Electronic Supplementary Information (ESI) for

Emerging concepts in intermediate carbon dioxide emplacement to support carbon dioxide removal

Hanna Marie Breunig,*^a Fabian Rosner,^a Tae Lim,^a and Peng Peng^a

^aEnergy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. E-mail: <u>hannabreunig@lbl.gov</u>

Table of Contents

- 1. Details on materials excluded from analysis
- 2. Storage tank specifications
- 3. Additional results of transportation analysis

5 pp.

2 tables

1. Details on materials excluded from analysis

Currently, our understanding of SiCO₄ is very limited and it appears that SiCO₄ is not thermodynamically stable under ambient conditions. High pressures of 18 GPa and temperatures of around 470 °C are needed to form SiCO₄ from SiO₂.¹ Aluminium carbonate has some uses in medicine, where $Al_2(CO_3)_3$ is used as an anti-acid for acid reflux, stomach inflammation, and ulcers; however, chemists argue that it only exists in solution and decomposes into $AI(OH)_3$ and CO_2 when trying to isolate it. Iron(II) carbonate commonly forms on steel and iron surfaces leaving an iron carbonate scale. Its CO₂ mass fraction is 38.0 CO_2 wt.-% and its CO_2 -density is 1482 kg/m³. FeCO₃ can be regenerated upon heating the salt to 500–733 $^{\circ}$ C which results in the formation of Fe₃O₄ and a mixture of CO and CO₂.² Closing the carrier loop with iron is more challenging compared to alkaline earth metals as Fe_3O_4 does not readily react with CO_2 . The Fe_3O_4 would need to be converted to $FeCl_2$ or elemental iron in order to close the carbonate loop. The existence of pure titanium carbonate is not sufficiently documented and might only exist in a meta stable form. Manganese carbonate is a common fertilizer and food additive with a CO₂ mass fraction of 38.3 CO₂ wt.-% and a CO₂-density of 1195 kg/m³. Upon heating to 100–300 °C in an oxygen free atmosphere, MnCO₃ decomposes into MnO and CO₂. However, in the presence of O₂, MnO oxidizes to the more stable MnO_2 . Converting MnO back to carbonate without air exposure will be challenging. No information on bicarbonates were found for Si, Al, Fe, Ti and Mn compounds. Ammonium carbonate has a relatively high CO₂ mass fraction with 45.8 CO₂ wt.-% and a CO₂-density of 687 kg/m³ despite its low overall density of 1500 kg/m³. Problematic for the storage of $(NH_4)_2CO_3$ is that it slowly decomposes at standard temperature and pressure to form bicarbonate (when exposed to air) or directly NH_3 , CO_2 and H_2O . Ammonium bicarbonate has a slightly higher CO_2 mass fraction with 55.7 CO_2 wt.-% and a CO_2 density of 883 kg/m³; however, (NH₄)HCO₃ decomposes at temperatures around 36 $^{\circ}C$,³ which makes both, $(NH_4)_2CO_3$ and $(NH_4)HCO_3$, not very suitable for CO_2 storage.

Strontium and barium carbonate are very dense compounds with high molecular masses. Their CO₂ mass fractions, and CO₂-densities are 29.8 CO₂ wt.-% and 22.3 CO₂ wt.-%, and 1043 kg/m³ and 956 kg/m³ respectively. The reaction enthalpies of the regeneration of these two carbonates are high (234.5 kJ/mol and 243.5 kJ/mol) which is detrimental from an energy efficiency perspective but hints at faster reaction kinetics of the CO₂ fixation process. Also, the CO₂ regeneration temperatures are high.^{4,5}

Methane can also be generated from CO_2 and H_2 , but as a gas it also comes with its own transportation issues, and is excluded from this analysis. Ethanol is also not included, as it is expected to be derived from biomass and not directly from CO_2 . Carbon dioxide can also react directly with elemental magnesium to form a carbon soot and magnesium oxide, but conversion back to CO_2 from elemental carbon would not be logical given the stability of carbon and the oxygen required.

Finally, ammonia is another H₂ carrier, which can react with CO₂ to form urea giving 73.3 CO₂ wt.-% (with the understanding CO is transported) under harsh conditions in a well-established production process (Equation 1).⁶ Urea has a very low density (0.73 kg/m³) and would be transported as a liquid. Urea's upstream ammonia production via the Haber-Bosch process requires high temperatures and pressures, which in combination require over 2% of the world's energy consumption.⁷ Therefore, developing novel pathways to produce urea under milder conditions (i.e., atmospheric) or from wastes and flue gas with less energy input, has been the focus in recent years.^{8–10} Urea has wide use in the industrial and agricultural sectors, as resin and fertilizer. Similar to methanol, the urea market is approximately 200 Mt globally.

 $2NH_3 + CO_2 \rightleftharpoons NH_2OCONH_4 \rightleftharpoons NH_2CONH_2 + H_2O$

Hydrogen production from urea is theoretically feasible via processes such as urea electrolysis.¹¹ Research has focused on ways to recover H_2 from the precursor ammonia, but so far the cracking of ammonia remains a challenge. However, if this challenge is solved, it is unclear what value would come from delivering CO_2 by way of urea. Lastly, due to the energy intensity of generating ammonia, and as the use of urea and nitrogen fertilizers can produce the greenhouse gas emission N_2O , rigorous life-cycle evaluation of the urea-based CO_2 storage pathways need to be evaluated.¹²

2. Storage Tank Specifications

	Weight	Volume			Safety	
	Capacity	Capacity	Height	Diameter	Spacing	Reference
	kg	m³	m	m	m	
Bulk solids	50,000	28	1.5	3	3	approximated
Bulk solids	~15,000,000	8,483	27	20	15	1
LCO₂	30,000	27	8.3	2.4	2.4	2
LCO₂	100,000	110	11.9	4	4	approximated
Methanol/FA	30	28	1.5	3	15	approximated
Methanol/FA	10,932,600	15,618	21	32	50	Cal Jet gasoline T-4 tank

Table S1. Storage tank or silo parameters used to estimate land footprint and number required. LCO₂: cryogenic liquid CO₂. FA: formic acid.

