Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Comparability of semivolatile organic compound concentrations from co-located active and passive air monitoring networks in Europe

Jiří Kalina,[†] Kevin B. White,[†] Martin Scheringer,^{*,†,‡} Petra Přibylová,[†] Petr Kukučka,[†] Ondřej Audy,[†] Jakub Martiník,[†] and Jana Klánová^{*,†}

⁺ RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic [‡] Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland

* Corresponding authors: martin.scheringer@recetox.muni.cz, jana.klanova@recetox.muni.cz

Electronic Supplementary Information

TABLE OF CONTENTS

Table S1	Site locations and EMEP sampling and analytical details	. 2
Fig. S1	Temporal sampling regime of EMEP AAS and MONET PAS (2009-2018)	. 3
Fig. S2	Temporal sampling regime of quarterly aggregated data (2009-2018)	. 4
Table S2	Harner and Herkert model input parameters	. 5
Fig. S3	Normal distribution of log-transformed field Rs values	. 5
Fig. S4	Boxplots of atmospheric SVOC concentrations (<i>e</i> _{part} = 100%)	. 6
Table S3	Median concentrations for all SVOCs at each site	10
Table S4	Median $R_{\rm S}$ for all SVOCs at each site	11
Fig. S5	Boxplots of field $R_{\rm S}$ values	12
Fig. S6	Boxplots of atmospheric SVOC concentrations (<i>e</i> _{part} = 18%)	14
Fig. S7	Hourly site wind speeds modelled by MERRA-2	18

	Si	te				EMEP Analytical				
Name	Country	Lat.	Lon.	Years	Durat	ion	Instrument		Method	Lab
Birkenes	Norway	58.380	8.252	2003–2018	24 h	Weekly	High vol (480 m ³ /d)	Glass fibre filter + 2 PUF	GC-MS	NILU (Norway)
Košetice	Czechia	49.573	15.080	1996–2018	24 h	Weekly	High vol (720 m ³ /d)	Glass fibre filter + 2 PUF	GC- MS/MS	RECETOX (Czechia)
Pallas	Finland	68.000	24.246	1996–2018	7 d	Weekly	High vol (570 m3/d)	Glass fibre filter + 3 PUF	HPLC, GC-MS, GC-ECD	IVL (Sweden)
Råö	Sweden	57.394	11.914	2002–2018	7 d	Weekly	High vol (570 m ³ /d)	Glass fibre filter + 3 PUF	HPLC, GC-MS, GC-ECD	IVL (Sweden)
Stórhöfði	Iceland	63.400	-20.283	1995–2018		Bi-weekly	Low vol (70 m ³ /d)	PUF	GC-MS	
Zeppelin	Norway	78.880	11.883	1993–2018	48 h	Weekly	High vol (480 m ³ /d)	Glass fibre filter + 2 PUF	GC-MS	NILU (Norway)

Table S1Site locations and EMEP sampling and analytical details.

Fig. S1 Temporal sampling regime of the EMEP AAS (red) and MONET PAS (blue) for SVOCs from 2009–2018. Each year is divided into four quarters (black cells).

Fig. S2 Temporal sampling regime of the EMEP AAS (red) and MONET PAS (blue) for SVOCs from 2009–2018 aggregated into four quarters per year (individual cells). Purple cells indicate quarters containing sufficient samples from both EMEP and MONET for further analysis of R_S values.

Table S2MONET-specific input parameters used for the Harner and Herkert models as
described by Bohlin-Nizzetto et al., 2020.

Parameter	Symbol	Harner	Herkert
Effective gas-phase sampling rate	Rs	4 m³⋅day ⁻¹	
Particle phase R_S as fraction of gas-phase R_S	e part	1	1
Fraction of organic matter in particles	f _{oc}	0.2	
Total suspended solid particles, TSP	TSP	25 µg∙m ⁻³	
Effective film thickness	d _{film}	0.00567 m	
Density	ρ _{PUF}	30,300 g⋅m ⁻³	30,300 g⋅m ⁻³
Volume of PUF disk	V _{PUF}	0.000265 m ³	0.000265 m ³
Surface area	As	0.0422543 m ²	0.0422543 m ²
Mass transfer rate on wind speed – exponent	α		0.5
Mass transfer dimensionless constant	Y		0.315

Histogram of sampling rates

Fig. S3 Approximately normal distribution of log-transformed values of field Rs.

