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MATERIALS AND METHODS

Sample preparation

The Mn-doped Mg3Bi2 samples were synthesized through a combined approach 

of mechanical alloying and spark plasma sintering (SPS). Magnesium turnings (Mg, 

99.98%, Acros Organics), bismuth shots (Bi, 99.999%, 5N Plus) and Manganese 

powders (Mn, 99.95%, Alfa Aesar) were weighed according to the composition of 

Mg3.4Bi2Mnx ( ), and were loaded into a stainless-steel ball milling jar in 0 ≤ 𝑥 ≤ 0.15

a glove box under an Ar atmosphere with an oxygen level of <1 ppm. After ball 

milling for 8 hours in a SPEX 8000M mixer, the ball-milled powders were loaded into 

a graphite die with an inner diameter of 12.7 mm, in the glove box. The graphite die 

with the loading powder was immediately sintered at 700°C under a pressure of 50 

MPa for 5 min via spark plasma sintering (SPS) (SPS-211Lx, Fuji Electronic 

Industrial Co. LTD). The SPS bulks were 12.7 mm in diameter, with a thickness of ~

8 mm.~

Sample characterization

The phase purity of the product was measured by powder X-ray diffraction 

(XRD) on a Rigaku D/Max-2550 instrument (Cu Kα radiation, , 18 𝜆 = 1.5418 Å

KW). The temperature-dependent thermal conductivity was measured adiabatically 

using the thermal transport option (TTO) on a Quantum Design Physical Property 

Measurement System (PPMS 14 Tesla) with one-heater and two-thermometer 

configuration. With the same option, the transverse and longitudinal thermopower 

were simultaneously measured adiabatically. We mounted the sample with transverse 

voltage leads, which were purposefully offset by a distance X from each other so that 

the longitudinal (Seebeck) and transverse (Nernst) voltage could both be measured. 

The heat flowed from left to right, and the thermometers T-hot and T-cold were 

mounted on the left and right leads located on the lower side of the sample. The V+ 

and V– leads measured the diagonal voltage component, and by measuring it as a 

function of the magnetic field in both the positive and negative fields, we could 

employ symmetry arguments to separate the longitudinal thermopower from the 



transverse thermopower. The longitudinal and Hall resistivities were measured using 

the electronic transport option (ETO) in PPMS using the standard four-probe method.

Usually, three possible defects in the Mn-doped Mg3Bi2 are considered, 

including (i) Mg tetrahedron-site (1/3, 2/3, 0.631) with 4 Sb-neighbors, (ii) Mg 

octahedron-site (0,0,0) with six Sb-neighbors and (iii) interstitial positions (2/3, 1/3, 

0.182) with 4 Mg-neighbor. According to the formation energy calculations (Figure 

S3), Mn prefers occupying the Mg-tetrahedral site (black lines in Figure S3). By using 

the defect of MnMg-tet, the Rietveld refinements of XRD were conducted using GSAS 

software with the trigonal lattice geometry of the space group P m1. The refined 3̅

parameters Chi2 are 5.721, 6.652, 5.859, 6.831, 6.773, 5.731 for x = 0, 0.025, 0.075, 

0.1, 0.125, and 0.15, respectively, in Mg3+δBi2:Mnx. The detailed refined 

crystallographic parameters of the obtained Mg3+δBi2:Mnx sample are list is Table S2-

S7.

Calculation methods

Electronic structure calculations were based on the density functional theory 

(DFT) plus the on-site repulsion (U) method [1] implemented in the Vienna ab initio 

simulation package (VASP) [2,3], where the exchange-correlation potential was 

treated by generalized gradient approximation (GGA) of the 

Perdew−Burke−Ernzerhof (PBE) functional [4] and the ionic potential was based on 

the projector augmented wave (PAW) method [5,6]. Owing to the strong relativistic 

effect in Bismuth, spin-orbit coupling (SOC) was also considered for the energy band 

dispersion calculations. The energy cutoff of the plane wave was set to 600 eV. The 

on-site Coulomb repulsion U and exchange parameter J were set to be 3 and 0 eV, 

respectively, for Mn 3d orbital. For Brillouin zone sampling, a  Gamma 19 × 19 × 9

centered K-point mesh was used for the 5-atom Mg3Bi2 unit cell for the original and 

strained structure calculations. The convergence criteria of the energy and force were 

set to  and 0.001 eVÅ−1, respectively. A  Gamma centered K-10 ‒ 6 𝑒𝑉 7 × 7 × 13

point mesh was used for the  supercell for the Mn doping Mg3Bi2 3 × 3 × 1



calculations, and the corresponding convergence criteria of the energy and force were 

set to  and 0.01 eVÅ−1, respectively. The tight-binding model Hamiltonian 10 ‒ 6 𝑒𝑉

adapted for the Wannier interpolation implemented in the WannierTools package [7,8] 

(i.e., electrical conductivity calculation) was constructed by the Wannier90 software 

[9] using the maximally localized Wannier function approach [10-12]. The s, p orbits 

of Mg, p orbits of Bi and s, d orbits of Mn were selected as the initial projectors for 

Wannier90 software. The irreducible representations and parities for high symmetric 

 points and lines of electronic states of original and strained Mg3Bi2 were analyzed �⃗�

through the open-source program Irvsp [13].