3. Additional Results of Transportation Analysis

This study conducts a first order analysis of the storage and transportation of carbon dioxide by means of pipeline, cryogenic liquid trucks, solid and liquid chemical carrier materials-based trucks, and adsorption-based trucks transporting CO₂ using MOF-packed trailers. A scenario was modelled where a region has 1 million tonnes of CO₂ capture per year that requires truck or pipeline transportation (Table S2). For pipeline, CO₂ is assumed to be transported at 150 atm and 40 °C. Liquid CO₂ is transported at 22 atm and -18 °C, giving 1022 kg/m³. Metal-organic framework-packed trailers store CO₂ at 55 atm and 25 °C. The number of trucks, and diesel consumed in the transport of this mass of CO₂ was estimated for candidate materials. The emissions associated with transportation were estimated to understand the

¹ Example bulk storage tank for mineral powder and gravel. 15,000 tons coal storage silo in Xinyang, China. www.silobuilder.com/project/six-silos-built-in-xinyang.html

² Example polyurethane insulated CO₂ storage tank. www.ascoco2.com/us/co2-and-dry-ice-equipment/co2-storage/polyurethane-insulation-co2-storage-tank

distance that could be travelled by truck before the stored CO_2 in the truck was exceeded by the direct emissions from diesel consumption. We refer to this as the breakeven distance.

Table S2 Key results of the CO₂ transportation analysis for a 1 MtCO₂/year regional hub for candidate materials, liquid CO₂ trucks (LCO₂), and pipeline. Modes of transport are sorted by break-even distance, which is how far a truck could travel before emitting more CO₂ that it carries and how far a pipeline could carry CO₂ at a rate of 1 MtCO₂/year before the emissions associated with recompression would exceed the amount transported.

	Gross	Gross		Number		
	weight	weight	CO2	of trucks	Energy	Break-even
Parameter	(outbound)	(inbound)	transported	needed	intensity	distance
	tonne/truck	tonne/truck	tonne/truck	trucks/day	MJ/tCO ₂ -km	km
Pipeline	-	-	-	-	0.15	63,358
Methanol	70	18	71.5	39	0.46	30,640
Formic acid	70	18	49.7	56	0.67	21,315
Oxalic Acid	70	19	49.5	56	0.68	21,076
LCO ₂ trucking	70	21	49.0	56	0.69	20,662
Future MOF	66	28	38.6	71	0.89	16,037
MOF	52	28	24.2	114	1.32	10,822
NaHCO ₃ /NaOH	70	43	26.5	104	1.42	9,996
MgCO ₃ /MgO	70	44	26.4	104	1.43	9,954
MgCO ₃ /Mg(OH) ₂	70	54	26.4	104	1.50	9,466
CaCO ₃ /CaO	70	48	22.3	123	1.73	8,227
CaCO₃/Ca(OH)₂	70	57	22.3	123	1.80	7,891
NaHCO ₃ /Na ₂ CO ₃	70	51	13.3	207	2.95	4,818

References

- 1. Santoro, M. *et al.* Silicon carbonate phase formed from carbon dioxide and silica under pressure. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 7689–7692 (2011).
- Luo, Y. H., Zhu, D. Q., Pan, J. & Zhou, X. L. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. *Trans. Institutions Min. Metall. Sect. C Miner. Process. Extr. Metall.* 125, 17– 25 (2016).
- Ammonium bicarbonate SDS, Safety Data Sheets ECHEMI. https://www.echemi.com/sds/ammonium-bicarbonate-pd20150901032.html.
- 4. Arvanitidis, I., Sichen, D. & Seetharaman, S. A study of the thermal decomposition of BaCO₃. *Metall. Mater. Trans. B* 1996 273 **27**, 409–416 (1996).
- 5. Ptáček, P. *et al.* The kinetics and mechanism of thermal decomposition of SrCO₃ polymorphs. *Ceram. Int.* **41**, 115–126 (2015).
- 6. de Kleijne, K., James, J., Hanssen, S. V. & van Zelm, R. Environmental benefits of urea production from basic oxygen furnace gas. *Appl. Energy* **270**, 115119 (2020).
- 7. Lv, C. *et al.* Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. *Nat. Sustain.* 2021 410 **4**, 868–876 (2021).
- 8. Chen, C. *et al.* Coupling N_2 and CO_2 in H_2O to synthesize urea under ambient conditions. *Nat. Chem. 2020 128* **12**, 717–724 (2020).
- 9. Koohestanian, E., Sadeghi, J., Mohebbi-Kalhori, D., Shahraki, F. & Samimi, A. A novel process for CO₂ capture from the flue gases to produce urea and ammonia. *Energy* **144**, 279–285 (2018).
- 10. Antonetti, E. *et al.* Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea). doi:10.1002/cssc.201601555.
- Desalegn, B. Z., Hern, K. & Gil Seo, J. Synergistically Interfaced Bifunctional Transition Metal Selenides for High-Rate Hydrogen Production Via Urea Electrolysis. (2021) doi:10.1002/cctc.202100969.
- 12. Hepburn, C. *et al.* The technological and economic prospects for CO₂ utilization and removal. *Nat.* 2019 5757781 **575**, 87–97 (2019).