Supporting Information

Directing the Research Agenda on Water and Energy Technologies with Process and Economic Analysis

Boreum Lee,¹ Li Wang,¹ Zhangxin Wang,² Nathanial J. Cooper,¹ and Menachem Elimelech^{1,*}

¹Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA

²School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China

* Corresponding author.

Note S1. Calculation of Extractable Energy.

The energy that can be extracted by mixing river water and seawater is limited by the Gibbs free energy of mixing, ΔG_{mix} , which can be calculated by

$$\Delta G_{mix} = vRT \left[c_M \ln \left(c_M \right) - \gamma c_B \ln \left(c_B \right) - (1 - \gamma) c_D ln^{(m)}(c_D) \right]$$
(S1)

where v is the van't Hoff factor (v = 2 for NaCl solutions), γ is the volume ratio of brine solution over the total volume of both brine and dilute solutions, and c_M , c_B , and c_D are concentrations of final mixed solution, brine concentration, and dilute concentration, respectively. Note that ΔG_{mix} is the specific maximum energy that can be extracted normalized by the total volume of brine and dilute solutions.

Table S1. Summary of extractable energy achieved by various technologies

Technology	Extractable Energy (kWh m ⁻³)	Reference
PRO	0.125	(Yip and Elimelech, 2014)
	0.153	(Yip and Elimelech, 2014)
RED	0.088	(Yip and Elimelech, 2012)
	0.094	(Yip and Elimelech, 2012)
	0.101	(Yip and Elimelech, 2012)
	0.111	(Yip and Elimelech, 2012)
NPG	0.020	(Wang et al., 2021)
	0.025	(Wang et al., 2022)

Technology	Power density (W m ⁻²)	Reference
PRO	2.4	(Yip and Elimelech, 2014)
	3.7	(Yip and Elimelech, 2014)
	6.1	(Tiraferri et al., 2011)
	5.5	(Wang et al., 2010)
	15.2	(Song et al., 2013)
	21.3	(Song et al., 2013)
	1.16	(Yip and Elimelech, 2014)
DED	1.75	(Yip and Elimelech, 2014)
KED	3.45	(Yip and Elimelech, 2014)
	6.32	(Vermaas et al., 2012)
	3.9	(Hwang et al., 2016)
	4.6	(Chen et al., 2020)
	5.1	(Zhang et al., 2020)
NPG	7.7	(Kim et al., 2010)
	22.4	(Li et al., 2021)
	33.2	(Li et al., 2021)
	67	(Liu et al., 2020)

 Table S2. Summary of power density achieved by various technologies

Table S3. Summary of levelized cost of electricity (LCOE) achieved by various technologies

Technology	LCOE (\$ kWh ⁻¹)	Reference
PRO	0.3	(Lee et al., 1981)
	1.0	(Newby et al., 2021)
	1.2	(Makabe et al., 2021)
	2.37	(Newby et al., 2021)
	6.3	(Weiner et al., 2015)
	7.13	(Weiner et al., 2015)
	1.14	(Giacalone et al., 2019)
	1.52	(Giacalone et al., 2019)
	1.56	(Giacalone et al., 2019)
	1.89	(Giacalone et al., 2019)
RED	5.83	(Yip et al., 2016)
	5.88	(Giacalone et al., 2019)
	6.56	(Yip et al., 2016)
	7.85	(Giacalone et al., 2019)
	0.09	(Mudgal et al., 2019)
	0.25	(Benti et al., 2022)
Solar	0.3	(Benti et al., 2022)
	0.4	(Yip et al., 2016)
	0.6	(Musi et al., 2017)
	0.048	(Dao et al., 2019)
	0.050	(Anonymous, n.d.)
	0.057	(Dao et al., 2019)
Wind	0.061	(Dao et al., 2019)
	0.066	(Ashuri et al., 2014)
	0.093	(Dao et al., 2019)
	0.142	(Dao et al., 2019)

Note S2. Calculation of thermodynamic energy efficiency

From literature (Lin, 2020), the Gibbs free energy per volume of product water, Δg_w , can be calculated as

$$\Delta g_{w} = \pi_{0} \{ \frac{1}{WR} \ln \left[\frac{1 - WR(1 - SR)}{1 - WR} \right] - (1 - SR) \ln \left[\frac{1 - WR(1 - SR)}{(1 - SR)(1 - WR)} \right] \}$$
(S2)

where π_0 is the osmotic pressure of the feed, WR is the water recovery, and SR is the salt rejection.

With the Δg_{w} , the thermodynamic energy efficiency, TEE, can be calculated as

$$TEE = \frac{\Delta g_w}{SEC}$$
(S3)

where *SEC* is the specific energy consumption per volume of product water.

References

Anonymous. Lazard.Com | Levelized Cost of Energy and of Storage 2020. n.d. Available from: https://www.lazard.com/perspective/levelized-cost-of-energy-levelizedcost-of-storage-and-levelized-cost-of-hydrogen-2020/ [Last accessed: 12/17/2022].

Ashuri T, Zaaijer MB, Martins JRRA, et al. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renew Energy 2014;68:893–905; doi: 10.1016/J.RENENE.2014.02.045.

Benti NE, Mekonnen YS, Asfaw AA, et al. Techno-Economic Analysis of Solar Energy System for Electrification of Rural School in Southern Ethiopia. http://www.editorialmanager.com/cogenteng 2022;9(1); doi: 10.1080/23311916.2021.2021838.

Chen J, Xin W, Kong XY, et al. Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett 2020;5(3):742–748; doi: 10.1021/ACSENERGYLETT.9B02296/ASSET/IMAGES/MEDIUM/NZ9B02296_M004.GI F.