Fig. S4a Boxplots of OCP concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models ($e_{part} = 100\%$). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S4b Boxplots of PCB concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models ($e_{part} = 100\%$). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S4c Boxplots of PAH concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models ($e_{part} = 100\%$). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S4d Boxplots of PBDE concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models ($e_{part} = 100\%$). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

	Lipit		Birkenes		Košetice			Pallas			Rao			Storhofdi			Zeppellin		
	Onit	Active	Harner	Herkert	Active	Harner	Herkert	Active	Harner	Herkert	Active	Harner	Herkert	Active	Harner	Herkert	Active	Harner	Herkert
α-HCH		0.0043	0.0040	0.0121	0.0057	0.0107	0.0119	0.0042	0.0045	0.0125	0.0034	0.0056	0.0067	0.0019	0.0239	0.0197	0.0054	0.0059	0.0062
ү-НСН	ng m ⁻³	0.0024	0.0029	0.0098	0.0072	0.0155	0.0202	0.0010	0.0016	0.0038	0.0027	0.0060	0.0075	0.0014	0.0174	0.0136	0.0008	0.0012	0.0012
HCB	ng•m •	0.0513	0.0385	0.1100	0.0575	0.0814	0.0902	0.0268	0.0478	0.1245	0.0172	0.0567	0.0637	0.0045	0.0948	0.0822	0.0813	0.0796	0.0833
p,p'-DDE		0.0009	0.0015	0.0056	0.0143	0.0345	0.0439	0.0004	0.0009	0.0026	0.0018	0.0081	0.0099	0.0002	0.0088	0.0074	0.0003	0.0016	0.0016
PCB 28		0.0008	0.0009	0.0029	0.0032	0.0057	0.0061	0.0010	0.0010	0.0029	0.0012	0.0026	0.0030	0.0019	0.0046	0.0038	0.0013	0.0010	0.0010
PCB 52		0.0008	0.0009	0.0029	0.0017	0.0039	0.0044	0.0009	0.0008	0.0024	0.0019	0.0029	0.0036	0.0023	0.0059	0.0051	0.0006	0.0010	0.0009
PCB101		0.0005	0.0007	0.0027	0.0013	0.0033	0.0045	0.0004	0.0008	0.0021	0.0014	0.0031	0.0037	0.0010	0.0037	0.0033	0.0002	0.0008	0.0008
PCB 118	ng∙m⁻³	0.0001	0.0003	0.0010	0.0005	0.0011	0.0013	0.0001	0.0002	0.0006	0.0005	0.0011	0.0014	0.0002	0.0028	0.0022	0.0001	0.0002	0.0002
PCB 153		0.0003	0.0005	0.0020	0.0011	0.0033	0.0045	0.0002	0.0005	0.0015	0.0012	0.0027	0.0035	0.0002	0.0029	0.0025	0.0001	0.0004	0.0005
PCB 138		0.0002	0.0003	0.0011	0.0007	0.0031	0.0038	0.0001	0.0002	0.0008	0.0010	0.0022	0.0029	0.0002	0.0019	0.0017	0.0001	0.0003	0.0003
PCB 180		0.0001	0.0001	0.0005	0.0005	0.0042	0.0056	0.0000	0.0001	0.0003	0.0004	0.0011	0.0015	0.0001	0.0009	0.0008	0.0000	0.0001	0.0001
FLA		0.1507	0.1600	0.5391	1.1176	2.1615	2.2726	0.0915	0.0752	0.1955	0.2636	0.4775	0.5179		0.1074	0.0855	0.0155	0.0343	0.0329
FLU		0.4555	0.2786	0.8186	1.3463	1.7868	2.4807		0.1920	0.5026		0.4790	0.7063		0.1043	0.1133	0.0727	0.1055	0.1164
PHE		0.8179	0.6191	1.8942	2.7018	5.0635	5.7020	0.2399	0.2600	0.7288	0.7414	0.9298	1.1389		0.2714	0.2352	0.0365	0.0888	0.0791
PYR	ng m ⁻³	0.0815	0.0704	0.2390	0.9075	1.0664	1.1368	0.0471	0.0269	0.0731	0.1558	0.1894	0.2057		0.0424	0.0308	0.0081	0.0130	0.0124
BAP	ng-m	0.0110	0.0057	0.0204	0.2670	0.0330	0.0410	0.0117	0.0031	0.0063	0.0266	0.0075	0.0076		0.0025	0.0021	0.0013	0.0009	0.0009
ANT		0.0162	0.0070	0.0224	0.0458	0.1054	0.1127	0.0042	0.0003	0.0007	0.0097	0.0067	0.0075		0.0031	0.0029	0.0017	0.0018	0.0016
BGP		0.0260	0.0021	0.0076	0.1305	0.0342	0.0380	0.0068	0.0013	0.0036	0.0347	0.0149	0.0166		0.0051	0.0040	0.0021	0.0008	0.0008
BAA		0.0105	0.0056	0.0182	0.2747	0.0429	0.0525	0.0146	0.0015	0.0046	0.0270	0.0174	0.0180		0.0042	0.0030	0.0015	0.0015	0.0013
PBDE 47		0.0832	0.0451	0.1935		0.1890	0.2883	0.1274	0.0962	0.2525	0.1031	0.1514	0.2215	0.3476	0.2322	0.2265	0.2107	0.0723	0.0982
PBDE 99		0.0396	0.0268	0.1229		0.0849	0.1209	0.0433	0.0607	0.1622	0.0598	0.0820	0.1175	0.0666	0.1698	0.1609	0.0342	0.0461	0.0592
PBDE 100	pg∙m⁻³	0.0094	0.0074	0.0354		0.0217	0.0354	0.0150	0.0090	0.0316	0.0202	0.0232	0.0319	0.0658	0.0376	0.0401	0.0116	0.0121	0.0153
PBDE 153		0.0086	0.0095	0.0452		0.0446	0.0634	0.0200	0.0106	0.0512	0.0273	0.0267	0.0414		0.1017	0.1063	0.0051	0.0054	0.0070
PBDE 154		0.0077	0.0054	0.0256		0.0284	0.0432	0.0220	0.0070	0.0304	0.0350	0.0159	0.0229		0.0647	0.0676	0.0050	0.0045	0.0064

