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Figure S1. SEM images of the freeze-dried Gelatin/x GTA-KCl-FeCN4-/3- i-TE gels (rv = 3.0) 

a) x = 0 mM. b) x = 0.1 mM. c) x = 0.3 mM. d) x = 0.5 mM. 
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Figure S2. Tensile stress-strain curves for Gelatin/ x GTA-KCl-FeCN4-/3- (x = 0, 0.2, 0.4, 0.6 

and 0.8 mM, rv = 3.0). 
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Figure S3. Comparison of the  of Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 2.8) with that 𝑃𝑚𝑎𝑥

of the reported quasi-solid-state i-TE cells. 
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Figure S4. a) Voltage and b) output power density versus current density for the optimal sample 

Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 2.8) | Au/Cu i-TE cell under different TH (TH 

= 40, 42, 44, 46, and 48 ℃) with a fixed TC = 21 ℃.
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Figure S5. The as-fabricated i-TE cell is assembled as Au/Cu | i-TE | Au/Cu structure with a 

PDMS mold. The dimension of the i-TE cell is 15 × 15 × 1.8 mm. The i-TE material is Gelatin/x 

GTA-0.8 M KCl-0.42/0.25 M FeCN4-/3-. The concentrations of KCl and GTA are fixed at 0.8 

M and 0.42/0.25 M, according to the optimal concentration in our previous work.1 The x and 

the volume ratio of water to gelatin (rv) are adjusted in this work. 
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Figure S6. The output power density of the Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 

2.8) | Au/Cu i-TE cells with different thicknesses.
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Figure S7. SEM image of the 3D microflower Au/Cu electrode
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Figure S8. Cyclic voltammetry (CV) curves of Au/Cu | Gelatin-KCl-FeCN4-/3-  (rv = 3) | Au/Cu 

and Pt | Gelatin-KCl-FeCN4-/3- | Pt i-TE cells at a rate of 50 mV K-1. The scanning voltage range 

is from -1.0 V to +1.0 V. The anodic and cathodic peaks near 0.2 V and -0.2 V is the redox 

reaction peaks of FeCN4-/3-. The detailed study of Au/Cu electrodes has been illuminated in our 

previously reported work.6
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Figure S9. The effect of the Au/Cu electrodes on the thermopower of Au/Cu | Gelatin-KCl-

FeCN4-/3- (rv = 3) | Au/Cu. a) Three different sizes of the Au/Cu electrodes. b) The thermopower 

measurement of Au/Cu electrodes with different sizes. The Au/Cu electrodes with different 

sizes show a comparable thermopower near 17 mV K-1. The results are corresponding to our 

previous work, indicating that the Au/Cu electrodes have no significant effect on the 

thermopower.
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Figure S10. Voltage and output power density versus current density for the as-fabricated 

Au/Cu | Gelatin/x GTA-KCl-FeCN4-/3- (rv = 3) | Au/Cu i-TE cell under different TH  with a fixed 

TC = 21 °C. a) and b) x = 0.4 mM, TH = 30, 32, and 34 ℃. c) and d) x = 0.5 mM, TH = 32, 34, 

and 36 ℃. e) and f) x = 0.6 mM, TH = 34, 36, and 38 ℃. The TC is set at 21 ℃ according to the 

suggested temperature in our previous work,6 because the lower TC results in higher internal 

resistance and lower .6,7𝑃𝑚𝑎𝑥
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Figure S11. Voltage and output power density versus current density for the as-fabricated 

Au/Cu | Gelatin/x GTA-KCl-FeCN4-/3- (rv = 3) | Au/Cu i-TE cell under different TH  with a fixed 

TC = 21 °C. a) and b) x = 0.7 mM, TH = 36, 38, and 40 ℃. c) and d) x = 0.8 mM, TH = 38, 40, 

and 42 ℃. e) and f) x = 0.9 mM, TH = 40, 42, and 44 ℃. 
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Figure S12. Thermopower measurement of the Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- 

(rv = 3) | Au/Cu and Au/Cu | Gelatin/0.9 mM GTA-KCl-FeCN4-/3- (rv = 3) | Au/Cu i-TE cells. 
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Figure S13. a) The TH,max and Pmax of the Au/Cu | Gelatin/x mM GTA-KCl-FeCN4-/3- (rv = 3) | Au/Cu, 

x =0.9, 2, and 3 mM. b) Thermopower measurement of the Au/Cu | Gelatin/ x mM GTA-KCl-FeCN4-/3- 

