141.
- 28 T. Umeyama, D. Matano, J. Baek, S. Gupta, S. Ito, V. Subramanian and H. Imahori, https://doi.org/10.1246/cl.150651, 2015, 44, 1410–1412.
- 29 M. Hadadian, J. P. Correa-Baena, E. K. Goharshadi, A. Ummadisingu, J. Y. Seo, J. Luo, S. Gholipour, S. M. Zakeeruddin, M. Saliba, A. Abate, M. Grätzel and A. Hagfeldt, *Advanced Materials*, 2016, 28, 8681–8686.
- 30 M. Li, W.-W. Zuo, Q. Wang, K.-L. Wang, M.-P. Zhuo, H. Köbler, C. E. Halbig, S. Eigler, Y.-G. Yang, X.-Y. Gao, Z.-K. Wang, Y. Li, A. Abate, M. Li, K. Wang, M. Zhuo, Z. Wang, W. Zuo, Q. Wang, H. Köbler, A. Abate, Y. F. Li, C. E. Halbig, S. Eigler, Y. Yang and X. Gao, *Advanced Energy Materials*, 2020, 10, 1902653.
- 31 K. Yan, Z. Wei, J. Li, H. Chen, Y. Yi, X. Zheng, X. Long, Z. Wang, J. Wang, J. Xu and S. Yang, Small, 2015, 11, 2269–2274.
- 32 J. S. Yeo, R. Kang, S. Lee, Y. J. Jeon, N. S. Myoung, C. L. Lee, D. Y. Kim, J. M. Yun, Y. H. Seo, S. S. Kim and S. I. Na, *Nano Energy*, 2015, **12**, 96–104.
- 33 H. Li, L. Tao, F. Huang, Q. Sun, X. Zhao, J. Han, Y. Shen and M. Wang, ACS Applied Materials and Interfaces, 2017, 9, 38967–38976.
- Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang and H. Lin, *Journal of Materials Chemistry A*, 2015, 3, 15996–16004.
- 35 E. Jokar, Z. Y. Huang, S. Narra, C. Y. Wang, V. Kattoor, C. C. Chung and E. W. G. Diau, *Advanced Energy Materials*, 2018, **8**, 1701640.

- 36 M. Batmunkh, C. J. Shearer, M. J. Biggs and J. G. Shapter, *Journal of Materials Chemistry A*, 2016, **4**, 2605–2616.
- J. Geng and T. Zeng, *Journal of the American Chemical Society*, 2006, **128**, 16827–16833.
- 38 J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, *Energy & Environmental Science*, 2015, 8, 2928–2934.
- 39 C. Sun and D. J. Searles, *Journal of Physical Chemistry C*, 2012, **116**, 26222–26226.
- 40 G. H. Kim, H. Jang, Y. J. Yoon, J. Jeong, S. Y. Park, B. Walker, I. Y. Jeon, Y. Jo, H. Yoon, M. Kim, J. B. Baek, D. S. Kim and J. Y. Kim, *Nano Letters*, 2017, **17**, 6385–6390.
- 41 X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu and H. Chen, *ACS Applied Materials* and Interfaces, 2016, **8**, 33649–33655.
- 42 I. Jeon, S. Seo, Y. Sato, C. Delacou, A. Anisimov, K. Suenaga, E. I. Kauppinen, S. Maruyama and Y. Matsuo, *Journal of Physical Chemistry C*, 2017, **121**, 25743–25749.
- 43 K. T. Cho, G. Grancini, Y. Lee, D. Konios, S. Paek, E. Kymakis and M. K. Nazeeruddin, *ChemSusChem*, 2016, 9, 3040–3044.
- 44 N. Balis, A. A. Zaky, C. Athanasekou, A. M. Silva, E. Sakellis, M. Vasilopoulou, T. Stergiopoulos, A. G. Kontos and P. Falaras, *Journal of Photochemistry and Photobiology A: Chemistry*, 2020, **386**, 112141.
- M. Li, W.-W. Zuo, Q. Wang, K.-L. Wang, M.-P. Zhuo, H. Köbler, C. E. Halbig, S. Eigler, Y.-G. Yang, X.-Y. Gao, Z.-K. Wang, Y. Li, A. Abate, M. Li, K. Wang, M. Zhuo, Z. Wang, W. Zuo, Q. Wang, H. Köbler, A. Abate, Y. F. Li, C. E. Halbig, S. Eigler, Y. Yang and X. Gao, *Advanced Energy Materials*, 2020, 10, 1902653.