For Fig. 3E and 3F in the main text, we adopt the supercell method (i.e. one 

MnMg defect in a supercell) to simulate the translational symmetry breaking, and fully 

relax all the atoms to process the distortions induced by Mn doping. Then we use the 

“effective band structure” (EBS) method to unfold the E-k dispersion of the relaxed 

supercell with Mn doping into the spectrum density in the pristine BZ, capturing the 

disorder effect influencing the band structure. Energy band broadening effects are 

observed in this approach (see Fig. 3E and 3F).

The formation energies of Mn with respect to the chemical potential of Mg ( ) 𝜇𝑀𝑔

and Mn ( ) are calculated, including the tetrahedral site of Mg (MnMg-tet), 𝜇𝑀𝑛

octahedral site of Mg (MnMg-oct), and interstitial site (IMn). As shown in Figure S14, 

Mn prefers occupying the tetrahedral site of Mg (black line). The formation energies 

of the defect IMn are much larger than the other two types of point defects, i.e., MnMg-

tet and MnMg-oct in the Mg3Bi2.

Transport calculation methods

Generally the magnetoresistance (MR) can be expressed as:

,                     (S1)
𝑀𝑅 =

𝜌(𝐵) ‒ 𝜌(0)
𝜌(0)

× 100%

where  is the electrical resistivity.  is a function of the external magnetic 𝜌(𝐵) 𝜌(𝐵)

field , and it is the inverse of the electrical conductivity tensor  , that is:𝐵 𝜎



.                            (S2)𝜌 = 𝜎 ‒ 1

With the relaxation time approximation and the Boltzmann equation, taking into 

account the uniform magnetic field, the electrical conductivity tensor was formulated 

as:

,      (S3)
𝜎 = ∑
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where e is the element charge, is the  band energy at the  point in the 𝜖𝑛(𝑘) 𝑛𝑡ℎ 𝑘

Brillouin zone with the corresponding relaxation time ,  is the Fermi 𝜏[𝜖𝑛(𝑘)] 𝑓

distribution function of equilibrium state,  is the Fermi velocity, and  is a 𝑣𝑛(𝑘) �̅�𝑛(𝑘)
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The time evolution of the wave vector  followed:𝑘

𝑑𝑘𝑛(𝑡)

𝑑𝑡
=‒

𝑒
ℏ

𝑣𝑛(𝑘(𝑡)) × 𝐵.                                       (𝑆5)

Positive relationship between S and 𝜌

Without loss of generality, we consider a case where the temperature gradient is 

along the x direction (i.e., , ), and the magnetic field  is along ∇𝑥𝑇 ≠ 0 ∇𝑦𝑇 = ∇𝑧𝑇 = 0 𝐵

the z direction. The transverse thermopower  can be expressed as:𝑆𝑥𝑦

,                 (S6)
𝑆𝑥𝑦 =

𝐸𝑦

| ‒ ∇𝑥𝑇|
=

𝜎𝑥𝑦𝛼𝑥𝑥 + 𝜎𝑥𝑥𝛼𝑦𝑥

𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎 2
𝑥𝑦

where , , , and  are thermopower, electric field, thermoconductivity tensor and 𝑆 𝐸 𝛼 𝜎

electrical conductivity, respectively, with the subscripts (x, y) indicating the 

corresponding directions. Generally, the transverse electrical conductivity  is 𝜎𝑥𝑦



several orders of magnitude smaller than the longitudinal terms  and . Thus, the 𝜎𝑥𝑥 𝜎𝑦𝑦

transverse thermopower  can be approximately simplified as:𝑆𝑥𝑦

,                (S7)𝑆𝑥𝑦 ≈ 𝛼𝑦𝑥/𝜎𝑦𝑦 ≈ 𝛼𝑦𝑥 ∙ 𝜌𝑦𝑦

where  is the electrical resistivity.𝜌

Relaxation time approximation

Due to the general linear relationship of carrier mobility and relaxation time:

,                           (S8)
𝜇 =

𝑒𝜏

𝑚 *

where , ,  and  are carrier mobility, elementary charge, relaxation time and 𝜇 𝑒 𝜏 𝑚 *

effective mass, respectively, a longer relaxation time is expected. And the maximum 

 here is set to .𝐵𝜏 40(𝑇 ∙ 𝑝𝑠)



Fig. S1. XRD patterns of the obtained Mg3+δBi2:Mnx materials recorded at room 

temperature. The diffraction peaks of all the samples are well matched with the 

standard data of trigonal Mg3Bi2 (JCPDS No. 65-1909). The inset figure is the relative 

positions of (101) peak of Mg3+δBi2:Mnx, which gradually shifts to a lower degree 

with the increase of Mn content, indicating an increased cell parameters according to 

the Bragg equation.



