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I. Methods detail

I-1. Preparation

Chemicals Nickel chloride (Sigma-Aldrich, >98 %), cobalt chloride (Sigma-Aldrich, >97 %), zinc chloride 

(Sigma-Aldrich, >98 %), magnesium chloride (Sigma-Aldrich, >98 %), vanadium chloride (Sigma-Aldrich, >97 

%), iron chloride (Sigma-Aldrich, >97 %), aluminium chloride (Sigma-Aldrich, >98 %), urea (Sigma-Aldrich, 

>99.5 %), sodium carbonate (Sigma-Aldrich, >99.5 %), sodium hydroxide (Sigma-Aldrich, >98 %), potassium 

hydroxide (Sigma-Aldrich, >85%), perfluorinated resin solution containing Nafion™ 1100W (Sigma-Aldrich), 

hydrochloric acid (Sigma-Aldrich, >37 %), potassium nitrate (Sigma-Aldrich, >99 %), potassium nitrite (Sigma-

Aldrich, >96 %), dimethyl sulfoxide (DMSO, Sigma-Aldrich, anhydrous, >99.9%), deuterium oxide (Sigma-

Aldrich, >99.9 atom % D), salicylic acid (Sigma-Aldrich, >99 %), sodium citrate monobasic (Sigma-Aldrich, >99 

%),  sodium hypochlorite (Sigma-Aldrich, 6-14 % active chlorine), sodium nitroferricyanide (Sigma-Aldrich, 

>99 %), sulfanilamide (Sigma-Aldrich, >99 %), N-(1-Naphthyl) ethylenediamine dihydrochloride (Sigma-

Aldrich, >99 %), sulfamic acid (Sigma-Aldrich, >99.3 %). All reagents were used as received in air without further 

purification.

I-2. Structural characterizations

The powder X-ray diffraction (PXRD) spectra were gained using a Bruker D8 Discovery instrument using Cu Kα 

radiation (λ = 1.5406 Å) from 2 = 3° to 70° with a 0.02° step size. Infrared spectra were collected on a Vertex 

80 Spectrometer, equipped with a high performance DuraSamp1IR II diamond accessory of attenuated total 

reflection (ATR) mode with a range of 600 cm–1 ~ 4000 cm–1. The ex situ synchrotron X-ray absorption 

measurements were performed at 10 C beamline of Pohang Accelerator Laboratory (PAL, Republic of Korea), 

and a calibration of each metal K-edge spectrum was accomplished by employing the reference spectrum from 

the corresponding each metal foil. The X-ray Photon Spectroscopy (XPS) results were obtained by using the K-

alpha instrument (Thermo Scientific) equipped with the Al K micro-focused X-ray monochromator (1487 eV). 

Nitrogen adsorption–desorption isotherms and pore-size distribution were recorded at 77.4 K in a Micrometric 

Tristar surface characterization analyzer. Samples were degassed at 80 °C for 12 hours under vacuum prior to 

analysis. The UV-Vis spectrum was obtained using a V-570 UV-vis spectrometer (Jasco, Japan). The transmission 

electron microscopy (TEM) images were gained by a JEM-ARM200F model (JEOL LTD., Japan) and the Cs-
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corrected scanning TEM (STEM) measurements were performed for the energy dispersive X-ray spectrometer 

(EDS) mapping images using a BRUKER QUANTAX EDS. The ESR data were taken by X-band (9.48 GHz) 

ESR spectrometer (JEOL, JES-FA200) operating at room temperature. 
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II. Supplementary structural characterisations

Fig. S1 | A schematic image of layered double hydroxide structure. In the cationic layers, different types of 
metal cations can be included in LDH structure.
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Fig. S2 | PXRD patterns for different LDHs. 
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Fig. S3 | NH3 productivity and faradaic efficiency (%) using pure ZnO/Cu foam electrode. Electrocatalysis 

reactions was operated at 1 M KOH electrolyte with 5 mM of KNO3 at –0.2 V (vs RHE). 
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Fig. S4 | FT-IR spectrum of the Ni3Fe-CO3 LDH.
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Fig. S5 | TGA curve of the Ni3Fe-CO3 LDH. 
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Fig. S6 | (a) Ni K-edge and (b) Fe K-edge FT-EXAFS of the Ni3Fe-CO3 LDH with selected reference 

materials.
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Fig. S7 | TEM and HR-TEM images of the Ni3Fe-CO3 LDH. 
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Fig. S8 | (a) N2 adsorption-desorption isotherm and (b) pore size distribution of the Ni3Fe-CO3 LDH.
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Fig. S9 | Determining the amount of NH3 and NO2
–. (a) UV-vis absorption spectrum changes of NH3 amount. 

(b) Calibration curve. (y = a*x + b, a = 0.014, b = 0.07082, COD = 0.998) (c) UV-vis absorption spectrum changes 
of [NO2

–]. (d) Calibration curve. (y = a*x + b, a = 0.1211, b = 0.0047, COD = 0.9999) (e) UV-vis absorption 
spectrum as function of [NO3

–] . (e) Calibration curve. (y = a*x + b, a = 0.04053, b = –0.04301, COD = 0.9999)
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III. Supplementary electrochemical analysis

Fig. S10 | LSV curves for Ni3Fe-CO3 LDH/Cu foam and Cu foam with/without KNO3
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Fig. S11 | i-t curve depending on the different concentration of KNO3.
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Fig. S12 | (a) Time-dependent product variation analysis and (b) LSV curves of the Ni3Fe-CO3 LDH/Cu 
foam before electrochemical NitRR and after 50 min of reaction under 1 M KOH with 5 mM KNO3.
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IV. Supplementary X-ray techniques

