Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supplementary information

A tailored electrolyte for safe and durable potassium ion batteries

Ling Fan^{1†}*, Huabin Xie^{1†}, Yanyao Hu¹, Zhuoma Caixiang¹, Apparao M. Rao², Jiang Zhau³, Dingan Lul^{*}

Zhou³, Bingan Lu^{1*}

¹School of Physics and Electronics, Hunan University, Changsha, 410083, P. R. China.

²Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA.

³School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China.

[†]These authors contributed equally to this work.

*Corresponding author. Email: fanling@hnu.edu.cn (L. Fan); luba2012@hnu.edu.cn (B. Lu)

Fig. S1. The self-extinguishing time (SET) of the electrolytes with 1 M KFSI in various solvents.

3 M KFSI-DME

 $0.8 \text{ M KPF}_6\text{-}\text{EC:}\text{DEC}$

0.8 M KFSI-EC:DEC

Fig. S2. The flame tests of a highly concentrated electrolyte and the commonly used potassium ion electrolytes.

Fig. 3. Fluctuations of total energy and temperature of the electrolytes during simulations. (a) The 5 ps pre-equilibrium process and (b) the 10 ps production process of 1 M KFSI-TEP electrolyte. (c) The 5 ps pre-equilibrium process and (d) the 10 ps production process of 1 M KFSI-FTEP electrolyte.

Fig. S4. The percentage of solvents coordinated to $\mathbf{K}^{\!\!+}$ in the two electrolytes.

Fig. S5. The LUMO-HOMO energy levels and the electrostatic potential (ESP) maps of various molecules and complexes.

Fig. S6. The plating/stripping profiles of K||Cu cells with an areal capacity of 0.5 mAh cm^{-2} under 0.1 mA cm^{-2} .

Fig. S7. (a) The cycling performance of the K||Cu cells with different electrolytes at a current density of 0.5 mA cm⁻² and areal capacity of 2 mAh cm⁻². (b) The Aurbach efficiency of K||Cu cells with different electrolytes.

Fig. S8. The K plating/stripping voltage profiles of K||K symmetric cells with the two electrolytes.

Fig. S9. The summarized capacity–voltage plots of different anode materials^{37-43, 46}. Note: The dotted lines 1, 2, and 3 represent the isoenergy density curve of the required average voltage and capacity of an anode to achieve the energy density of graphite (capacity of 279 mAh g⁻¹ and average voltage of 0.15 V). The isoenergy density curve is calculated as reported in previous literature⁷. Dotted line 1: Coupled with KVOPO₄ cathode⁴⁴ (capacity of 115 mAh g⁻¹ and average voltage of 3.65 V). Dotted line 2: Coupled with K_{0.5}MnO₂ cathode⁴⁵ (capacity of 127 mAh g⁻¹ and average voltage of 2.95 V). Dotted line 3: Coupled with PTCDA cathode¹⁰ (capacity of 131 mAh g⁻¹ and average voltage of 2.4 V). When coupled with the above cathodes to assemble full cells, the energy density of a full cell with graphite as the anode is higher than that with most reported anode materials.

Fig. S10. (a) The charge-discharge profiles of graphite electrode with 1 M KFSI-FTEP as the electrolyte. (b) The rate performance of the graphite electrode with the two electrolytes.

Fig. S11. The electrochemical impedance spectroscopy (EIS) of graphite electrodes with the two electrolytes. (a) In 1 M KFSI-TEP electrolyte. (b) In 1 M KFSI-FTEP electrolyte.

Clearly, the overall interfacial resistance of K||graphite cells in 1 M KFSI-TEP electrolyte are firstly shifts to lower values (from the fresh cell to the 5th cycles), and then it was increased from the 5th cycles to 20th cycles. The decreased interfacial resistance is likely because of the activation and the SEI formation process during the initial cycles, while the increase of interfacial resistance after 20 cycles is might be due to the continuously decomposition of electrolyte and formation of thick SEI, which is detrimental to its electrochemical performance. In contrast, the overall interfacial resistance of K||graphite cells in 1 M KFSI-FTEP electrolyte are continuously shifts to lower values with cycles, possibly caused by a more favorable activation process, and the low interfacial resistance is conducive to achieving excellent electrochemical performance.

Fig. S12. The SEM image of bare Cu foil.

Fig. S13. The SEM images of Cu foil after plating or stripping with the two electrolytes. (a and b) After plating. (c and d) After stripping. (a and c) 1 M KFSI-FTEP electrolyte. (b and d) 1 M KFSI-TEP electrolyte.

Fig. S14. The SEM images of graphite electrodes before and after different cycles with the two electrolytes. (a) Pristine graphite. (b) Graphite electrode after different cycles with 1 M KFSI-FTEP electrolyte. (c) Graphite electrode after different cycles with 1 M KFSI-TEP electrolyte.

Fig. S15. Elemental mappings and elemental counts of graphite electrodes after 5 cycles with the two electrolytes. (a) 1 M KFSI- FTEP electrolyte. (b) 1 M KFSI- TEP electrolyte. (c) Elemental counts of graphite electrodes with two electrolytes.