- 46 H. Li, L. Tao, F. Huang, Q. Sun, X. Zhao, J. Han, Y. Shen and M. Wang, *ACS Applied Materials and Interfaces*, 2017, **9**, 38967–38976.
- Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang and H. Lin, *Journal of Materials Chemistry A*, 2015, 3, 15996–16004.
- 48 S. Ameen, M. S. Akhtar, M. Nazim, E. B. Kim, M. K. Nazeeruddin and H. S. Shin, *Electrochimica Acta*, 2019, **319**, 885–894.
- 49 Y. G. Kim, K. C. Kwon, Q. van Le, K. Hong, H. W. Jang and S. Y. Kim, *Journal of Power* Sources, 2016, **319**, 1–8.
- 50 E. L. Lim, C. C. Yap, M. H. H. Jumali, M. A. M. Teridi and C. H. Teh, *Nano-Micro Letters*, 2018, **10**, 1–12.
- 51 Y. Xiao, C. Wang, K. K. Kondamareddy, P. Liu, F. Qi, H. Zhang, S. Guo and X. Z. Zhao, *Journal of Power Sources*, 2019, **422**, 138–144.
- 52 Y. Sheng, Y. Hu, A. Mei, P. Jiang, X. Hou, M. Duan, L. Hong, Y. Guan, Y. Rong, Y. Xiong and H. Han, *Journal of Materials Chemistry A*, 2016, **4**, 16731–16736.

- 53 H. Zhang, H. Wang, S. T. Williams, D. Xiong, W. Zhang, C. C. Chueh, W. Chen and A. K. Y. Jen, *Advanced Materials*, 2017, **29**, 1606608.
- 54 J. Liu, Q. Zhou, N. K. Thein, L. Tian, D. Jia, E. M. J. Johansson and X. Zhang, *Journal of Materials Chemistry A*, 2019, **7**, 13777–13786.
- 55 Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang and S. Yang, Energy & Environmental Science, 2014, 7, 3326–3333.
- 56 H. Chen, X. Zheng, Q. Li, Y. Yang, S. Xiao, C. Hu, Y. Bai, T. Zhang, K. S. Wong and S. Yang, *Journal of Materials Chemistry A*, 2016, 4, 12897–12912.
- 57 H. Chen and S. Yang, *Advanced Materials*, 2017, **29**, 1603994.
- 58 T. Umeyama, D. Matano, S. Shibata, J. Baek, S. Ito and H. Imahori, *ECS Journal of Solid State Science and Technology*, 2017, **6**, M3078–M3083.
- 59 Q. Q. Ye, Z. K. Wang, M. Li, C. C. Zhang, K. H. Hu and L. S. Liao, ACS Energy Letters, 2018, 3, 875–882.
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang and L. Han, *Science*, 2019, 365, 687–691.
- 61 R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue and Y. Yang, *Advanced Functional Materials*, 2019, **29**, 1808843.
- 62 S. Y. Luchkin, A. F. Akbulatov, L. A. Frolova, M. P. Griffin, A. Dolocan, R. Gearba, D. A. V. Bout, P. A. Troshin and K. J. Stevenson, ACS Applied Materials and Interfaces, 2017, 9, 33478–33483.
- 63 S. Bae, S. Kim, S. W. Lee, K. J. Cho, S. Park, S. Lee, Y. Kang, H. S. Lee and D. Kim, *Journal* of *Physical Chemistry Letters*, 2016, 7, 3091–3096.
- 64 M. Batmunkh, T. J. Macdonald, C. J. Shearer, M. Bat-Erdene, Y. Wang, M. J. Biggs, I. P. Parkin, T. Nann, J. G. Shapter, M. Batmunkh, M. J. Biggs, C. J. Shearer, M. Bat-Erdene, J. G. Shapter, T. J. Macdonald, I. P. Parkin, Y. Wang and T. Nann, *Advanced Science*, 2017, 4, 1600504.
- 65 M. Batmunkh, C. J. Shearer, M. Bat-Erdene, M. J. Biggs and J. G. Shapter, *ACS Applied Materials and Interfaces*, 2017, **9**, 19945–19954.
- 66 C. Tian, K. Kochiss, E. Castro, G. Betancourt-Solis, H. Han and L. Echegoyen, *Journal of Materials Chemistry A*, 2017, **5**, 7326–7332.
- T. Mahmoudi, Y. Wang and Y. B. Hahn, *Advanced Energy Materials*, 2020, **10**, 1903369.
- 68 C. Tian, E. Castro, G. Betancourt-Solis, Z. Nan, O. Fernandez-Delgado, S. Jankuru and L. Echegoyen, *New Journal of Chemistry*, 2018, **42**, 2896–2902.