Fig. S2. Rietveld refinement XRD patterns of Mg3+δBi2:Mnx with (a) x=0, (b) 

x=0.025, (c) x=0.075, (d) x=0.1, (e) x=0.125, and (f) x=0.15 based on the trigonal 

lattice geometry of the space group P m1.3̅



Fig. S3. Formation energies of Mn occupying the tetrahedral site of Mg (black line), 

octahedral site of Mg (red line), and interstitial site (blue line) with respect to the 

chemical potendital of (a) Mg and (b) Mn.



Fig. S4. Transverse power factor of Mn-doped Mg3+δBi2 sample with increasing 

magnetic field at 14 K.



Fig. S5. The MR of Mg3+δBi2:Mnx with (a) x = 0, (b) x = 0.025, (c) x = 0.075, (d) x = 

0.1, (e) x = 0.125, (f) x = 0.15 at different temperatures in a magnetic field between 

−14 and 14 Tesla.
 



Fig. S6. The Hall resistivity  of Mg3+δBi2:Mnx samples measured in the magnetic 𝜌𝑥𝑦

field range between -14 Tesla and 14 Tesla at 2 K.



Fig. S7. The temperature-dependent thermal conductivity  of the as-fabricated 𝜅𝑥𝑥

Mg3+δBi2:Mnx series samples in the temperature range of 2 - 275 K. The peak  near 𝜅𝑥𝑥

20 K was observed in all samples, which can be attributed to the phonon-phonon 

scattering process. With the increase of Mn content, the peak  gradually decreases 𝜅𝑥𝑥

from 19.49 Wm−1K−1 for sample #1 to 13.53 Wm−1K−1 for sample #6, suggesting that 

the introduction of Mn element brings the lattice defects and inhibits phonon 

transmission.



Fig. S8. The ratio of hole to electron concentration in the Mn-doped Mg3+δBi2 

samples at 2 K.



Fig. S9. Wannier charge center evolution for the 6 time reversal invariant  planes, i.e. �⃗�

(a) k1 = 0.0, Z2 = 1; (b) k1 = 0.5, Z2 = 0; (c) k2 = 0.0, Z2 = 1; (d) k2 = 0.5, Z2 = 0; (e) k3 

= 0.0, Z2 = 1; (f) k3 = 0.5, Z2 = 0. So the bulk Z2 topological number of pristine 

Mg3Bi2 is (1, 000), indicating its strong topological property.



Fig. S10. The first Brillouin zone, high symmetric  points and the corresponding -𝑘 𝑘

path (red dashed lines) for the band structure calculations. The two green dots along 

 direction are Dirac points. 𝑘𝑧



Fig. S11. The carrier concentrations of the obtained Mn-doped Mg3Bi2 samples at 

300K.



Fig. S12. ZT values of Mg3+δBi2:Mn0.1 sample in the temperature range between 2 K 

and 300 K.



Fig. S13. Hall resistivity of (a) Nb, (b) Cr, (c) Fe, and (d) Co doped Mg3+δBi2 

materials in the magnetic field range between -14 Tesla and 14 Tesla.



Fig. S14. The ionic radius of Nb, Cr, Mn, Fe, and Co, respectively. The red and blue 

represent the ionic radius of transition metal ions with four coordination and six 

coordination, respectively.



Fig. S15. M-T curves of Mg3+δBi2, Mg3+δBi2:Zn0.1 and Mg3+δBi2:Mn0.1 samples 

measured at 500Oe between 2 K and 300 K.



Fig. S16. M-H curves of Mg3.4Bi2, Mg3.4Bi2Zn0.1, Mg3.4Bi2Mn0.1 at 2 K between -

20000 Oe and 20000 Oe.



Fig. S17. DFT Calculated band structure (black line) and the fitted band structure 

with tight binding model (red line) implemented in Wannier90 package with SOC for 

Mn doping Mg3+δBi2 for tetrahedral substitution with a  supercell with 0.7% 3 × 3 × 1

tensile strain. The effective band structure (Figure 3f in the main text) is obtained by 

unfolding this band structure. And the transport calculations (MR in Figures 4a-4b in 

the main text) are also based on this band structure.