Table S3Median concentrations for all SVOCs at each site.

	Birkenes			Košetice			Pallas				Råö		Stórhöfði			Zeppellin		
	Field	Harner	Herkert	Field	Harner	Herkert	Field	Harner	Herkert	Field	Harner	Herkert	Field	Harner	Herkert	Field	Harner	Herkert
α-HCH	3.11	3.79	1.22	5.81	3.47	2.96	4.16	3.93	1.45	5.88	3.55	3.05	61.40	3.78	4.35	6.81	4.05	3.98
γ-HCH	5.68	3.99	1.22	6.89	3.74	3.16	5.65	4.03	1.49	10.62	3.85	3.23	44.98	3.99	4.63	15.01	4.18	4.12
HCB	2.28	3.48	1.19	4.50	3.26	2.88	6.25	3.66	1.43	9.28	3.26	2.87	85.78	3.48	4.10	3.97	3.83	3.88
p,p'-DDE	9.22	4.40	1.20	10.16	4.39	3.57	9.16	4.42	1.50	17.21	4.39	3.55	280.31	4.41	5.05	20.51	4.42	4.30
PCB 28	4.87	4.02	1.23	6.98	4.01	3.57	4.66	4.15	1.57	10.13	3.97	3.48	12.85	4.13	5.18	4.71	4.26	4.38
PCB 52	4.42	4.24	1.25	7.48	4.10	3.46	4.90	4.31	1.53	7.53	4.14	3.50	12.15	4.24	4.96	6.39	4.33	4.33
PCB101	5.04	4.35	1.17	10.35	4.32	3.53	6.89	4.37	1.48	8.25	4.33	3.47	14.45	4.36	4.90	9.45	4.40	4.25
PCB 118	6.12	4.40	1.19	6.97	4.40	3.55	5.99	4.41	1.49	9.64	4.40	3.51	28.48	4.41	4.98	5.94	4.42	4.22
PCB 153	6.04	4.40	1.15	11.96	4.39	3.42	7.54	4.41	1.44	10.26	4.39	3.41	56.75	4.41	4.81	12.65	4.42	4.12
PCB 138	5.29	4.41	1.16	13.91	4.40	3.43	29.01	4.42	1.44	8.79	4.40	3.40	57.13	4.41	4.82	12.41	4.42	4.12
PCB 180	14.09	4.42	1.12	33.49	4.42	3.34	11.93	4.42	1.40	12.76	4.42	3.29	66.11	4.42	4.69	407.16	4.42	3.98
FLA	4.37	4.39	1.36	7.00	4.39	4.07	3.13	4.41	1.74	6.97	4.39	4.01		4.41	5.70	8.54	4.42	4.97
FLU	1.75	3.69	1.29	3.95	3.43	2.34		3.87	1.52		3.43	2.37		3.68	3.09	4.86	4.05	3.62
PHE	2.89	4.23	1.37	6.67	4.19	3.62	4.06	4.31	1.69	5.05	4.19	3.54		4.26	5.03	10.85	4.36	4.69
PYR	3.40	4.40	1.38	5.20	4.40	4.10	2.04	4.41	1.74	4.21	4.40	4.03		4.41	5.72	7.07	4.42	4.96
BAP	1.17	4.42	1.30	0.96	4.42	3.88	0.54	4.42	1.63	0.61	4.42	3.85		4.42	5.45	3.54	4.42	4.62
ANT	2.80	4.37	1.41	3.96	4.36	3.89	0.34	4.39	1.71	2.66	4.34	3.59		4.37	5.12	4.66	4.40	4.73
BGP	0.46	4.42	1.27	1.13	4.42	3.77	0.48	4.42	1.58	1.07	4.42	3.72		4.42	5.29	1.24	4.42	4.53
BAA	2.00	4.42	1.36	0.89	4.42	4.04	0.44	4.42	1.68	1.38	4.42	3.95		4.42	5.62	2.10	4.42	4.82
PBDE 47	2.37	4.42	1.04		4.42	3.11	1.95	4.42	1.31	4.65	4.42	3.08	4.04	4.42	4.37	2.35	4.42	3.71
PBDE 99	4.70	4.42	1.00		4.42	2.97	2.32	4.42	1.23	5.15	4.42	2.93	5.64	4.42	4.16	5.51	4.42	3.52
PBDE 100	4.26	4.42	1.00		4.42	2.96	2.79	4.42	1.24	5.31	4.42	2.94	1.64	4.42	4.16	7.59	4.42	3.55
PBDE 153	6.96	4.42	0.95		4.42	2.84	0.93	4.42	1.19	1.71	4.42	2.81		4.42	3.99	5.64	4.42	3.39
PBDE 154	6.41	4.42	0.95		4.42	2.84	0.50	4.42	1.19	1.76	4.42	2.81		4.42	3.99	6.27	4.42	3.38

