Supplemental Information

## Self-Flooding Behaviors on Fuel Cell Catalyst Surface: An In-

## Situ Mechanism Investigation

Yingze Yang<sup>a, +</sup>, Jingshan Qin<sup>a, +</sup>, Kadi Hu<sup>b</sup>, Liang Luo<sup>a\*</sup>, Anuj Kumar<sup>c</sup>, Daojin Zhou<sup>a</sup>, Zhongbin Zhuang<sup>d</sup>, Hui Li<sup>b\*</sup>, and Xiaoming Sun<sup>a\*</sup>

|             | Pt     | Pt*   | O <sub>OH</sub> - | H <sub>OH</sub> - | O <sub>H3O+</sub> | $H_{\rm H3O^+}$ | O <sub>H2O</sub> | O <sub>H2O</sub> |
|-------------|--------|-------|-------------------|-------------------|-------------------|-----------------|------------------|------------------|
| ε(kcal/mol) | 15.718 | 4.000 | 0.158             | 0                 | 0.156             | 0               | 0.155            | 0                |
| σ(Å)        | 2.542  | 2.542 | 3.214             | 0                 | 3.214             | 0               | 3.166            | 0                |
| charge      | 0      | 0     | -1.35             | 0.35              | -0.4166           | 0.4722          | -0.8476          | 0.4238           |

Table. S1 Interaction parameters between atoms and the charge distribution.



**Fig. S1** (a) Digital image and (b) SEM image of the Pt-coated ITO electrode, inset: the water droplet contact angle. (c) Elementary mapping of Pt.



Fig. S2 (a) Polarization curve and (b) AC impedance curve of the Pt-coated ITO electrode.



**Fig. S3** (a) The configuration of in situ monitoring of bubble consumption process based on microscopy with side-view perspective. Snapshots of the processes bubble consumption on (b) aerophobic and (c) areophilic electrode.



**Fig. S4** Comparison of background currents of ORR on aerophobic and aerophilic electrode surfaces in (a) acidic and (b) alkaline medium.



**Fig. S5** (a) SEM images and water contact angles of smooth (up) and rough (bottom) electrodes. (b) Typical snapshots of bubble/electrode interface during ORR in alkaline electrolytes at different time points with the roughness factor of 4.6. Time-dependent variation of (c) current and (d) droplet coverage  $\eta$  ( $\eta$ =(*s*-*s*')/*s*) with smooth and rough electrodes.



Fig. S6 (a) Variations of bubble/electrode interfaces at different pH value from 13 to 11. Time-dependent variations of (b) current and (c) droplet coverage  $\eta$ .



**Figure S7.** (a) Magnified digital image of the as-formed droplets at the bubble/electrode interface. (b) A typical snapshot of bubble/electrode interface during the self-flooding process. (c) Statistical graph of the size and proportion of the droplets generated along with the distance from the edge of the bubble to the droplets.



**Fig. S8** The flooding phenomena and influence on current in alkaline ORR with Nafion. (a) Typical snapshots of bubble/electrode interface during ORR in alkaline electrolytes at different time points with the Nafion and aerophobic surfaces. (b) Time-dependent current variations of the aerophobic, Nafion-modified and aerophilic surfaces. Inset, bubble contact angles of the three electrodes. (c) Fitted lines of net area (s') with current on the three electrodes.



**Fig. S9** The flooding phenomena and influence on current in acidic HOR with Nafion. (a) Typical snapshots of bubble/electrode interface during HOR in acidic electrolytes at different time points with the Nafion and aerophobic surfaces. (b) Time-dependent current variations of the aerophobic and Nafion-modified surfaces. (c) Fitted lines of net area (s') with current on the two electrodes.



Fig. S10 (a) Typical snapshots of bubble/electrode interface during ORR in alkaline electrolyte at

different time with thick-layer ionomer binding. (b) Plot of current (I) with time on the thick-layer ionomer binding surface.



**Fig. S11** The variations of the bubble/electrode interface after stopping the reaction at 20 s, upper panel: typical snapshots.



**Fig. S12** (a) Initial structure of the simulation system. The size of the whole box is 29.04nm×3.92nm×10nm. The gray and yellow particle are all Pt atoms with different interaction parameters. There are 9120 H<sub>2</sub>O molecules in the box. (b) and (c) The position of H<sub>3</sub>O<sup>+</sup> be placed.



**Fig. S13** Snapshots of droplet nucleation on the electrode surface for alkaline ORR. The simulation temperature is set at 430K for first 25ns, and then adjusted to 300K at a 10K/ns speed.



**Fig. S14** Snapshots of droplet nucleation on the electrode surface for acidic HOR. The simulation temperature is set at 430K for first 15ns, and then adjusted to 300K at a 10K/ns speed.