Fig. S16. The full survey XPS of the graphite electrode after 5 cycles with the two electrolytes. (a) 1 M KFSI- FTEP electrolyte. (b) 1 M KFSI- TEP electrolyte.

Fig. S17. (**a**) The atomic ratios of P, F, and S elementals on graphite electrodes at different depths after 5 cycles. (**b**) The atomic ratios of S:P on graphite electrodes at different depths after 5 cycles.

Fig. S18. The XPS characterizations of the graphite electrode after 50 cycles with the two electrolytes. (a and b) P2p and (c and d) F1s XPS depth profiles of graphite electrode after 50 cycles with different electrolytes. (a and c) 1 M KFSI-FTEP electrolyte. (b and d) 1 M KFSI-TEP electrolyte. (e) The atomic ratios of P, F, and S elementals on graphite electrodes at different depths after 50 cycles. (f) The atomic ratios of S:P on graphite electrodes at different depths after 50 cycles.

Obviously, compared to the 1 M KFSI-TEP electrolyte, the graphite electrode with 1 M KFSI-FTEP electrolyte exhibits a lower P2p XPS peak intensity while a higher KF peak intensity of F1s XPS. These results indicating that the decomposition of TEP solvent is more severe than that of FTEP solvent, similar to the XPS results of 5 cycles.

Fig. S19. The charge profile of Mn-PBA cathode with 1 M KFSI-TEP electrolyte.

Electrolytes	1 M KFSI-FTEP	1 M KFSI-TEP
Ionic conductivities	0.75 mS cm^{-1}	6.14 mS cm^{-1}

Table S1. The ionic conductivities of various electrolytes.

Table S2 The summary of graphite performance with various electrolytes.

Electrolytes	Running	Capacity	Reversible	Rate performance	CE
	time	retention	capacity		(%)
	(month)				
1 M KFSI-	26	~82.2%	$241 \text{ mAh } g^{-1}$	291, 274, 216, 108, 77, 54 mAh	~99.4
FTEP (This		after	after 1732	$g^{\scriptscriptstyle -1}$ at 50, 100 , 200 , 300, 400,	
work)		1732	cycles at 50	500 mA g^{-1}	
		cycles	$mA g^{-1}$		
0.8 M	0.19	$\sim 50.8\%$	$100 \text{ mAh } \text{g}^{-1}$	263, 234, 172, 80 mAh g ⁻¹ at	~ 99
KPF ₆ /EC-		after 50	after 50 cycles	C/10, C/5 , C/2 , 1C	
DEC ^{S1}		cycles	at140 mA g^{-1}		
1.0 m KFSI	0.75	~91.3%	$272 \text{ mAh } \mathrm{g}^{-1}$	277, 266, 254, 248, 241, 235,	Not
TMP +6		after 100	after 100	228 mAh g $^{-1}$ at 0.2 , 0.4 , 0.8,	give
wt%DTD ^{S2}		cycles	cycles at 100	1.2, 1.6, 2, 2.4C	
			$mA g^{-1}$		
0.8 m KPF_6	0.9	~76.9%	${\sim}200 \ mAh \ g^{{-1}}$	391.8, 315.6, 286.1, 223.9,	~95
EC/DEC ^{S3}		after 250	after 250	156.9, 124.7, 76.1 mAh g ⁻¹ at	
		cycles	cycles at 200	0.05, 0.1, 0.2, 0.5, 0.8, 1.0, 2.0	
			$mA g^{-1}$	A g^{-1}	
1.5 M KFSI	1.7	~90.9%	$202 \text{ mAh } \mathrm{g}^{-1}$	~ 243, 230, ~224, ~206, 190	~99.9
PC/TEG ^{S4}		after 400	after 400	mAh g ⁻¹ at 0.025C, 0.1C, 0.2C,	
		cycles	cycles at 140	0.5C, 1C	
			$mA g^{-1}$		
1 mol KFSA	2	~82%	$202 \text{ mAh } \mathrm{g}^{-1}$	Not give	Not
EC:DEC ^{S5}		after 100	after 100		give
		cycles	cycles at 28		
			$mA g^{-1}$		
0.5 M KPF ₆	2.8	~77%	$181 \text{ mAh } \mathrm{g}^{-1}$	272, ~240, ~225, ~179, 60, 23	~99.9
EC/DEC		after 400	after 400	mAh g ⁻¹ at C/20, C/10, C/5,	
+0.2 wt%		cycles	cycles at 93	C/2, 1C, 2C	
KDFP ^{S6}			$mA g^{-1}$		
1 M KPF ₆	6	~80%	$220 \text{ mAh } g^{-1}$	Not give	~99
EC DME ^{S7}		after 500	after 500		
		cycles	cycles at 50		
			$mA g^{-1}$		