Fig. S13 | Ex-situ Cu K-edge XAS analysis. (a) Cu K-edge XANES spectra and (b) Cu K-edge EXAFS spectra 
before/after electrochemical nitrate reduction. The after-RXN sample has analysed after 1 cycle of electrochemical 
reaction conducted by chronoamperometric technique for an hour at –0.2 V (vs RHE) in 1 M KOH with 5 mM of 
KNO3.
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Fig. S14 | Ex-situ Ni K-edge XAS analysis. (a) Ni K-edge XANES spectra and (b) Ni K-edge EXAFS spectra 
before/after electrochemical nitrate reduction. The after-RXN sample has analysed after 1 cycle of the 
electrochemical reaction conducted by chronoamperometric technique for an hour at –0.2 V (vs RHE) in 1 M 
KOH with 5 mM of KNO3.
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Fig. S15 |  Ex-situ Fe K-edge XANES spectrum before/after electrochemical nitrate reduction. The after-
RXN sample has analysed after 1 cycle of the electrochemical reaction conducted by chronoamperometric 
technique for an hour at –0.2 V (vs RHE) in 1 M KOH with 5 mM of KNO3.
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Fig. S16 | Cu 2p XPS for Cu foam electrode.
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Fig. S17 | Fe 2p XPS for the Ni3Fe-CO3 LDH/Cu foam electrode before/after electrochemical nitrate 
reduction. The after-RXN sample has analysed after 1 cycle of electrochemical reaction conducted by 
chronoamperometric technique for an hour at –0.2 V (vs RHE) in 1 M KOH with 5 mM of KNO3.
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Fig. S18 | CV curves for Ni3Fe-CO3 LDH/Cu foam and Cu foam under 1M KOH.
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Fig. S19 | Tafel slopes for Ni3Fe-CO3 LDH/Cu foam and Cu foam under 1M KOH.
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Fig. S20 | ESR spectra of the solutions obtained by (a) the Ni3Fe-CO3 LDH/Ni foam, Ni foam electrodes, (b) 
the Ni3Fe-CO3 LDH/C paper and C paper in presence of 50 mM DMPO in 1 M KOH. (c) ESR spectra 
comparison depending on the different supporting materials. The electrochemical reaction was conducted 
by chronoamperometric technique for an hour to trap the radicals.
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VI. Supplementary table

Table S1 | Lattice parameters and basal spacing for the synthesised LDHs.

Lattice parameters (Å)a Crystal domain size (Å)Sample d003 (Å)

a c c-axis ab-plane

Ni3Al-CO3 7.76 3.04 23.28 182.60 223.66

Ni3V-CO3 7.56 3.08 22.66 68.78 134.36

Ni3Fe-CO3 7.83 3.09 23.48 122.38 184.56

Ni3Co-CO3 7.88 3.12 23.65 44.75 134.36

Co3Al-CO3 7.70 3.08 23.10 131.23 170.86

Co3V-CO3 7.71 3.12 23.12 119.43 231.87

Co3Fe-CO3 7.61 3.12 22.82 174.75 276.06

Zn3Al-CO3 7.62 3.07 22.85 172.83 275.69

Zn3V-CO3 6.89 3.10 20.66 194.07 281.32

Zn3Fe-CO3 6.92 3.19 20.77 115.51 288.68

Mg3Al-CO3 7.74 3.05 23.21 137.58 207.63

Mg3Fe-CO3 7.83 3.11 23.48 177.14 259.91

a Indexed to unit cell, a = b ≠ c; α = β = γ = 90°
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Table S2 | Fitted resistance results from Nyquist plots in Fig. 4b.

Analysis condition
Resistance

Ni3Fe-CO3 LDH/Cu foam (Ω) Cu foam (Ω)

R1 0.576 1.123 

R2 0.277 3.658 

R3 1.789 n/a
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Table S3 | NO3
– concentration, operating voltage, faradaic efficiency and half-cell energy efficiency in Fig. 

5e.

# of reference Catalyst/
electrode

NO3
– conc. 

(mM)
Operating 

voltage
(V vs RHE)

Faradaic 
efficiency

(%)

Energy 
efficiency

(%)
5 Fe single 

atom/glassy carbon
500 –0.66 75.0 21.4

10 CoP NAs/carbon 
fiber cloth

1000 –0.30 97.5 34.4

13 BCN@Cu/carbon 
paper

100 –0.60 88.9 26.2

14 Pd doped 
TiO2/carbon cloth

250 –0.70 92.1 25.8

15 Fe cyano-
coordinated polymer 

NSs/carbon fiber 
paper

100 –0.50 90.2 30.6

16 NiCo2O4 NW/carbon 
cloth

100 –0.60 95.0 28.0

18 CoOx/carbon cloth 200 –0.30 93.4 33.0

20 Pd onto Vulcan 
carbon/glassy carbon

20 –0.20 35.1 13.25

23 Co deoped 
Fe/Fe2O3/Ni foam

5 –0.74 85.2 23.3

24 Pd-Cu2O 
CEO/carbon paper

0.5 –0.64 96.6 27.8

39 Cu/Cu2O NWAs/Cu 
mesh

2 –0.85 95.8 24.9

43 CoFe LDH/Ni foam 14 –0.45 97.7 31.4

44 Cu-PTCDA/carbon 
cloth

5 –0.40 85.9 28.5

45 TiO2-x/carbon paper 0.5 –0.94 85.0 21.1

46 Fe doped Cu/glassy 
carbon

2 –0.74 94.5 25.9

47 Cu2O/Cu/carbon felt 2.5 –0.25 84.4 30.8

48 RuxOy onto Ni-
MOF/Ni foam

0.5 –0.30 73.0 25.8

53 CoAl LDH/carbon 
cloth

100 -0.7 82.1 22.9

This work 5 –0.20 96.8 36.6


