Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Elucidating the Chirality Transfer Mechanisms During Enantioselective Synthesis for the Spin-Controlled Oxygen Evolution Reaction

Hayoung Im, Sunihl Ma, Hyungsoo Lee, Jaemin Park, Young Sun Park, Juwon Yun, Jeongyoub Lee, Subin Moon and Jooho Moon*

*E-mail: jmoon@yonsei.ac.kr

Keywords: CISS, chirality transfer, chiral inorganic oxide, oxygen evolution reaction, photoelectrochemical water splitting

Supplementary Figures

Figure S1. Full FTIR spectra of a) L-TA/Na₂CO₃/CoCl₂ and b) meso-TA/Na₂CO₃/CoCl₂ mixtures.

Figure S2. Absorbance of the L/D/meso-TA_CoO_x solution precursor.

Figure S3. SEM images of a) *L*-TA_CoO_x, b) *D*-TA_CoO_x, and c) *meso*-TA_CoO_x films on an ITO substrate.

Figure S4. Absorbance of the L/D/meso-CoO_x thin films on an ITO substrate.

Figure S5. a) Cross-sectional SEM image and b) plain-view image of a bare BVO sample.

Figure S6. SEM images of a) L-TA_CoO_x/BVO and b) *meso*-TA_CoO_x/BVO.

Figure S7. XRD patterns for the *L*-TA_CoO_x/BVO, *meso*-TA_CoO_x/BVO, and bare BVO films.

Figure S8. XPS spectra for the *L*-TA_CoO_x/BVO, *meso*-TA_CoO_x/BVO, and bare BVO films: a) Co 2p, b) O 1s, c) Bi 4f, d) V 2p, e) C 1s, and f) full spectra.

Figure S9. Raw data for the I-V curves recorded using magnetic conductive-probe AFM magnetized along the up or down magnetic field orientation at different positions: a-b) L-TA_CoO_x film and c-d) *meso*-TA_CoO_x film.

Figure S10. Calculated spin polarization as a function of the applied bias for the *L*-TA_CoO_x film scanned from -5 to 5 V. The error bars indicate the standard deviation.

Figure. S11. Tauc plot of L-TA_CoO_x/BVO, *meso*-TA_CoO_x/BVO, and bare BVO.

Figure S12. Estimated maximum absorbed photocurrent based on the light absorption (J_{abs}) calculated from the spectral radiance at AM 1.5G as well as the assumption of APCE=100%. The maximum absorbed photocurrent was estimated to 6.412 mA cm⁻² for *meso*-TA_CoO_x/BVO and 6.413 mA cm⁻² for *L*-TA_CoO_x/BVO.

Figure S13. a) Absorbance of *L*-TA_CoO_x/BVO, *meso*-TA_CoO_x/BVO_. b) SOR current density for *L*-TA_CoO_x/BVO, *meso*-TA_CoO_x/BVO, and bare BVO measured in 1 M KBi containing 0.2 M Na₂SO₃ (pH 9.0) under front-side 1-sun illumination at a scan rate of 20 mV s⁻¹.

Figure S14. Raw data for the IMPS spectra measured in a 1.0 M KBi electrolyte (pH 9) at various potentials for the a) L-TA_COO_x/BVO and b) *meso*-TA_COO_x/BVO photoanodes. Raw data for the IMVS response measured in a 1.0 M KBi electrolyte (pH 9) under various illumination intensities for the c) L-TA_COO_x/BVO and d) *meso*-TA_COO_x/BVO photoanodes.

Figure S15. Current density–voltage (J-V) plots for all BVO samples measured in a 0.1 M Na_2SO_4 solution (pH 6.5) under AM 1.5 G illumination (100 mW cm⁻²) with a scan rate of 15 mV s⁻¹.

Figure S16. Calibration curve for commercial hydrogen peroxide as a function of its concentration.

	ОН ;0,0; ,0,0; ,0,0; ,0,0; ,0-	OH HO ↓C Q OH OH OH	HO HO HO :0 -0:	HO C HO HO C C C C C C C C H C C C C C C C C C C C C C
	<i>L-</i> (+)-TA	L-(+)-TA · Na ₂ CO ₃ · CoCl ₂	meso-TA	$\begin{array}{c} \textit{meso-TA} \\ \text{Na}_2\text{CO}_3 \cdot \text{CoCl}_2 \end{array}$
v _s (C–O)	1089 cm ⁻¹	1070 cm ⁻¹	1104 cm ⁻¹	1079 cm ⁻¹
$v_{as}(C-O)$	1140 cm ⁻¹	1123 cm ⁻¹	1130 cm ⁻¹	1112 cm ⁻¹

Table S1. Frequencies of the IR absorption maxima of C-O bond in spectra of L/meso-TA andL/meso-TA/Na₂CO₃/CoCl₂ solution.