(rv = 3) | Au/Cu i-TE cells, x =0.9, 2, and 3 mM.
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Figure S14. Voltage and output power density versus current density for the as-fabricated 

Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (at different rv) | Au/Cu i-TE cell under different 

TH  with a fixed TC = 21 °C. a) and b) rv  = 3, TH = 38, 40, and 42 ℃. c) and d) rv  = 2.9, TH = 
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40, 42, and 44 ℃. e) and f) rv  = 2.8, TH = 42, 44, and 46 ℃. g) and h) rv  = 2.7, TH = 43, 45, 

and 47 ℃.
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Figure S15. Thermopower measurement of the as-fabricated Au/Cu | Gelatin/0.8 mM GTA-

KCl-FeCN4-/3- (rv = 2.8) | Au/Cu and Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 2.7)| 

Au/Cu i-TE cells. 
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Figure S16. a) Voltage and b) output power density versus current density for the optimal 

sample Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 2.8) | Au/Cu i-TE cell under different 

TH (40, 42, 44, 46, and 48 ℃) with a fixed TC = 21 ℃.
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Figure S17. The internal resistance for the as-fabricated  Au/Cu | Gelatin/0.8 mM GTA-KCl-

FeCN4-/3- (rv = 2.8) | Au/Cu i-TE cell under different TH (40, 42, 44, 46 and 48 °C) with a fixed 

TC = 21 °C.
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Figure S18. The thermopower and output power fluctuation of the Au/Cu | Gelatin/0.8 mM 

GTA-KCl-FeCN4-/3- (rv = 2.8) | Au/Cu i-TE cell after bending 20 times.
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Figure S19. Thermopower measurement of the as-fabricated Au/Cu | Gelatin/x GTA-KCl-

FeCN4-/3- (rv = 3) | Au/Cu i-TE cells (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 mM).
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Figure S20. Thermopower measurement of a) the as-fabricated Au/Cu | Gelatin/x GTA-0.8 M 

KCl (rv = 3) | Au/Cu i-TE cells and b) Au/Cu | Gelatin/x GTA-0.42/0.25 M FeCN4-/3- (rv = 3) | 

Au/Cu i-TE cells (x = 0, 0.1, 0.3, 0.5, and 0.7 mM).
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Figure S21. Thermopower measurement of the as-fabricated Au/Cu | Gelatin/0.5 mM GTA-

KCl-FeCN4-/3- (rv =2.6, 2.8, 3.0, 3.2, and 3.4) | Au/Cu i-TE cells.
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Figure S22. Schematic illustration for the Gelatin-KCl-FeCN4-/3- i-TE capacitor working mode. 

There are four stages totally: (i) voltage build-up, (ii) capacitor charging, (iii) equilibration, and 

(iv) capacitor discharge. This mode was adopted by several groups, such as Crispin et al. at 

Linköping University,8 Yu et al. at Texas A&M University,9 and Jang et al. at UNIST.10
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Figure S23. a) The measured voltage curve for the as-fabricated  Au/Cu | Gelatin/0.8 mM GTA-

KCl-FeCN4-/3- (rv = 2.8) | Au/Cu i-TE cell at ΔT = 23 K (temperature range: from 21 °C to 44 

°C). The load resistance in (ii) and (iv) stages is 3000 Ω. The comparison of b) power density 

and c) energy density using the i-TE capacitor and i-TE generator modes, respectively. The 

power density measurement for the i-TE generator is the (ii) stage called power output in Figure 

5a and for the i-TE capacitor is the (iv) stage called capacitor discharge in Figure S17. The 

energy density is the integral of power density over corresponding time. 
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Figure S24. The comparison of a) measured voltage curves and b) output energy density in 2 h 

for the two as-fabricated i-TE cells: Au/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 2.8) | 

Au/Cu and Pt/Cu | Gelatin/0.8 mM GTA-KCl-FeCN4-/3- (rv = 2.8) | Pt/Cu at ΔT = 23 K 

(temperature range: from 21 °C to 44 °C).
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Figure S25. The comparison of power output density for 2 h on the first, second, third, and 

fourth day (cycle) using two long-time cyclic working modes. a) Working-rest mode. b) 

Continuous-working mode. 
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