Dao C, Kazemtabrizi B and Crabtree C. Wind Turbine Reliability Data Review and Impacts on Levelised Cost of Energy. Wind Energy 2019;22(12):1848–1871; doi: 10.1002/WE.2404.

Giacalone F, Papapetrou M, Kosmadakis G, et al. Application of Reverse Electrodialysis to Site-Specific Types of Saline Solutions: A Techno-Economic Assessment. Energy 2019;181:532–547; doi: 10.1016/J.ENERGY.2019.05.161.

Hwang J, Kataoka S, Endo A, et al. Enhanced Energy Harvesting by Concentration Gradient-Driven Ion Transport in SBA-15 Mesoporous Silica Thin Films. Lab Chip 2016;16(19):3824–3832; doi: 10.1039/C6LC00844E.

Kim DK, Duan C, Chen YF, et al. Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels. Microfluid Nanofluidics 2010;9(6):1215–1224; doi: 10.1007/S10404-010-0641-0/TABLES/3.

Li C, Wen L, Sui X, et al. Large-Scale, Robust Mushroom-Shaped Nanochannel Array Membrane for Ultrahigh Osmotic Energy Conversion. Sci Adv 2021;7(21); doi: 10.1126/SCIADV.ABG2183/SUPPL_FILE/ABG2183_SM.PDF.

Lin S. Energy Efficiency of Desalination: Fundamental Insights from Intuitive Interpretation. Environ Sci Technol 2020; doi: 10.1021/ACS.EST.9B04788/ASSET/IMAGES/LARGE/ES9B04788_0001.JPEG.

Liu X, He M, Calvani D, et al. Power Generation by Reverse Electrodialysis in a Single-Layer Nanoporous Membrane Made from Core–Rim Polycyclic Aromatic Hydrocarbons. Nature Nanotechnology 2020 15:4 2020;15(4):307–312; doi: 10.1038/s41565-020-0641-5.

Makabe R, Ueyama T, Sakai H, et al. Commercial Pressure Retarded Osmosis Systems for Seawater Desalination Plants. Membranes 2021, Vol 11, Page 69 2021;11(1):69; doi: 10.3390/MEMBRANES11010069.

Mudgal V, Reddy KS and Mallick TK. Techno-Economic Analysis of Standalone Solar Photovoltaic-Wind-Biogas Hybrid Renewable Energy System for Community Energy Requirement. Future Cities and Environment 2019;5(1); doi: 10.5334/FCE.72/METRICS/.

Musi R, Grange B, Sgouridis S, et al. Techno-Economic Analysis of Concentrated Solar Power Plants in Terms of Levelized Cost of Electricity. AIP Conf Proc 2017;1850(1):160018; doi: 10.1063/1.4984552.

Newby AN, Bartholomew T v. and Mauter MS. The Economic Infeasibility of Salinity Gradient Energy via Pressure Retarded Osmosis. ACS ES&T Engineering 2021;1(7):1113–1121; doi: 10.1021/ACSESTENGG.1C00078.

Song X, Liu Z and Sun DD. Energy Recovery from Concentrated Seawater Brine by Thin-Film Nanofiber Composite Pressure Retarded Osmosis Membranes with High Power Density. Energy Environ Sci 2013;6(4):1199–1210; doi: 10.1039/C3EE23349A.

Tiraferri A, Yip NY, Phillip WA, et al. Relating Performance of Thin-Film Composite Forward Osmosis Membranes to Support Layer Formation and Structure. J Memb Sci 2011;367(1–2):340–352; doi: 10.1016/J.MEMSCI.2010.11.014.

Vermaas DA, Guler E, Saakes M, et al. Theoretical Power Density from Salinity Gradients Using Reverse Electrodialysis. Energy Procedia 2012;20:170–184; doi: 10.1016/J.EGYPRO.2012.03.018.

Wang L, Wang Z, Patel SK, et al. Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable. ACS Nano 2021;15(3):4093–4107; doi: 10.1021/ACSNANO.0C08628/ASSET/IMAGES/MEDIUM/NN0C08628_M046.GIF.

Wang R, Shi L, Tang CY, et al. Characterization of Novel Forward Osmosis Hollow Fiber Membranes. J Memb Sci 2010;355(1–2):158–167; doi: 10.1016/J.MEMSCI.2010.03.017.

Wang Z, Wang L and Elimelech M. Viability of Harvesting Salinity Gradient (Blue) Energy by Nanopore-Based Osmotic Power Generation. Engineering 2022;9:51–60; doi: 10.1016/J.ENG.2021.02.016.

Weiner AM, McGovern RK and Lienhard V. JH. A New Reverse Electrodialysis Design Strategy Which Significantly Reduces the Levelized Cost of Electricity. J Memb Sci 2015;493:605–614; doi: 10.1016/J.MEMSCI.2015.05.058.

Yip NY, Brogioli D, Hamelers HVM, et al. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Environ Sci Technol 2016;50(22):12072–12094; doi: 10.1021/ACS.EST.6B03448/ASSET/IMAGES/LARGE/ES-2016-03448C_0008.JPEG.

Yip NY and Elimelech M. Thermodynamic and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis. Environ Sci Technol 2012;46(9):5230–5239; doi:

10.1021/ES300060M/SUPPL_FILE/ES300060M_SI_001.PDF.

Yip NY and Elimelech M. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis. Environ Sci Technol 2014;48(18):11002–11012; doi:

10.1021/ES5029316/SUPPL_FILE/ES5029316_SI_001.PDF.

Zhang Z, He L, Zhu C, et al. Improved Osmotic Energy Conversion in Heterogeneous Membrane Boosted by Three-Dimensional Hydrogel Interface. Nature Communications 2020 11:1 2020;11(1):1–8; doi: 10.1038/s41467-020-14674-6.