1 m KPF ₆	6.1	~89.1%	$246 \text{ mAh } \text{g}^{-1}$	253, 212, 156, 79, 11 mAh g ⁻¹	~99.5
EC/PC ^{S8}		after 200	after 200	at 20, 50, 100, 200, 500 mA $\rm g^{-1}$	
		cycles	cycles at 20		
			$mA g^{-1}$		
7 mol kg ⁻¹	0.23	~85.3%	$232 \ mAh \ g^{-1}$	Not give	ICE:
KFSI		after 50	after 50 cycles		80.8
DME ^{S9}		cycles	at 140 mA g^{-1}		
2 M KFSI	4.1	~90.2%	$248 \text{ mAh } \mathrm{g}^{-1}$	280, 270, 250, 200, 150, 45	99.7
TEP ^{S10}		after 300	after 300	and 275 mAh g^{-1} at 0.1C, 0.2C,	
		cycles	cycles at 55	0.5C, 1C, 2C, 5C and 0.1C	
			$mA g^{-1}$		
7 mol kg^{-1}	8.6	~92.7%	$\sim 241 \text{ mAh } g^{-1}$	282, ~278, ~274, ~261, 258,	Not
KFSA/DME		after 300	after 300	253 mAh g ⁻¹ at C/10, C/5, C/2,	give
S11		cycles	cycles at 25	1C, 2C, 5C	
			$mA g^{-1}$		
KFSI:EMC=	17	~99.2%	$253 \text{ mAh } \mathrm{g}^{-1}$	Not give	99.9
(1:2.5) \$12		after	after 2000		
		2000	cycles at C/3		
		cycles	mA g ⁻¹		
KFSI:TMP	24	~74.2%	${\sim}230 \text{ mAh } g^{-1}$	~275, ~269, ~246, ~170, ~103,	99.6
$= 3:8^{S13}$		after 50	after 2000	~51 mAh g ⁻¹ at 0.1C, 0.2C,	
		cycles	cycles at 55	0.5C, 1C, 2C, 5C	
			$mA g^{-1}$		

Table S3. The atomic contents of P and	S elements obtained from the SEM EDS
--	--------------------------------------

Electrolytes/	1 M KFSI-FTEP	1 M KFSI-TEP	1 M KFSI-FTEP	1 M KFSI-TEP
Elements	after plating	after plating	after stripping	after stripping
Р	0.13	4.04	0.15	1.56
S	0.80	3.60	1.21	1.59

of	Cu	electrodes	in	different	electr	olytes.
----	----	------------	----	-----------	--------	---------

Table S4.	The atomic	contents of	of P an	d S	elements	obtained	from	the	SEM	EDS

Electrolytes/	1 M KFSI-FTEP	1 M KFSI-TEP	1 M KFSI-FTEP	1 M KFSI-TEP
Elements	after 5 cycles	after 5 cycles	after 50 cycles	after 50 cycles
Р	0.04	3.45	0.22	4.14
S	0.41	1.41	1.01	2.10

of graphite electrodes in different electrolytes.

References

- S1. Z. Jian, W. Luo and X. Ji, J. Am. Chem. Soc., 2015, 137, 11566-11569.
- S2. G. Liu, Z. Cao, L. Zhou, J. Zhang, Q. J. Sun, J. Y. Hwang, L. Cavallo, L. M. Wang, Y. K. Sun and J. Ming, *Adv. Funct. Mater.*, 2020, **30**, 2001934.
- S3. D. Wang, L. Li, Z. Zhang, J. Liu, X. Guo, C. Mao, H. Peng, Z. Li and G. Li, Small, 2021, 17, e2103557.
- S. Q. Liu, L. C. Meyer, L. Medenbach and A. Balducci, *Energy Storage Mater.*, 2022, 47, 534-541.
- S5. M. Shimizu, T. Koya, A. Nakahigashi, N. Urakami, T. Yamakami and S. Arai, J. Phys. Chem. C, 2020, 124, 13008-13016.
- S6. H. Yang, C. Y. Chen, J. Hwang, K. Kubota, K. Matsumoto and R. Hagiwara, ACS Appl. Mater. Interfaces, 2020, 12, 36168-36176.
- S7. M. Gu, L. Fan, J. Zhou, A. M. Rao and B. Lu, ACS Nano, 2021, 15, 9167-9175.
- S8. J. Zhao, X. X. Zou, Y. J. Zhu, Y. H. Xu and C. S. Wang, Adv. Funct. Mater., 2016, 26, 8103-8110.
- S9. X. B. Niu, L. Li, J. L. Qiu, J. Y. Yang, J. Huang, Z. R. Wu, J. Zou, C. Jiang, J. Gao and L. P. Wang, Solid State Ionics, 2019, 341.
- S10. S. Liu, J. Mao, Q. Zhang, Z. Wang, W. K. Pang, L. Zhang, A. Du, V. Sencadas,
 W. Zhang and Z. Guo, *Angew. Chem. Int. Ed.*, 2020, 59, 3638-3644.
- S11. T. Hosaka, K. Kubota, H. Kojima and S. Komaba, *Chem. Commun.*, 2018, **54**, 8387-8390.
- S12. L. Fan, R. Ma, Q. Zhang, X. Jia and B. Lu, Angew. Chem. Int. Ed., 2019, 58, 10500-10505.
- S13. S. Liu, J. Mao, L. Zhang, W. K. Pang, A. Du and Z. Guo, Adv. Mater., 2021, 33, e2006313.