Table S4 Median $R_{\rm S}$ (m³·day⁻¹) for all SVOCs at each site.

Fig. S5a Boxplots of field R_s derived from quarterly-aggregated EMEP AAS and MONET PAS SVOC data measured at six stations during the period 2009–2018 (n = 8–39). Compound groups are distinguished by colour: OCPs (red), PAHs (light and dark green represent predominantly gas-phase and particle-phase PAHs, respectively), PCBs (yellow), and PBDEs (blue). SVOC groups and individual compounds are ordered by increasing K_{OA} from left to right. Thick black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles. Range of the plot spans from 0.1 to 1,000 m³·day⁻¹ to avoid extreme values to limit plots' readability.

Fig. S5b Boxplots of field R_s derived from quarterly-aggregated EMEP AAS and MONET PAS SVOC data measured at six stations during the period 2009–2018 (n = 8–39). Compound groups are distinguished by colour: OCPs (red), PAHs (light and dark green represent predominantly gas-phase and particle-phase PAHs, respectively), PCBs (yellow), and PBDEs (blue). SVOC groups and individual compounds are ordered by increasing K_{OA} from left to right. Thick black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles. Range of the plot spans from 0.1 to 1,000 m³·day⁻¹ to avoid extreme values to limit plots' readability.

Fig. S6a Boxplots of OCP concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models (*e*_{part} = 18%). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S6b Boxplots of PCB concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models (*e*_{part} = 18%). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S6c Boxplots of PAH concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models (*e*_{part} = 18%). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S6d Boxplots of PBDE concentrations measured by EMEP AAS (green) and calculated from MONET PAS data using the Harner (orange) and Herkert (yellow) models (*e*_{part} = 18%). Thick horizontal black lines represent medians, boxes span from 25th to 75th percentiles, and whiskers represent the 5th and 95th percentiles.

Fig. S7 Hourly wind speeds modelled at each site using the MERRA-2 model. The black dashed line at 4 m·s⁻¹ represents the upper threshold for laminar flow within passive air samplers as identified by Tuduri et al., 2006.