- 69 G. Namkoong, A. A. Mamun and T. T. Ava, *Organic Electronics*, 2018, 56, 163–169.
- J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez and A. Hagfeldt, *Advanced Materials*, 2016, 28, 5031–5037.

- 71 J. v. Milić, N. Arora, M. I. Dar, S. M. Zakeeruddin and M. Grätzel, *Advanced Materials Interfaces*, 2018, **5**, 1800416.
- 72 C. Wu, K. Wang, Y. Yan, D. Yang, Y. Jiang, B. Chi, J. Liu, A. R. Esker, J. Rowe, A. J. Morris, M. Sanghadasa and S. Priya, *Advanced Functional Materials*, 2019, **29**, 1804419.
- 73 S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen and M. Chhowalla, ACS Nano, 2010, 4, 3169–3174.
- 74 W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang and Z. B. He, *Advanced Energy Materials*, 2018, 8, 1703519.
- 75 J. Cao, Y. M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y. Z. Tan and N. Zheng, *Journal of the American Chemical Society*, 2015, **137**, 10914–10917.
- 76 R. Ishikawa, S. Watanabe, S. Yamazaki, T. Oya and N. Tsuboi, ACS Applied Energy Materials, 2019, 2, 171–175.
- M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. Delongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J. B. Bonekamp, A. J. J. M. van Breemen, C. Girotto, E. Voroshazi and F. C. Krebs, *Solar Energy Materials and Solar Cells*, 2011, 95, 1253–1267.
- 78 A. K. Baranwal, S. Kanaya, T. A. N. Peiris, G. Mizuta, T. Nishina, H. Kanda, T. Miyasaka, H. Segawa and S. Ito, *ChemSusChem*, 2016, 9, 2604–2608.
- 79 F. Zhang, X. Yang, M. Cheng, W. Wang and L. Sun, *Nano Energy*, 2016, 20, 108–116.
- S. Gholipour, J. P. Correa-Baena, K. Domanski, T. Matsui, L. Steier, F. Giordano, F. Tajabadi,
 W. Tress, M. Saliba, A. Abate, A. Morteza Ali, N. Taghavinia, M. Grätzel and A. Hagfeldt,
 Advanced Energy Materials, 2016, 6, 1601116.
- 81 X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang and M. Wang, *Nano Letters*, 2015, 15, 2402–2408.
- 82 R. Dileep, G. Kesavan, V. Reddy, M. K. Rajbhar, S. Shanmugasundaram, E. Ramasamy and G. Veerappan, *Solar Energy*, 2019, **187**, 261–268.
- X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu and H. Chen, *ACS Applied Materials and Interfaces*, 2016, **8**, 33649–33655.
- J. Geng and T. Zeng, *Journal of the American Chemical Society*, 2006, **128**, 16827–16833.
- 85 G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. de Angelis, M. Graetzel and M. K. Nazeeruddin, *Nature Communications 2017 8:1*, 2017, 8, 1–8.
- 86 X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu and H. Chen, *ACS Applied Materials and Interfaces*, 2016, **8**, 33649–33655.
- 87 K. Cao, J. Cui, H. Zhang, H. Li, J. Song, Y. Shen, Y. Cheng and M. Wang, *Journal of Materials Chemistry A*, 2015, **3**, 9116–9122.

- 88 Q. Luo, H. Ma, Y. Zhang, X. Yin, Z. B. Yao, N. Wang, J. Li, S. Fan, K. Jiang and H. Lin, *Journal of Materials Chemistry A*, 2016, 4, 5569–5577.
- 89 P. Liu, Y. Gong, Y. Xiao, M. Su, S. Kong, F. Qi, H. Zhang, S. Wang, X. Sun, C. Wang and X. Z. Zhao, *Chemical Communications*, 2018, 55, 218–221.
- 90 B. Zong, W. Fu, Z. an Guo, S. Wang, L. Huang, B. Zhang, H. Bala, J. Cao, X. Wang, G. Sun and Z. Zhang, *Journal of Colloid and Interface Science*, 2019, **540**, 315–321.
- 91 X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu and J. M. Liu, *Journal of Materials Chemistry C*, 2019, 7, 3852–3861.
- 92 S. Wang, H. Liu, H. Bala, B. Zong, L. Huang, Z. an Guo, W. Fu, B. Zhang, G. Sun, J. Cao and Z. Zhang, *Electrochimica Acta*, 2020, **335**, 135686.