Fig. S18. Band structures of pristine Mg3Bi2 with various homogeneous tensile strains, 

i.e. (a) origin, (b) 1%, (c) 2% and (d) 3%. The Dirac point moves towards A point 

along the  line with the increase of the tensile strain.Γ ‒ 𝐴



Fig. S19. Band structures of pristine Mg3Bi2 with compressive strain, i.e. (a) -1%  

and (b) -2%. The Z2 topological gap increases with the compressive strain.



Fig. S20. PDOS of Mn doping Mg3Bi2 for each element, i.e., (a) Mn, (b) Mg, and (c) 

Bi. The occupied d orbitals of Mn locate in the deep energy level, more than 5 eV 

away from Fermi level. And the dominated components around the Fermi level are 

still Mg-s and Bi-p.



Fig. S21. Longitudinal Seebeck coefficient under different magnetic fields in a 

temperature range of 2-300 K.



Table S1. Nominal and actual components of the Mn-doped Mg3Bi2 series of samples.

Sample Nominal components Actual components

#1 Mg3.4Bi2 Mg3.145Bi2

#2 Mg3.4Bi2:Mn0.025 Mg3.101Bi2:Mn0.021

#3 Mg3.4Bi2:Mn0.075 Mg3.068Bi2:Mn0.066

#4 Mg3.4Bi2:Mn0.1 Mg3.054Bi2:Mn0.082

#5 Mg3.4Bi2:Mn0.125 Mg3.017Bi2:Mn0.120

#6 Mg3.4Bi2:Mn0.15 Mg2.907Bi2:Mn0.156



Table S2. Refined crystallographic parameters for Mg3+δBi2:Mnx (x = 0) with trigonal 

structure.

Mg3+δBi2:Mnx (x = 0)

Atom x y z Mult Occupancy Uiso

Bi 0.3333 0.6667 0.2350 2 1.0000 0.0250

Mg1 0.0000 0.0000 0.0000 1 1.0000 0.0250

Mg2 0.3333 0.6667 0.6300 2 1.0000 0.0250



Table S3. Refined crystallographic parameters for Mg3+δBi2:Mnx (x = 0.025) with 

trigonal structure.

Mg3+δBi2:Mnx (x = 0.025)

Atom x y z Mult Occupancy Uiso

Bi 0.3333 0.6667 0.2350 2 1.0000 0.0250

Mg1 0.0000 0.0000 0.0000 1 1.0000 0.0250

Mg2 0.3333 0.6667 0.6300 2 0.9875 0.0250

Mn2 0.3333 0.6667 0.6300 2 0.0125 0.0250



Table S4. Refined crystallographic parameters for Mg3+δBi2:Mnx (x = 0.075) with 

trigonal structure.

Mg3+δBi2:Mnx (x = 0.075)

Atom x y z Mult Occupancy Uiso

Bi 0.3333 0.6667 0.2350 2 1.0000 0.0250

Mg1 0.0000 0.0000 0.0000 1 1.0000 0.0250

Mg2 0.3333 0.6667 0.6300 2 0.9625 0.0250

Mn2 0.3333 0.6667 0.6300 2 0.0375 0.0250



Table S5. Refined crystallographic parameters for Mg3+δBi2:Mnx (x = 0.1) with 

trigonal structure.

Mg3+δBi2:Mnx (x = 0.1)

Atom x y z Mult Occupancy Uiso

Bi 0.3333 0.6667 0.2350 2 1.0000 0.0250

Mg1 0.0000 0.0000 0.0000 1 1.0000 0.0250

Mg2 0.3333 0.6667 0.6300 2 0.9500 0.0250

Mn2 0.3333 0.6667 0.6300 2 0.0500 0.0250



Table S6. Refined crystallographic parameters for Mg3+δBi2:Mnx (x = 0.125) with 

trigonal structure.

Mg3+δBi2:Mnx (x = 0.125)

Atom x y z Mult Occupancy Uiso

Bi 0.3333 0.6667 0.2350 2 1.0000 0.0250

Mg1 0.0000 0.0000 0.0000 1 1.0000 0.0250

Mg2 0.3333 0.6667 0.6300 2 0.9375 0.0250

Mn2 0.3333 0.6667 0.6300 2 0.0625 0.0250



Table S7. Refined crystallographic parameters for Mg3+δBi2:Mnx (x = 0.15) with 

trigonal structure.

Mg3+δBi2:Mnx (x = 0.15)

Atom x y z Mult Occupancy Uiso

Bi 0.3333 0.6667 0.2350 2 1.0000 0.0250

Mg1 0.0000 0.0000 0.0000 1 1.0000 0.0250

Mg2 0.3333 0.6667 0.6300 2 0.9275 0.0250

Mn2 0.3333 0.6667 0.6300 2 0.0725 0.0250
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